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ABSTRACT

Recently developed molecular techniques allow to quantify the frequency of interactions
between any two loci of the genome. Analysis of such data reveals the presence of regions of the
chromatin with high level of internal contacts while being depleted of interactions with the
adjacent regions, so-called topologically associating domains (TADs). These domains are
demarcated by boundaries characterized by specific features such as an enrichment of
housekeeping genes or tRNA and decorated with distinct histone marks. The aim of this project is
to build a model that will allow to predict the probability that a genomic region is a TAD boundary
based on its epigenetic signature. To this end, we will use publicly available chromatin interaction
and epigenetic data from the GM12878 cell line and build a convolutional neural network model.
In this document, we present an overview of the different steps that we will conduct, with a focus

on the description of the input data. Eventually, some explanatory analyses are also presented.
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OBJECTIVE

In the recent years, several molecular assays have been developed with the aim of studying the
tridimensional organization of the genome. In particular, chromosome conformation capture
technology followed by high-throughput sequencing (Hi-C; Liebermann-Aiden 2009) is a
technique that allows to quantify the frequencies of interactions between any two loci of the
genome. The analysis of such data reveals the existence of topologically-associating domains
(TADs; Nora et al. 2012), which represent linear regions of the genome with higher frequencies of
self-interactions, while being depleted of contacts with the adjacent ones. The boundaries of
TADs hence represent specific regions depleted of contacts where the switch between
preferential upstream (resp. downstream) interactions occur. Notably, it has previously been
shown that these regions of the genomes are enriched in specific features such as specific
histone marks, CTCF binding sites, housekeeping or tRNA genes (e.g. Dixon et al. 2012).

The global aim of this project is to build a neural network to predict the “boundary score” of a
genomic bin (i.e. a fixed-size genomic interval) based on epigenetic data. In this conceptual
design report, we pursue more specifically the objective of discussing methodological
considerations and preliminary statistical analyses. In particular, we will describe steps that
precede the development of the machine learning model, including data acquisition and

preprocessing as well as an exploratory examination of the dataset.

METHODS

Data preparation: from Hi-C data to boundary scores

For the analysis of chromosome conformation capture data, the genome is traditionally
partitioned into genomic bins (i.e. a fixed-size genomic interval). The size of the bin is arbitrarily
fixed but mostly depends on the quality of the assay: smaller bin size can be used only if the
sequencing is deep enough. In this project, we use Hi-C data binned at 25 kilobases (kb) from the
GM12878 cell line (i.e. the first bin covers the first 25’000 base pairs of a given chromosome, the
second bin from the 25’001-st to the 50°000-th base pairs, and so on). In most cases, these data
are stored, for each chromosome separately, either in a dataframe of three columns where the
value of the third column indicates the frequencies of interactions (“count value”) between the
loci given in the first two columns (cf. Fig. 1 in DATA section); or they can be stored in more
intuitive symmetric square matrix where the i,j-cell stores the interaction frequencies between the
loci of the i-th row and j-th column (cf. Fig. 2 in DATA section). The data made publicly available
were stored according to the former format and we had to convert them into the latter format for

the following step (custom R script; see Supp. mat.). In addition, the downloaded data are already



normalized, therefore we do not discuss here the Hi-C data normalization procedure (see e.g.
Imakaev et al. 2016).

In order to detect TADs from Hi-C data, several algorithmic approaches have been developed
(Forcato et al. 2017). In this project, we use TopDom (Shin et al. 2016). In particular, this method
has the advantage to assign a so-called “boundary score” to any bin of the genome that can be
easily retrieved from one of the output files (the one with the “.binSignal” suffix; cf. Fig. 3 in DATA
section). This value corresponds to the p-value of a Wilcoxon rank-sum test that assesses
statistically the depletion of interactions between upstream and downstream intervals, hence
putative boundary regions. And this p-value will serve as the “target variable” that we aim at

predicting at the end with the neural network model.

Data preparation: from epigenetic data to signal values

As for the predictive variables, the epigenetic marks, we use publicly available ChIP-seq data for
the GM12878 cell line from the ENCODE portal (Sloan et al. 2016; https://www.encodeproject.org).
We selected data from 116 experiments (“broad peaks” data in BED format; cf. Fig. 4 in DATA

section), corresponding to 56 distinct epigenetic marks (histone marks, transcription factors,
binding proteins, etc.). For the marks for which several datasets were available, an additional
preprocessing step consists in aggregating (summing up) the signal values in such a way that
each column corresponds to a distinct mark (custom scripts; see Supp. mat.). Note that adding up
the signal values from several experiments for a subset of marks is not problematic here as each
of the signal values will be normalized across the bins for each mark separately before the
machine learning process. Finally, the signal values are aggregated (summed up) to the
corresponding 25 kb bins of each chromosome (e.g. for each mark, all the signal values that map
to any of the first 25000 base pairs of a chromosome will be mapped to the first bin of this

chromosome).

Statistical methods

Before focusing on machine learning models, some basic descriptive and exploratory analyses
are performed (e.g. distribution, correlation, linear model). We will then build a convolutional
neural network model to predict scores for a contiguous sequence of bins from the
corresponding epigenetic signals. The architecture of the network will probably need some
tuning, but we plan to include several convolutional layers with several convolutional kernels and,
optionally, one or several max-pooling layers. As each chromosome can be considered as a
dataset, a subset of the chromosomes will be used for training, and the other for testing. The

details of the neural network model will be further discussed in Module 3.


https://www.encodeproject.org/

Tools, softwares and libraries

For the chromatin interaction data, the program “dump” from the Juicer toolbox (Durand et al.
2016) is used to download normalized Hi-C data. The boundary score for each of the genomic
bins is retrieved from TopDom outputs (Shin et al. 2016; distributed as an R package from
Bengtsson and Shin 2018).

The ChIP-seq data are directly downloaded from the ENCODE portal from command line (“curl”
command). The signal values are aggregated to genomic intervals (bins) using the programm
“map” from the BEDTools suite (version 2.27.1; Quinlan and Hall 2010).

Preparation of the data was conducted from the terminal and on R (R Core Team 2018) using
custom scripts (cf. Supp. mat.). The basic exploratory analyses presented below were performed
using Python and the following modules: pandas (McKinney 2010), re, numpy (van der Walt et al.
201), scipy.stats (Pedregosa et al. 2011), statsmodels.api (Seabold and Perktold 2010). The
matplotlib (Hunter 2007) and seaborn (Waskom et al. 2014) libraries were used for plotting.
Finally, the neural network model will also be built in Python using the tensorflow library (Abadi

et al. 2015) and executed on the Colaboratory platform (https://colab.research.google.com).

Infrastructures

A commercially available laptop was used as data storage and analysis infrastructure (Lenovo
Thinkpad T560, Intel® Core™ i7-6600U, 2.60GHz x 4 Cores, 8 GB RAM, 256 GB hard disk, with a
Linux Ubuntu 16.04 LTS operating system).

DATA

Chromatin interaction data and boundary scores

The Hi-C data are downloaded using “dump” (Fig. 1) and, converted in a format accepted by
TopDom (Fig. 2). We retrieve the “.binSignal” file from TopDom outputs (Fig. 3) and extract the
boundary scores. The final data frame here is of dimension (n_bin x 1), where n_bin is the total
number of bins of a given chromosome. These steps have to be repeated for each of the

chromosomes.



binA
9400000
9425000
9400000
9425000
9450000

binB
9425000
9425000
9450000
9450000
9450000

count
5400.409
22256.86
2780.6067
4916.144
18140.729

Figure 1: first rows of the Hi-C data as downloaded using the Juicer tool for chromosome 21. The file stores

the count value (third column) between a pair of genomic bins (whose positions are indicated in the first

two columns).

chr21 0 20000 0 O
chr21 20000 40000 0 O
chr21 40000 60000 O O
chr21 60000 80000 O O
chr21 80000 100000 O O

Figure 2: first rows of the Hi-C data formatted for TopDom for chromosome 21. This corresponds to a

three-column data frame (first column: chromosome, second column: bin start, third column: bin end)

appended to a symmetric numeric matrix of pairwise contact counts.

id chr
chr21
chr21
chr21
chr21
chr21
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from.coord to.coord local.ext mean.cf pvalue

0
20000
40000
60000
80000

20000
40000
60000
80000
100000

-0.5 0 1
-0.5 0 1
-0.5 0 1
-0.5 1] il
-0.5 0 1

Figure 3: first rows of the “.binSignal” output from TopDom from which the boundary score is retrieved

(seventh column). The three first columns give the genomic positions.



Epigenetic data and signal values

The epigenetic data are downloaded in BED format from ENCODE (Fig. 4). The signal values are
next extracted, mapped to the genomic bins (aggregated by summing). Finally, if several datasets
are available for a same mark, they are summed up. As there are here 56 distinct epigenetic
marks, the final table (one per chromosome) is of dimension (n_bin x 56).

chrom chromStart chromEnd name score strand signalValue pValue qValue

chr21 9696016 9696252 . 871 : 15.717358 12.6 -1
chr21 9696100 9697137 - 366 : 3.887988 1.8 -1
chr21 9696101 9696350 ; 836 : 14.896773 1241 -1
chr21 9820498 9934664 s 269 : 1.614630 13.5 -1
chr21 9824586 9828540 . 1000 . 22.229185 14.7 -1

Figure 4: first rows of the raw data downloaded from ENCODE (BED format). It is the seventh column

(“signalValue”) that is extracted for upstream analyses.

Formatted dataset

For each chromosome, the data frames of boundary scores and signal values are merged (the
jointure is done based on the genomic bin). The resulting dataset is then a (n_bin x (1+56)) data
frame containing numeric values (Fig. 5).

binScore CTCF EZH2 H2AFZ  H3Kdme1l
0.274411082176029 214.440683 66.442082 23.843815 22.832315
0.0342406882240031 46.493788 0 1.61463 0

0.0133944859241037 44.122768 3.624789 1.61463 11.022849
0.10407917661042  59.999873 2.820925 1.61463  2.124582
0.365480704274996 166.417762 1230813 1.61463  2.124582

Figure 5: first rows of the formatted data for chromosome 21, that serves as input for the rest of the

analyses.

We provide here below a short overview of the distribution of the variables that we will use in our
analyses (Fig. 6). For sake of convenience, we selected data for chromosome 21 and a subset of
epigenetic marks only. Notably, we notice the presence of a high number of zero values for the
epigenetic marks (Fig. 7). This calls for caution, and we will need to treat them carefully in the
upcoming statistical models, and decide whether to remove them or not. Moreover, the

distribution of the response variable (boundary score) seems to have a bimodal shape. Finally. we



note that, after the removal the zero values and a log10-transformation, the signal values are
almost normally distributed for the H3K4me1 mark and bimodal for the H2AFZ mark (Fig. 8).
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Figure 6: density plot showing the distribution of the dependent variable (‘boundaryScore’) and a subset of
the independent variables (CTCF, H2AFZ and H3K4mel).
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Figure 7: barplot showing the number of zeros in the signal values (y-axis) for all the 56 epigenetic marks
(x-axis). Explicitly indicated on the x-axis are the subset of the marks for which we show the results of the

# of bins

H3K4mel

explanatory analyses in a subsequent section.



variable = CTCF variable = H2AFZ variable = H3K4mel
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Figure 8: density plot showing the distribution of a subset of the independent variables (CTCF, H2AFZ and

H3K4me1) after removal of zero values and log10-transformation.

METADATA

A README file with the list of the URLs of the downloaded data as well as the scripts used for
preprocessing the input data are deposited on a GitHub repository
(https://github.com/marzuf/CAS ADS/tree/master/CAS 2020 M1). This folder also contains a

Jupyter notebook to reproduce the figures presented in the current report.

DATA QUALITY

The GM12878 Hi-C data from Rao et al. (2014) are to date the highest quality (human) Hi-C data
available. As for the ENCODE portal, it is a well-established database in the field of biology. If
technical/experimental biases or failures can never be excluded, we will assume that the quality
of the data is satisfactory. Also, to assess the robustness of our results, we can consider to
reproduce our analyses with the Hi-C data from other cell ling(s), and/or with different subset(s) of

the epigenetic data.

DATA FLOW
pre-processing
(custom scripts)
ChIP-seq data
(ENCODE) exploratory analyses
- (e.g. summary statistics,
. formated input correlations, linear models)
data matrix
> (n_bins x (1+56)) \
machine learning models
Hi-C data (e.g. convolutional neural
. networks)
(Juicebox) )
TAD calling

(TopDom)

i

Figure 9: schematic data flow of this data science project.


https://github.com/marzuf/CAS_ADS/tree/master/CAS_2020_M1

DATA MODELS

The preprocessing steps (prepare the Hi-C data and run TopDom to obtain the boundary scores,
derive signal values from ChlP-seq data for the epigenetic marks) are not shown in the data
models (cf. METHODS and DATA sections).

Conceptual data model

TopDom results > ENCODE data

Figure 10: conceptual data model of this data science project.

Logical data model

TopDom results ENCODE data
boundary scores: <> signal values:
1 value/bin 56 x 1 value/bin

Figure 11: logical data model of this data science project.

Physical data model

TopDom results ENCODE data
(n_bin x 1) matrix > (n_bin x 56) matrix
boundary scores: float64 signal values: float64

Figure 12: physical data model of this data science project.

The raw Hi-C data files can be as heavy as 1.5 GB (per chromosome, depending on chromosome
length), and the output of TopDom up to ca. 1 GB by chromosome. The order of magnitude of the
size of the BED files downloaded from ENCODE is of several hundreds of kilobytes. For the
analyses presented here, 116 of such files were downloaded. The neural network models will be
run using Colaboratory notebooks on the Google cloud platform
(https://colab.research.google.com) and therefore do not require expensive computational
infrastructures.



RISKS

The raw Hi-C and ChlIP-seq files represent a considerable amount of data. Therefore, we decided

|“

to store on our computer only the final processed data. We expect that the raw data will “always”

remain available from the original websites, but we cannot guarantee it.

PRELIMINARY STUDIES

For exemplary purposes, we show here the results of some preliminary analyses obtained for
chromosome 21 and three epigenetic marks of different types: CTCF - a binding protein,
H3K4me1 - a histone mark and H2AFZ - a variant histone. First, we investigate the relationships
among pairs of variables with correlation analyses (Fig. 13). For these analyses, we discard the
genomic bins for which the signal values for all the subset of epigenetic values were equal to

zero, and log10-transform the signal values. Overall, we observe limited correlation.
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Figure 13: pairwise Pearson’s correlation and distribution (diagonal) of the target variable (boundaryScore)
and a subset of the predictor variables (CTCF, H2AFZ and H3K4me1). The rows where all variables were
equal to O have been discarded.



We then assess the explanatory potential of each variable independently with a simple linear
model, with the boundary score as the response variable and a single epigenetic mark, one at a
time, as the independent variable (Fig. 14). For these analyses, we discard the genomic bins for
which the signal values was equal to zero before applying a log10-transformation to the signal
values. Only the effects of CTCF and H2AFZ on the boundary scores was statistically significant
(p <= 0.0071).

OLS Regression Results

Dep. Variable: boundaryScore  R-squared: B.613
Model: OLS Adj. R-squared: f.012
Method: Least Squares F-statistic: 14.86
Date: Sun, 17 May 2020 Prob (F-statistic): b.0o0122
Time: 13:48:88 Log-Likelihood: -542.81
No. Observations: 1147  AIC: 1896.
Df Residuals: 1145 BIC: 1108.
Df Model: 1
Covariance Type: nonrobust

coef std err t P=]t] [B.825 B.975]
const B.4576 B.825 17.997 0.600 0.408 8.587
CTCF -8.68713 8.019 -3.855 0.000 0.168 8.835

OLS Regression Results

Dep. Variable: boundaryScore R-squared: B.0611
Model: 0OLS Adj. R-squared: B.016
Method Least Squares F-statistic: 10.46
Date: Sun, 17 May 2028 Prob (F-statistic): B.008126
Time: 13:48:09 Log-Likelihood: -482.60
No. Observations 982  AIC: 969.2
Df Residuals: 980 BIC: 979.8
Df Model: 1
Covariance Type: nonrobust

coef std err t P=jt] [B.825 8.975]
const 0.3304 0.022 15. 164 0.000 0.288 B.373
HZAFZ b.0673 B.0621 3.234 b.oo1 b.026 b.108

OLS Regression Results

Dep. Variable: poundaryScore  R-sgquared: b.081
Model: OLS Adj. R-squared: -0.608
Method: Least Sqguares  F-statistic: B.7147
Date: Sun, 17 May 2028 Prob (F-statistic): 0.398
Time: 13:48:10 Log-Likelihood: -381.71
MNo. Observations: 716  AIC: 767 .4
DT Residuals: 714 BIC: T76.6
DT Model: 1
Covariance Type: nanrobust

coef std err t P=]t] [B.825 B.975]
const. 0.4864 0.048 16.881 0.600 6.387 6.574
H3Kdmel -B.68338 B.639 -0.845 6.398 8.118 0.044

Figure 14: summary of the linear models fitted for each of the epigenetic mark separately (top: CTCF,
center: H2AFZ, bottom: H3K4me1).

We observe that, individually, these epigenetic marks have a poor predictive potential (R* < 0.05).
Therefore, we next assess their combined effects with a multivariate linear regression model (Fig.
15). For these analyses, we discard the genomic bins for which the signal values for all the subset
of epigenetic values were equal to zero. Before applying a log10-transformation of the signal



values, the remaining zeros were then replaced with a small offset (0.01; note that the lowest
non-zero signal value is 1.17) to avoid infinite values. This leads to a slightly improved, but still
limited, percent of explained variance. Interestingly, the effect of H3K4me1 is now statistically
significant (p <= 0.01). Inversely, the effect of H2AFZ is in this case not statistically significant (p >
0.01). This might be caused by the correlation between H2AFZ and H3K4me1 signal values: when
the multivariate model is built with only a pair of variables, the two variables are statistically
significant in all cases, except when H2AFZ and H3K4me1 are considered together (not shown

here; see also correlation in Fig. 13).

OLS Regression Results

Dep. Variable: ¥y  R-squared: 0.049
Model: OLS Adj. R-sguared: o.e47
Method: Least Squares F-statistic: 23.24
Date: Sun, 17 May 2628 Prob (F-statistic): 1.14e-14
Time: 11:36:29 Log-Likelihood: -b04.13
No. Observations: 1357  AILC: 1216.
Of Residuals: 1353  BIC: 1237.
Df Model: 3
Covariance Type: nonrobust

coef std err t P=]t] [B.825 8.975]
const 0.4172 B.013 32.769 0.000 f.392 0.442
CTCF [logle] -8.8377 b.008 4,486 0.po08 -8.854 -8.821
HZAFZ [logla] -0.0026 0.0609 -0.296 0.768 -0.024 8.815
H3iKdmel [logli] B.0566 b.oa8 7.671 0.po66 0.0641 B.872

Figure 15: summary of the multiple regression model including a subset of the epigenetic marks as
predictor variables (CTCF, H2ZAFZ and H3K4meT) and the boundary score as target variable.

CONCLUSIONS

The analyses conducted for this report allowed us to familiarize with the data on hand and raised
awareness of potential pitfalls. Consequently, this document lays the foundations for more
thorough analyses. From the work presented here, we conclude that simple linear models do not
lead to satisfactory results. Considering the distribution of the input data, applying different
categories of linear models (e.g. multiple logistic regression as in Mourard and Cuvier 2016) might
be more suitable. This will be achieved in a future study. Afterwhile, we will specifically focus on
building a deep neural network. Indeed, recent work suggests that such models could be
powerful to predict chromatin structure from epigenetic marks (Rozenwald et al. 2018). As
adjacent genomic positions are not independent from one another, we also believe that including
epigenetic signals from the surrounding bins, as a convolutional neural network allows, could

improve the predictive power of the models.
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Supplementary materials

The scripts used for data preprocessing and for the analyses presented in this document are
available on GitHub (https://github.com/marzuf/CAS ADS/tree/master/CAS 2020 M1).
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