
Databases

The Relational Model

Kai Brünnler

CAS Applied Data Science

University of Bern

Material adapted from: Silberschatz, Korth, Sudarshan: Database

System Concepts. 6th Edition.

1.2

Database Management System

 A DBMS consists of

 A collection of interrelated data

 A set of programs to access the data

 An environment that is both convenient and efficient to use

 Classic Database Applications:

 Banking, Airlines, Universities, Sales, Online retailers, Manufacturing,

Human resources

 Our running Example: A University Database.

 Example tasks: add new students, register students for courses, list course

participants, assign grades, compute grade point averages, generate

transcripts

 Today databases are everywhere!

 What's the most widely deployed database software?

1.3

SQLite

 SQLite is a public domain

embedded SQL database

engine

 The most widely deployed

database

 https://www.sqlite.org

 Less than 500KB

 "a replacement for fopen()"

 It is used in:

 Android, iPhone

 Windows 10, MacOS

 Firefox, Chrome, Safari

 Skype, Dropbox, Adobe

Reader

 etc.

1.4

Drawbacks of File Systems

In the early days, database applications were built directly on top of file systems.

But that leads to:

 Data isolation

 Multiple files, multiple file formats

 Data redundancy and inconsistency

 Duplication of information in different files

 Example: data of a student with double major is stored by both

departments

 Difficulty in accessing data

 Need to write a new program for a new task

 Example: generate list of all students with certain grade

 Integrity problems

 Integrity constraint example: no two students should have the same email

address

 Integrity constraints become “burried” in program code: hard to

understand and hard to change

1.5

Drawbacks of File Systems

 Updates are not atomic

 Failures may leave database in an inconsistent state

 Example: Transfer of funds from one account to another should either complete

or not happen at all

 Problems with concurrent access

 Concurrent access can lead to inconsistencies

 Example: Two people reading a balance (say 100) and updating it by

withdrawing money (say 50 each) at the same time

 Security problems

 Hard to provide user access to some, but not all, data

 Example: A schedule planner needs to know department of an instructor but is

not allowed to see salary

Database systems were developed to solve these problems.

1.6

Relational Model

 Example of tabular data in the relational model
Columns

Rows

1.7

A Sample Relational Database

1.8

Schema and Instance

 They are similar to type and value of a variable in programming languages

 Schema – the logical structure of the database

 Example:

 instructor(ID, name, dept_name, salary)

 department(dept_name, building, budget)

 … and the meaning of all those terms

 Instance – the actual content of the database at a particular point in time

 Example: the tables we have seen before

 We usually use SQL (Structured Query Language) to access a database

 The schema is modified by the Data Definition Language (DDL)

 The instance is modified by the Data Manipulation Language (DML)

1.9

SQL: Data Definition Language

 Defining the database schema and implementation details

Example: create table instructor (

 ID char(5),

 name varchar(20),

 dept_name varchar(20),

 salary numeric(8,2))

 DDL compiler generates metadata stored in the data dictionary:

 Database schema

 Integrity constraints

 Primary key constraint

– Example: An ID uniquely identifies an instructor

 Foreign key constraint

– Example: The dept_name of an instructor must exist in the

department relation

 Authorization

1.10

SQL: Data Manipulation Language

 Example: Find the name of the instructor with ID 22222

 select name
 from instructor
 where ID = ‘22222’

 Example: Find the building of the instructor “Einstein”

select building
from instructor, department
where instructor.dept_name = department.dept_name and
 name = ‘Einstein’

1.11

Database Schema Design

 Is there any problem with this schema?

1.12

Database Schema Design

 The previous database schema is bad:

 Repetition of information:

 the budget of a certain department is stored redundantly for

each instructors in the department

 Difficulty of storing information:

 how to store the budget of a department without instructors?

 Would it be better to split the data into two tables?

1.13

Structure of a DBMS

 A database system consists

of two main components:

 The Query Processor

translates queries into

an efficient sequence of

operations at the

physical level.

 The Storage manager

stores data and

executes operations at

the physical level.

1.14

The course Relation

1.15

The section Relation

1.16

The teaches Relation

1.17

Superkeys

 Let K be a subset of the set of attributes of a schema R.

 K is a superkey of R if in each possible relation of schema R, the values

for K are sufficient to identify a unique tuple of r.

Example: Find all superkeys of the schema instructor

1.18

Candidate Keys

 A minimal superkey is a superkey such that, when one attribute is

removed, it is no longer a superkey.

 A candidate key is a minimal superkey.

 Example: {ID} is a candidate key for instructor, but {ID, name} is not

1.19

Primary Keys

 Database designer chooses a primary means of identifying a tuple:

the primary key.

 The primary key is part of the schema – every schema needs a

primary key.

Notation:

 instructor (ID, name, dept_name, salary)

 teaches (ID, course_id, sec_id, semester, year)

 The primary key constraint means two tuples can not have the same

values for the primary key attributes

 The database will reject adding a new instructor with an existing

ID

1.20

How to Choose the Primary Key

 Choose a set of attributes which is

1. a candidate key, and has

2. stable values

 If there is no candidate key with stable values, and only then, add an

additional attribute with a unique value per tuple, called surrogate key

 Choosing the primary key is an important and difficult decision: it is

used in other parts of the database, often exposed to partners, hard to

change

 e.g. imagine choosing {semester, year, timeslot_id, building, room}

as the primary key of section and later encountering a situation

that requires that two sections happen in the same room

 There are not many natural (non-surrogate) primary keys, most are

surrogate keys from other databases (e.g. ISBN)

1.21

Foreign Keys

 A foreign key is a set of attributes in one relation which is the primary

key of another relation

 Example: the dept_name attribute in the instructor relation is the

primary key of the department relation

 Notation:

 instructor (ID, name, dept_name, salary)

 dept_name → department

 instructor is called the referencing relation

 department is called the referenced relation

 The foreign key constraint says that attribute values of the foreign key

in the referencing relation have to occur in the referenced relation

 The database will reject adding an instructor with a department which

is not in the department relation

1.22

Schema Diagram for University Database

1.23

Other Data Models

 A data model says what data is.

 The Relational data model essentially says “data is a set of tables”

 The Object-oriented data model essentially says “data is a graph of

objects”

 The Semistructured data model essentially says “data is a

hierarchical, tree-like structure” (XML, JSON)

