Databases

Part 2/2
SQL

Kai Brunnler
CAS Applied Data Science
University of Bern

Material adapted from: Silberschatz, Korth, Sudarshan: Database
System Concepts. 6th Edition.

Comparison Procedural vs Declarative

m Example: Find the name of the instructor with ID 22222

import csv select name
from instructor
with open('instructor.csv') as file: where ID = '22222'

reader = csv.DictReader(file)
for row in reader:
if row['ID'] == '2222':
print (row['name'])

1.2

Comparison Procedural vs Declarative

m Example: Find the building of the instructor “Einstein”

import csv

with open('instructor.csv') as file:
reader = csv.DictReader(file)
for row in reader:
if row['name'] == 'Einstein':
dept_name = row['dept_name']

with open('department.csv') as file:
reader = csv.DictReader(file)
for row in reader:

if row['dept_name'] == dept_name:

print (row['building'])

select building

from instructor, department

where instructor.dept_name
department.dept_name
and

name = 'Einstein’

1.3

DATA DEFINITION LANGUAGE
(DDL)

Data Types

Basic Data Types Large-Object Data Types

m char(n) Fixed length character string, B Objectsthat are large (several
with length n kilobytes up to several gigabytes)

m varchar(n) Variable length character blob Binary large object:

string, with maximum length n
® integer Integer, size is machine-

uninterpreted binary data
a photo or video

dependent

m real Floating point number, with clob Character large object: a
machine-dependent precision. large string.

® numeric(p,d) Fixed point number, some text or an XML
with p digits before and n digits after document.

the decimal point. ® Queries return pointers to large

objects, not the objects themselves

15

Create Table

m Define a relation:
create tabler (A, D4, A, D,, ..., A, D,,
(integrity-constraint,),

(integrity-constraint,))

r is the name of the relation

each A is an attribute name in the schema of relation r
D, is the data type of values in the domain of attribute A,

m Example: create tableinstructor (
ID char(5),
name varchar(20),
dept_name varchar(20),
salary numeric(8,2))

1.6

Integrity Constraints

create table instructor (

ID char(5),

name varchar(20) not null,
dept_name varchar(20),

salary numeric(8,2),

primary key (ID),
foreign key (dept_name) references department)

not null: null values will be rejected

unique (A, A,, ..., A): states that the attributes A,, ..., A, allow to uniquely
identify a row. In other words, a change will be rejected if it leads to two
tuples with the same values on Ay, ..., A,

primary key (A, ..., A,): denotes the primary key
implies unique (A, ..., A,)
implies not null

foreignkey (A4, ..., A,) referencesr: a change will be rejected if it leads to a
tuple for which there is no tuple in r with the same values on A, ..., A,

1.7

DATA MANIPULATION
LANGUAGE
(DML)

he select Clause

m By default SQL lists duplicate tupels:
select dept_name
from instructor

To force the elimination of duplicates:

select distinct dept_name
from instructor

To retain duplicates (default):

select all dept_name
from instructor

m An asterisk denotes “all attributes”

select *
from instructor

® Can contain arithmetic expressions:

select ID, name, salary/ 12
from instructor

1.9

Natural Join

® Natural join joins two tables in the natural way:

by combining all rows that have the same values on the common
attributes.

m List the names of instructors along with the course ID of the courses that
they taught:

select name, course_id
from instructor, teaches
where instructor.ID = teaches.ID;

select name, course_id
from instructor natural join teaches;

1.10

Natural Join Example

m select * from instructor natural join teaches;

111

ID course_id | sec_id semester | year
ID name dept_name salary 10101 1 CS.101 1 Tall 2009
10101 | Srinivasan| Comp.Sci. | 65000 10101 | CS-315 1 Spring 2010
12121 | Wu Finance 90000 10101 | CS-347 1 Fall 2009
15151 | Mozart Music 40000 12121 | FIN-201 1 Spring | 2010
22222 | Einstein Physics 95000 15151 | MU-199 | 1 Spring | 2010
mo | HSd | Hhy | oo e
20 || £ekd ey || Srod 45565 | CS-101 1 sgrmg 2010
4560 | Katz | Comp.Sei | 75000 45565 | CS319 | 1 | Spring | 2010
58583 | Califieri History 62000 76766 | BIO-101 1 Summer | 2009
76543 | Singh Finance 80000 76766 | BIO-301 1 Summer | 2010
76766 | Crick Biology 72000 83821 | CS-190 1 Spring | 2009
83821 | Brandt Comp. Sci. | 92000 83821 | C5-190 2 Spring | 2009
98345 | Kim Elec. Eng. 80000 83821 | C5-319 2 Spring | 2010
98345 | EE-181 1 Spring | 2009

| ID | name |dept_name|salary| course_id | sec_idl semesterl year |

10101 (Srinivasan| Comp. Sci.| 65000 | CS-101 1 |Fall 2009

10101 |Srinivasan| Comp. Sci.| 65000 | CS-315 1 |Spring | 2010

10101 |Srinivasan| Comp. Sci.| 65000 | CS-347 1 |Fall 2009

12121 |Wu Finance |90000| FIN-201 | 1 |[Spring | 2010

15151 |Mozart Music 40000 MU-199 1 |Spring | 2010

22222 |Einstein | Physics 95000| PHY-101| 1 (Fall 2009

32343 |El Said History | 60000 | HIS-351 1 |Spring | 2010

45565 |Katz Comp. Sci.| 75000 CS-101 1 |Spring | 2010

45565 |Katz Comp. Sci.| 75000| CS-319 1 |Spring | 2010

76766 |Crick Biology | 72000| BIO-101 1 |Summer| 2009

76766 |Crick Biology [72000| BIO-301 1 [Summer| 2010

83821 (Brandt | Comp. Sci.|92000(CS-190 1 |Spring | 2009

83821 |Brandt Comp. Sci.| 92000| CS-190 2 |Spring | 2009

83821 (Brandt | Comp. Sci.| 92000| CS-319 2 |Spring | 2010

98345 |Kim Elec. Eng. | 80000| EE-181 1 |Spring [2009

The Rename Operation — as clause

® Renaming attributes:

select ID, name, salary/12 as monthly_salary
from instructor

® Renaming relations:
Find all pairs of instructors who have the same name:

select T.ID, S.ID
from instructor as T, instructor as S
where T.name = S.name

1.12

String Matching — like clause

m Patterns are strings containing:
percent (%). Matches any substring.
underscore (_). Matches any character.

m Example:
select name
from instructor
where name like *_ _ %stein%'

1.13

Ordering — order by clause

®m List names in alphabetic order:
select distinct name

from instructor
order by name

m Specify descending order, ascending order is default:

order by name desc

m Sort on multiple attributes:
order by dept _name asc, name desc

1.14

Set Operations: union, intersect, except

Keyword in SQL Relational Algebra
union Set union

intersect Set intersection

except Set difference

® Find courses that ran in 2009 or in 2010 or both:
select course_id from section where year = 2009

union
select course_id from section where year = 2010

Set operations eliminate duplicates
®m To retain duplicates use union all, intersect all and except all

1.15

Null Values

® Null values are unknown or non-existent values
The result of any arithmetic expression involving null is null
A comparison with null returns the special boolean value unknown

The where clause treats unknown as false

m What's the result of this?

name salary
I nam
>C eC-t ame Einstein 80000
from instructor
where salary = null Katz null
Mozart 0

® Null values are very problematic.
Check for null with is null
Always consider the possibility that a value is null.

1.16

Aggregate Functions

Find the average salary of instructors in the Computer Science
department

select avg (salary)
from instructor
where dept_name="Comp. Sci.’;

Find the number of tuples in the course relation

select count (*)
from course;

Find the number of instructors who taught a course in 2010

select count (distinct ID)
from teaches
where year = 2010;

1.17

Aggregate Functions — Group By

® Find the average salary of instructors in each department

select dept_name, avg (salary) as avg_salary
from instructor
group by dept_name;

ID | name dept_name | salary
76766 | Crick Biology 72000
45565 | Katz Comp. Sci. | 75000
10101 | Srinivasan | Comp. Sci. | 65000
83821 |Brandt Comp. Sci. | 92000
98345 | Kim Elec. Eng. | 80000
12121 | Wu Finance 90000
76543 | Singh Finance 80000
32343 | El Said History 60000
58583 | Califieri History 62000
15151 | Mozart Music 40000
33456 | Gold Physics 87000
22222 | Einstein Physics 95000

dept_name avg_salary
Biology 72000
Comp. Sci. | 77333
Elec. Eng. | 80000
Finance 85000
History 61000
Music 40000
Physics 91000

1.18

Null Values and Aggregates

m All aggregate operations except count(*) ignore null values
Example: Summing all salaries is really summing all known salaries

select sum (salary)
from instructor

Same for count (<Attribute>)
Exception: count(*) does count null values

® On empty collections:

count returns 0O
all other aggregates return null (1)

1.19

Nested Queries

® A subquery is a query inside another query.
B There are three kinds of subqueries:
in the where-clause,
in the from-clause,
scalar subqueries (that can occur anywhere).

1.20

Subqguery in the Where-Clause - In

® Find courses offered in 2009 and in 2010

select distinct course_id

from section

where year = 2009 and

course_idin (select course _id
from section
where year = 2010);

121

Subqguery in the Where-Clause — exists

B existsr returns true iff r is nonempty.

® Find all courses taught in both 2009 and 2010

select course_id
from sectionas S
where year = 2009 and
exists (select *
from sectionas T
where year = 2010 and S.course_id = T.course _id);

S is a correlation variable
the inner query is a correlated subquery

1.22

Scalar Subqueries

®m A scalar subqguery is a subquery which is used where a single value is
expected

If it returns more than one tuple it causes a runtime error

®m Find the instructors that cost more than 10% of their departments budget:

select name
from instructor
where salary * 10 >
(select budget from department
where department.dept_name = instructor.dept_name)

1.23

Deletion

Delete all instructors
delete from instructor :

Delete all instructors from the Finance department
delete from instructor
where dept_name="Finance’;

Delete all tuples in the instructor relation for those instructors
associated with a department located in the Watson building.

delete from instructor
where dept_name in (select dept_name
from department
where building = "Watson’);

1.24

Deletion

Delete all instructors whose salary is less than the average salary of

instructors
delete from instructor
where salary < (select avg (salary) from instructor);

Problem: as we delete tuples, the average salary changes
Solution used in SQL:
First, compute avg salary and find all tuples to delete
Only then delete all those tuples

1.25

Insertion

® Add a new tuple to course:

insert into course
values (CS-437’, 'Database Systems’, '‘Comp. Sci.’, 4);

®m or equivalently:
insert into course (course_id, title, dept_name, credits)
values (CS-437’, 'Database Systems’, '‘Comp. Sci.’, 4);

® Add a new tuple to student with unknown tot_creds:

Insert into student
values (3003, 'Green’, 'Finance’, null);

1.26

Insertion

Add all instructors to the student relation with tot_creds set to O

insert into student
select ID, name, dept_name, O
from instructor

The select statement is evaluated fully before any of its results are
iInserted, the following is possible:

insert into student

select*
from student;

1.27

Updates

® Increase salaries of instructors by 5%:
update instructor
set salary = salary * 1.05;

® Problem: How to increase salaries of instructors whose salary is over
$100,000 by 3%, and all others by 5%7?

Write two update statements?

update instructor
set salary = salary * 1.03
where salary > 100000;
update instructor
set salary = salary * 1.05
where salary <= 100000;

1.28

Updates — case statement

®m Problem as before, solution with case statement:

update instructor
set salary =
case
when salary <= 100000 then salary * 1.05
else salary * 1.03
end

1.29

