
Databases

Part 2/2

SQL

Kai Brünnler

CAS Applied Data Science

University of Bern

Material adapted from: Silberschatz, Korth, Sudarshan: Database

System Concepts. 6th Edition.

1.2

Comparison Procedural vs Declarative

 Example: Find the name of the instructor with ID 22222

select name
from instructor
where ID = '22222'

1.3

Comparison Procedural vs Declarative

 Example: Find the building of the instructor “Einstein”

select building

from instructor, department

where instructor.dept_name =

 department.dept_name

 and

 name = 'Einstein'

1.4

DATA DEFINITION LANGUAGE

(DDL)

1.5

Data Types

Basic Data Types

 char(n) Fixed length character string,
with length n

 varchar(n) Variable length character
string, with maximum length n

 integer Integer, size is machine-
dependent

 real Floating point number, with
machine-dependent precision.

 numeric(p,d) Fixed point number,
with p digits before and n digits after
the decimal point.

Large-Object Data Types

 Objects that are large (several

kilobytes up to several gigabytes)

 blob Binary large object:

uninterpreted binary data

 a photo or video

 clob Character large object: a

large string.

 some text or an XML

document.

 Queries return pointers to large

objects, not the objects themselves

1.6

Create Table

 Define a relation:

 create table r (A1 D1, A2 D2, ..., An Dn,

 (integrity-constraint1),

 ...,

 (integrity-constraintk))

 r is the name of the relation

 each Ai is an attribute name in the schema of relation r

 Di is the data type of values in the domain of attribute Ai

 Example: create table instructor (
 ID char(5),
 name varchar(20),
 dept_name varchar(20),
 salary numeric(8,2))

1.7

Integrity Constraints

 not null: null values will be rejected

 unique (A1, A2, …, An): states that the attributes A1, …, An allow to uniquely

identify a row. In other words, a change will be rejected if it leads to two

tuples with the same values on A1, ..., An

 primary key (A1, ..., An): denotes the primary key

 implies unique (A1, ..., An)

 implies not null

 foreign key (A1, ..., An) references r: a change will be rejected if it leads to a

tuple for which there is no tuple in r with the same values on A1, ..., An

 create table instructor (

 ID char(5),

 name varchar(20) not null,

 dept_name varchar(20),

 salary numeric(8,2),

 primary key (ID),

 foreign key (dept_name) references department)

1.8

DATA MANIPULATION

LANGUAGE

(DML)

1.9

The select Clause

 By default SQL lists duplicate tupels:

 select dept_name

 from instructor

 To force the elimination of duplicates:

 select distinct dept_name

 from instructor

 To retain duplicates (default):

 select all dept_name

 from instructor

 An asterisk denotes “all attributes”

 select *

 from instructor

 Can contain arithmetic expressions:

 select ID, name, salary / 12

 from instructor

1.10

Natural Join

 Natural join joins two tables in the natural way:

 by combining all rows that have the same values on the common

attributes.

 List the names of instructors along with the course ID of the courses that

they taught:

 select name, course_id

from instructor, teaches

where instructor.ID = teaches.ID;

 select name, course_id

from instructor natural join teaches;

1.11

Natural Join Example

 select * from instructor natural join teaches;

1.12

The Rename Operation – as clause

 Renaming attributes:

 select ID, name, salary/12 as monthly_salary

 from instructor

 Renaming relations:

 Find all pairs of instructors who have the same name:

 select T.ID, S.ID

 from instructor as T, instructor as S

 where T.name = S.name

1.13

String Matching – like clause

 Patterns are strings containing:

 percent (%). Matches any substring.

 underscore (_). Matches any character.

 Example:

 select name

 from instructor

 where name like ‘_ _ _%stein%'

1.14

Ordering – order by clause

 List names in alphabetic order:

 select distinct name

 from instructor

 order by name

 Specify descending order, ascending order is default:

 order by name desc

 Sort on multiple attributes:

 order by dept_name asc, name desc

1.15

Set Operations: union, intersect, except

Keyword in SQL Relational Algebra

union Set union

intersect Set intersection

except Set difference

 Find courses that ran in 2009 or in 2010 or both:

select course_id from section where year = 2009

union

select course_id from section where year = 2010

 Set operations eliminate duplicates

 To retain duplicates use union all, intersect all and except all

1.16

Null Values

 Null values are unknown or non-existent values

 The result of any arithmetic expression involving null is null

 A comparison with null returns the special boolean value unknown

 The where clause treats unknown as false

 What’s the result of this?

 select name

 from instructor

 where salary = null

 Null values are very problematic.

 Check for null with is null

 Always consider the possibility that a value is null.

name salary

Einstein 80000

Katz null

Mozart 0

1.17

Aggregate Functions

 Find the average salary of instructors in the Computer Science

department

 select avg (salary)

from instructor

where dept_name= ’Comp. Sci.’;

 Find the number of tuples in the course relation

 select count (*)

from course;

 Find the number of instructors who taught a course in 2010

 select count (distinct ID)

from teaches

where year = 2010;

1.18

Aggregate Functions – Group By

 Find the average salary of instructors in each department

 select dept_name, avg (salary) as avg_salary

from instructor

group by dept_name;

1.19

Null Values and Aggregates

 All aggregate operations except count(*) ignore null values

 Example: Summing all salaries is really summing all known salaries

 select sum (salary)

 from instructor

 Same for count (<Attribute>)

 Exception: count(*) does count null values

 On empty collections:

 count returns 0

 all other aggregates return null (!)

1.20

Nested Queries

 A subquery is a query inside another query.

 There are three kinds of subqueries:

 in the where-clause,

 in the from-clause,

 scalar subqueries (that can occur anywhere).

1.21

Subquery in the Where-Clause – in

 Find courses offered in 2009 and in 2010

 select distinct course_id

 from section

 where year = 2009 and

 course_id in (select course_id

 from section

 where year = 2010);

1.22

Subquery in the Where-Clause – exists

 exists r returns true iff r is nonempty.

 Find all courses taught in both 2009 and 2010

 select course_id

 from section as S

 where year = 2009 and

 exists (select *

 from section as T

 where year = 2010 and S.course_id = T.course_id);

 S is a correlation variable

 the inner query is a correlated subquery

1.23

Scalar Subqueries

 A scalar subquery is a subquery which is used where a single value is

expected

 If it returns more than one tuple it causes a runtime error

 Find the instructors that cost more than 10% of their departments budget:

 select name

 from instructor

 where salary * 10 >

 (select budget from department

 where department.dept_name = instructor.dept_name)

1.24

Deletion

 Delete all instructors

 delete from instructor ;

 Delete all instructors from the Finance department

 delete from instructor

 where dept_name= ’Finance’;

 Delete all tuples in the instructor relation for those instructors

associated with a department located in the Watson building.

 delete from instructor

 where dept_name in (select dept_name

 from department

 where building = ’Watson’);

1.25

Deletion

 Delete all instructors whose salary is less than the average salary of

instructors

 delete from instructor

 where salary < (select avg (salary) from instructor);

 Problem: as we delete tuples, the average salary changes

 Solution used in SQL:

 First, compute avg salary and find all tuples to delete

 Only then delete all those tuples

1.26

Insertion

 Add a new tuple to course:

 insert into course

 values (’CS-437’, ’Database Systems’, ’Comp. Sci.’, 4);

 or equivalently:

 insert into course (course_id, title, dept_name, credits)

 values (’CS-437’, ’Database Systems’, ’Comp. Sci.’, 4);

 Add a new tuple to student with unknown tot_creds:

 insert into student

 values (’3003’, ’Green’, ’Finance’, null);

1.27

Insertion

 Add all instructors to the student relation with tot_creds set to 0

 insert into student

 select ID, name, dept_name, 0

 from instructor

 The select statement is evaluated fully before any of its results are

inserted, the following is possible:

 insert into student

 select *

 from student;

1.28

Updates

 Increase salaries of instructors by 5%:

update instructor

 set salary = salary * 1.05;

 Problem: How to increase salaries of instructors whose salary is over

$100,000 by 3%, and all others by 5%?

 Write two update statements?

 update instructor

 set salary = salary * 1.03

 where salary > 100000;

 update instructor

 set salary = salary * 1.05

 where salary <= 100000;

1.29

Updates – case statement

 Problem as before, solution with case statement:

 update instructor

 set salary =

 case

 when salary <= 100000 then salary * 1.05

 else salary * 1.03

 end

