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2. Probability and descriptive statistics

Average expected study time : 3x45 min (depending on your background). Your are supposed to play with the examples:

change them, maybe test on another dataset. From just executing them, you will not learn much.

Learning outcomes :

Know difference between frequentist and Bayesian interpretation of probability

Random variables and probability density functions

Know the normal probability density function (p.d.f.) by heart

Describing data with descriptive statistics

Obtain moments of a p.d.f. (mean, variance, standard deviation, kurtosis, skewness, quantile, median, mode)

Plot a p.d.f and its moments

Generate data randomly according to a p.d.f.

Know the existence of some other important p.d.f.

Understand the meaning of gaussian/normal uncertainties

Literature

Python: https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html (https://pandas.pydata.org

/pandas-docs/stable/generated/pandas.DataFrame.html)

Think Stats: https://greenteapress.com/wp/think-stats-2e/ (https://greenteapress.com/wp/think-stats-2e/)

For mathematicians or very interested people

A. Stuart, J.K. Ord, and S. Arnold, Kendall’s Advanced Theory of Statistics

Exercise 2.0 (10 sec)

In [ ]: # Load the needed python libraries by executing this python code (press ctrl 
enter)
import numpy as np
import scipy.stats
import matplotlib.pyplot as plt
print('Congrats, you just loaded numpy, scipy.stats and mathplot.pyplot load
ed !')

2.1 Random variables and probability density functions (p.d.f.)
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In practice the measurement process, the data taking, is a random, or stochastic, process. The outcome varies from

measurement to measurement. There are three (at least) reasons:

Measurements are normally on a sample, not the full population. Samples fluctuate.

Sensors have limited resolution, measurements on the same sample vary within the resolution

According to quantum mechanics, i.e. at smallest distances, measurements are by nature stochastic

Our Iris dataset is a sample from 50 flowers in each class. So in each class there are 50 varying measurements for each

of the four observables, sepal and petal length and width. This is due to the first and maybe the second reason (quantum

mechanics can be neclected at scales larger than molecules). In descriptive statistics the observables are therefore called

random variables. Let us call one x for examplification.

If x can take on any value from a continuous range, we write  as the probability that the measurement’s

outcome lies between x and . The function  is called the probability density function (p.d.f.), which

may depend on one or more parameters  (for example the Iris class).

A random variable can be discrete or continuous. If discrete, then we use  to denote the probability to find the

value x (in python the term probability mass fundtion, pmf, is then used). In the following the term p.d.f. is often taken to

cover both the continuous and discrete cases, although technically the term density should only be used in the continuous

case.

The p.d.f. is always normalized to unity (the number 1), i.e. the integral or the surface under the curve equals one. Both x

and  may have multiple components and are then often written as vectors. If  is unknown, we may wish to estimate its

value from a given set of measurements of x; this is a central topic of statistics (see next notebook on parameter

estimation and regression).

The p.d.f. should be chosen to describe the fluctuation of the random variable in a best possible way. In other words, we

should always choose an approprate p.d.f to describe our data. Some very useful and much used p.d.f. follow.

f(x; θ)dx
x+ dx f(x; θ)

θ

f(x; θ)

θ θ
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The normal p.d.f.

The normal (or Gaussian) probability density function is probably the most used one (informally the "bell curve"). It derives

its importance in large part from the central limit theorem: "In most situations, when independent random variables are

added, their properly normalized sum tends toward a normal distribution (informally a "bell curve") even if the original

variables themselves are not normally distributed." https://en.wikipedia.org/wiki/Central_limit_theorem

(https://en.wikipedia.org/wiki/Central_limit_theorem)

Example: If one flips a coin many times the probability of getting a given number of heads in a series of flips will approach

a normal curve, with mean equal to half the total number of flips in each series. (In the limit of an infinite number of flips, it

will equal a normal curve.)

This means that in many or most cases it is sufficient to know the characteristics of the normal p.d.f. Others can be looked

up if needed. Also often unspecified statements like the error, or better, the uncertainty refer to their meaning on the

normal p.d.f.

As a formula the normal distribution function looks like (in one dimension)

It reads, given the distribution parameters mean  and variance , x follows this function.

Exercise 2.1 (5 min)

Plot the normal distribution with mean 0 and variance 5 for 400 x values between -20 to 20. Repeat this for two other

means and variances. How big is the surface under the curves ?

(See also scipy.stat.norm https://docs.scipy.org/doc/scipy-0.16.1/reference/generated/scipy.stats.norm.html

(https://docs.scipy.org/doc/scipy-0.16.1/reference/generated/scipy.stats.norm.html))

f(x;μ,σ) = exp( )
1

σ 2π−−√

−(x− μ)2

2σ2

μ σ

In [ ]: # Part of the solution:
x = np.linspace(-20,20,400) # 400 bins from -20 to 20
plt.plot(x, scipy.stats.norm.pdf(x,0,5))
plt.plot(x, scipy.stats.norm.pdf(x,0,2))

2.2 Some words on probability and bayesian versus frequentist
statistics
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Since data taking is data taking of random variables, we need to define and talk about probability. In mathematichs

probability is defined in a rather abstract manner (see Annex below). For our purposes we go directly to the interpreation

as either relative frequency or subjective probability. If A is a possible outcome of an experiment repeated n times,

then the probability of A is the realtive frequency

The subjective probability is

Both concepts are consistent with the abstract mathematical definition .

Bayes' theorem

From this definition and using the fact that  and  (intersection) are the same, one obtains Bayes’ theorem

first published by the Reverend Thomas Bayes (1702-1761). Statistics based on the relative frequency interpretation of

probability is called frequentist statistics, on bayesian theorem bayesian statistics.

P(A) = lim
n→∞

times outcome is A

n

P(A) = degree of belief that A is true

A ∩B B ∩A

P(A|B) =
P(B|A)P(A)

P(B)

2.3 Describing the data with descriptive statistics

Statistics is a branch of mathematics dealing with the collection, analysis, interpretation, presentation, and organization of

data. Two main statistical methods are used in data analysis: descriptive statistics, which summarize data from a sample

using indexes such as the mean or standard deviation (see moments), and inferential statistics, which draw conclusions

from data that are subject to random variation (e.g. observational errors, sampling variation).

2.3.1 Moments of the p.d.f. (mean, variance and standard deviation)

The  moment of a random variable x with p.d.f.  is

In the discrete case this integral becomes the sum known as the arithemtic mean:

The most commonly used moments are the mean  (or expectation value) and variance :

The mean is the location of the “center of mass” of the p.d.f., and the variance is a measure of the square of its width. It is

often convenient to use the standard deviation (SD) of , , defined as the square root of the variance. In the discrete

case the variance becomes

For the normal p.d.f the standard deviation is its width.

Based on higher moments other distribution descriptors are formed. Skewness and kurtosis you may encounter. The

skewness is a number indicating the deviation from a symmetric form. Kurtosis is a number indicating if the tails of the

distribution is larger or smaller then the tails of the normal distribution.

nth x)f(

≡ E[ ] = f(x)dxαn xn ∫ ∞

−∞
xn

μ =
1
n

∑
i=1

n

xi

μ σ2

μ ≡ α1

≡ V [x] ≡ (x− μ f(x)dx =. . .= −σ2 ∫ ∞

−∞
)2 α2 μ2

x σ

= ( − μσ2 1
n

∑
i=1

n

xi )2
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2.3.2 Quantiles and median

The quantile  is the value of the random variable x at which % of the area is below x. An important special case is

the median, . At the median half the area lies above and half lies below. For the normal p.d.f. the median

equals the mean. The most probable value of a distribution is called mode.

Special quantiles are the quartiles and percentiles. The first quartile is the , the second the  etc. Percentiles are for

example  etc.

xα α
≡xmed x50

x25 x50
x13

Exercise 2.3.2 (15 min)

Get some desciptive statistics from a normal (continous) p.d.f. with mean 0 and SD 4.

In [ ]: mean, variance, skewness, kurtosis = scipy.stats.norm.stats(0,4,moments='mvs
k')
print(mean, variance, skewness, kurtosis)

Plot the p.d.f and some moments

In [ ]: x = np.linspace(-20,20,400)
sigma=variance**0.5
plt.plot(x,scipy.stats.norm.pdf(x,mean,sigma))
plt.axvline(x=mean, linewidth=2, color = 'k',label="Mean") # Plot the mean a
s a vertical line
plt.axvline(x=mean-sigma, linewidth=2, color = 'r', label="Sigma (standard d
eviation)")
plt.axvline(x=mean+sigma, linewidth=2, color = 'r')
plt.legend(loc='upper right')

Do the same with the discrete and skew poisson p.m.f. See also https://docs.scipy.org/doc/scipy/reference/generated

/scipy.stats.poisson.html (https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.poisson.html)

In [ ]: m, v, s, k = scipy.stats.poisson.stats(1.7,moments='mvsk')
#my_norm = norm(0,2)
print('Mean = %1.2f Var = %1.2f Std = %1.2f Skewness = %1.2f kurtosis = %1.2
f' % (m,v,v**0.5,s,k))
#my_norm.moments()

Plot mode and median of a poisson p.d.f.

In [ ]: dist = scipy.stats.poisson(1.7)
x = np.arange(-1, 10)
sigma=variance**0.5
plt.plot(x,dist.pmf(x),linestyle='steps-mid')
dist.median()
plt.axvline(x=mean, linewidth=2, color = 'k',label="Mean")
plt.axvline(x=mean+sigma, linewidth=2, color = 'r', label="Sigma (standard d
eviation)")
plt.axvline(x=dist.median(), linewidth=2, color = 'b',label="Median")
plt.legend(loc='upper right')
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Some words on the Poisson distribution

The Poisson distribution is popular for modelling the number of times an event occurs in an interval of time or space. For

example:

The number of meteorites greater than 1 meter diameter that strike Earth in a year

The number of patients arriving in an emergency room between 10 and 11 pm

The probability mass function is

For large k the normal distribution is an excellent approximation of the poisson p.d.f. For k below 20 one should be careful

using statements based on the normal distribution, e.g. the standard deviation is not symmetric anymore.

f(k;λ) =
exp(−λ)λk

k!

In [ ]: x = np.arange(-1, 40)
plt.plot(x,scipy.stats.poisson.pmf(x,2),linestyle='steps-mid')
plt.plot(x,scipy.stats.poisson.pmf(x,15),linestyle='steps-mid')

We see that a possion p.d.f. with mean 15 looks very much like the normal distribution.

Some words on the binomial distribution

The binomial distribution converges towards the Poisson distribution as the number of trials goes to infinity while the

product np remains fixed or at least p tends to zero. Therefore, the Poisson distribution with parameter λ = np can be used

as an approximation to B(n, p) of the binomial distribution if n is sufficiently large and p is sufficiently small. According to

two rules of thumb, this approximation is good if n ≥ 20 and p ≤ 0.05, or if n ≥ 100 and np ≤ 10.

For n>20 and p not too close to 1 or 0, the normal distribution is also here a good approximation.

f(k;n, p) = ( ) ⋅
n

k
pkqn−k

In [ ]: x = np.arange(-1, 40)
plt.plot(x,scipy.stats.binom.pmf(x,40,0.05),linestyle='steps-mid')
plt.plot(x,scipy.stats.binom.pmf(x,40,0.2),linestyle='steps-mid')
plt.plot(x,scipy.stats.binom.pmf(x,40,0.5),linestyle='steps-mid')
plt.plot(x,scipy.stats.binom.pmf(x,40,0.8),linestyle='steps-mid')

Get yourself a cup of something and think about these questions.

Why are measured observables random variables.

Which probability distribution of a random variable is the most important?

Thumb of rule, when is the normal distribution a good approximation?

Can you mention 5 descriptive statistical measures (mostly based on the moments of the p.d.f)?

Exercise 2.3.3

Produce the descriptive statistics for the Iris Virginica data. Then plot the histograms and scatter plots.
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In [ ]: import pandas as pd
dataframe = pd.read_csv('iris.csv',names=['slength','swidth','plength','pwid
th','name'])
dataframe.head()

In [ ]: df_setosa = dataframe[dataframe['name']=='Iris-setosa']
df_setosa.mean()

In [ ]: df_setosa.median()

In [ ]: df_setosa.describe() # Or get a summary

All the descriptive statistics methods for python dataframes are listed here: https://pandas.pydata.org/pandas-docs/stable

/api.html#api-dataframe-stats (https://pandas.pydata.org/pandas-docs/stable/api.html#api-dataframe-stats)

Now we looked at the numbers. Let's us plot the distributions.

In [ ]: df_setosa['slength'].plot(kind="hist",fill=False,histtype='step',title='Iris 
Setosa', label="length")
ax = df_setosa['swidth'].plot(kind="hist",fill=False,histtype='step', label
="width")
ax.set_xlabel('Setal length/width [cm]')
ax.set_ylabel('Frequency')
plt.legend()

In [ ]: df_setosa['plength'].plot(kind="hist",fill=False,histtype='step',title='Iris 
Setosa', label="length")
ax = df_setosa['pwidth'].plot(kind="hist",fill=False,histtype='step', label
="width")
ax.set_xlabel('Petal length/width [cm]')
ax.set_ylabel('Frequency')
plt.legend()

It is hard to say by eye if the distributions are normally distributed. Later this week, we'll use statistical tests to find that out.

The binning is also not equal. To define equal binnings see example from yesterday. The petal length is funny.

We can complete our descriptive studies by looking at the scatter plots (correlations).

Exercise 2.3.4

It is important to obtain some routine with the computation of probabilities and quantiles.

Let X be binomially distributed with n = 60 and p = 0.4. Compute the following.

P(X = 24) (PMF), P(X ≤ 24) (CDF)

Compute the mean and standard deviation of X.
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In [1]: #write your code here
import scipy.stats as sts
x = 24
n = 60
p = 0.4
prop_bin = sts.binom.pmf(x , n, p)
print("P(X = 24) is equal to %.2f" % prop_bin)
cum_bin = sts.binom.cdf(x , n, p)
print("P(X ≤ 24) is equal to %.2f" % cum_bin)

2.4 How to generate random variates

One can simulate data sets by generating them from probability density functions. The computer does this with a so called

Monte Carlo (MC) algorithm. It draws x values (pseudo) randomly from the given distribution. The the actual draws of the

random variable are called random variates. Simulations can be very useful when planning an experiment and developing

the analysis method. Instead of real data one can use the simulated data.

Let us simulate the Iris setosa sepal width data (width the mean and standard deviation we got from the real data).

In [ ]: n = scipy.stats.norm.rvs(3.418,0.318,50) # 100 random values from a normal d
istribution with mean 3.418 and SD 0.318

In [ ]: print(n[0:10]) # Print first 10 

In [ ]: # Put the simulated data into a dataframe
import pandas as pd
df_setosa_sim = pd.DataFrame(n)
df_setosa_sim.head()

2.5 Other probability density functions (5 min)

P(X = 24) is equal to 0.10
P(X ≤ 24) is equal to 0.56
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This is just for your reference, no need to understand all these distributions. A quite good free and comprehensive book is

here: http://staff.fysik.su.se/~walck/suf9601.pdf (http://staff.fysik.su.se/~walck/suf9601.pdf).

Table 1.4.1 Some common probability density functions, with corresponding characteristic functions and means and

variances. In the Table,  is the gamma function, equal to  when  is an integer;  is the confluent

hypergeometric function of the 1st kind [11].

Distributions are either discrete or continuous. To study the distributions we use the statistical functions of scipy.stats

(https://docs.scipy.org/doc/scipy-0.14.0/reference/stats.html (https://docs.scipy.org/doc/scipy-0.14.0/reference/stats.html)).

There you also find more distributions than listed here.

Γ(k) (k− 1)! k 1F1
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2.6 Uncertainties (important)

All data have uncertainties. These should always be communicated when showing scientific numbers or plots. We

distinguish between two types.

Statistical uncertainties

Fluctuations, can be made smaller by taking more data, i.e. get more statistics

Systematic uncertainties

Shift of data in one direction due to some "mistake" in the measurement, e.g. wrongly calibrated instrument

showing all measured values systematically higher as they really are. Or for instance uncertainty due to the

choice of methods and tools

The statistics tools can mostly handle the statistical uncertainties. There is no mathematical recipe for dealing with

systematical uncertainties. You have to think through your experiment and try to estimate the influence of everything that

can go wrong.

When uncertainties are stated on numbers or in graphs as error bars or error bands they generally show one standard

deviation. If the data are well described by a normal p.d.f, the interpretation of one standard deviation is clear: if the

measurement is repeated many times, 32% (or about 1/3 of the measurements) should be outside the error bars.
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If the p.d.f is not normal, the interpretation of one standard deviation is not clear. For example, for a poisson p.d.f. it is not

symmetric. So again we see, for low counts where the normal asumption is not a good approximation, let's say below 20,

the interpretation is not obvious anymore and care is needed.

Very nice is the fact that the standard deviation of a poisson distribution is . So if you have a count that is larger than

around 20 (then the normal interpretation is a good approximation), you get the standard deviation by taking the square

root of the count.

The following code may be difficult to understand, ask on the chat or tomorrow.

μ−−√

In [ ]: # Draw a histogram which is not normalised
entries1, edges, patches = plt.hist(n, bins=10, histtype='step')
# Close plt so that this histogram is not shown
plt.close()
# Draw a histogram which IS normed
entries2, edges, patches = plt.hist(n, bins=10, histtype='step',density=Tru
e)
# Calculate the poisson standard deviation and scale down to second histogra
m
errors = np.sqrt(entries1) * entries2/entries1
# calculate bin centers
bin_centers = 0.5 * (edges[:-1] + edges[1:])
# draw errobars, use the sqrt error.
plt.errorbar(bin_centers, entries2, yerr=errors, fmt='r.')
# Draw a normal distribution
x = np.linspace(2.4,4.2,100)
sigma=variance**0.5
plt.plot(x,scipy.stats.norm.pdf(x,df_setosa_sim.mean(),df_setosa_sim.std()))
plt.show()

We see that 3 out of 10 data points are more than one standard deviation off the "theory" curve. This is how it should be.

2.7 Submit 1 question (10 min) - mandatory

Submit one question to this notebook for tomorrow's discussion session: https://forms.gle/k1xmRZaKANP1zARZ6

(https://forms.gle/k1xmRZaKANP1zARZ6)
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Annex 1 Probability

An abstract definition of probability can be given by considering a set , called the sample space, and possible subsets

 the interpretation of which is left open. The probability  is a real-valued function defined by the following

axioms due to Kolmogorov (1933) [9]:

For every subset  in , ;

For disjoint subsets (i.e., ), ;

.

From this further properties can be derives, e.g.

if A in B, then 

Conditional probability

In addition, one defines the conditional probability  (read as  of  given ) as

As an example, when throwing the dice, consider obtaining more than 3 eyes given only trows with even number of eyes

outcomes. We calculate the (conditional) probability:

Independence

If A and B are independent, then

S
A,B, . . . P

A S P(A) ≥ 0
A ∩B = ∅ P(A ∪B) = P(A) + P(B)

P(S) = 1

P( ) = 1 − P(A)Ā

P(A ∪ ) = 1Ā

P(∅) = 0
P(A) ≤ P(B)

P(A ∪ ) = P(A) + P(B) − P(A ∩B)Ā

P(A|B) P A B

P(A|B) =
P(A ∩B)

P(B)

P(n > 3|n even) = = =
P(n > 3 ∩ n even)

P(even)
2/6
3/6

2
3

P(A|B) = = = P(A)
P(A ∩B)

P(B)
P(A)P(B)

P(B)
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