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Parameter estimation / regression

Average expected study time : 3x45 min (depending on your background)

Learning outcomes :

Know what is meant with parameter estimation and regression

Perform linear regression with Python by example

Perform non-linear regression with Python by example

Know what non-parametric regression is

...

Main python module used

the Scipy.stat module https://docs.scipy.org/doc/scipy/reference/stats.html (https://docs.scipy.org/doc/scipy/reference

/stats.html)

What you should for your uncertainties

When you have a data analysis project, you need to define the final numbers and plots you want to produce. In order to

control your uncertaines, you should maintain a list/table with the largest uncertainties and their effect on the final

number(s) as percentages.

Just a nice table

As a data scientist you should roughly know what 1, 2, 3 standard deviations ("sigmas") means in terms of probability (or

area in the normal distribution).
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3. Situation

We have data and want to extract model paramters from that data. An example would be to estimate the mean and the

standard deviation, assuming a normal distribution. Another one would be to fit a straight line. For historical reasons this

kind of analysis is often called regression. Some scientists just say fitting (model parameters to the data).

We distinguish between parametric and non-parametric models. A line and the normal distribution are both parametric.

3.1 About linear Regression

Linear regression means fitting a straight line to data a set of points (x,y). You may consider this as the simplest case of

Machine Learning (see Module 3). A line is described as

Thus two parameters a (slope) and b (intersection with y axis) are fitted.

There are different fitting methods, mostly least squares or maximum likelihood are used. See the lecture for some

introduction to these two methods.

y = ax + b

Linear regression in Python

Import the Python libraries we need.

In [1]: import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import scipy.stats as stats

Read the data from file and do a linear regression for a line in the plength-pwidth space of the setosa sample. We use

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.linregress.html (https://docs.scipy.org/doc/scipy/reference

/generated/scipy.stats.linregress.html), using least squares.

In [2]: df = pd.read_csv('iris.csv',names=['slength','swidth','plength','pwidth','sp
ecies'])
#df_set = df[df['species']=='Iris-versicolor']
df_set = df[df['species']=='Iris-setosa']
plengths = df_set['plength']
pwidths = df_set['pwidth']
slope, intercept, r_value, p_value, std_err = stats.linregress(plengths,pwid
ths)
print (slope, intercept, std_err)

The number of digits is ridiculous. Let's print it better.

In [3]: print ('Gradient = %1.2f +- %1.2f' % (slope,std_err))

Let's look at the scatter plot to see if this makes sense.

0.18926247288503262 -0.03308026030368777 0.08489680724058374

Gradient = 0.19 +- 0.08
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In [4]: ax = df_set.plot(x='plength',y='pwidth',kind="scatter",c='c')
plt.plot(plengths, intercept + slope*plengths, 'b', label='Fitted treated li
ne')
plt.show()

By eye it is hard to say how good this fit is. Try the same regression with versicolor. The result may be a bit clearer.

We now have a model, a straight line, whose shape we have chosen, but whose parameters (slope and intersection) have

been estimated/fitted from data with the least squares method. It tells us that pwidth of a leaf is plength x slope ( f(plength)

= a x slope). So we can do interpolation and extrapolation, i.e. get the pwidth at any plength.

Example Exponential p.d.f.

With scale  and location β μ

f(x) = , x ≥ μ; β > 0
1
β

e−(x−μ)/β

In [5]: # Let us fit data to an exponential distribution
fig, ax = plt.subplots(1, 1)
# First generate a data set from a exponential distribution
x = stats.expon.rvs(0.0,0.5,size=100) #  scale = 0.5, location = 0.00, 1000 
variates
ax.hist(x, density=True, histtype='stepfilled', alpha=0.2)
# Fit scale and location to the histogram/data
loc, scale = stats.expon.fit(x) # ML estimator scale, lambda * exp(-lambda * 
x), scale =1/lambda
print(' Location = %1.2f , Scale = %1.2f' % (loc,scale))
plt.show()

 Location = 0.02 , Scale = 0.43
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This fit method is poor in the sense that it doesn't return uncertainties on the fitted values. This we normally want to know.

The curve_fit method below also returns the uncertainties.

3.2 Non-linear regression

If a line is not streight it is curved. There are many mathematical functions whose parameters we can try to fit to

experimental data points. Some examples: Polynominals (first order is linear regression, second order is a parabola etc),

exponential functions, normal function, sindoial wave function etc. You need to choose an approriate shape/function to

obtain a good result.

With the Scipy.stat module we can look for preprogrammed functions (in principle you can program your own function

whose parameters you want to fit too): https://docs.scipy.org/doc/scipy/reference/stats.html (https://docs.scipy.org

/doc/scipy/reference/stats.html).

The scipy.optimize module provides a more general non-linear least squares fit. Look at and play with this example. It is

complex and you will probably use at least an hour testing, googling etc.

In [6]: from scipy.optimize import curve_fit

def func(x, a, b, c):
return a * np.exp(-b * x) + c

xdata = np.linspace(0, 4, 50) # 
y = func(xdata, 2.5, 1.3, 0.5)
plt.plot(xdata, y, 'g-', label='Generated data')
np.random.seed(1729)
y_noise = 0.2 * np.random.normal(size=xdata.size)
ydata = y + y_noise
plt.plot(xdata, ydata, 'b-', label='Generated data with noise')
plt.show()
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In [7]: popt, pcov = curve_fit(func, xdata, ydata)
print(popt)
perr = np.sqrt(np.diag(pcov)) # Standard deviation = square root of the vari
ance being on the diagonal of the covariance matrix
plt.plot(xdata, func(xdata, *popt), 'r-',label= \

'fit: a=%5.3f +- %5.3f, \n b=%5.3f +- %5.3f, \n c=%5.3f +-%5.3f' %
\

(popt[0],perr[0],popt[1],perr[1],popt[2],perr[2]))
plt.xlabel('x')
plt.ylabel('y')
plt.legend()
plt.show()
perr = np.sqrt(np.diag(pcov)) # Standard deviation = square root of the vari
ance being on the diagonal of the covariance matrix
perr

3.3 Non-parametric regression

So far we have used functions (models) with some predefined shape/form. The parameters we fitted to data. If we have no

clue about the form, we may try to fit with non-parametric methods. However, these require more data as also the shape

needs to guessed or fitted from the data. So normally a non-parametric method gives poorer results.

There are several ways to do this in Python. You make look at this if you are interested:

https://pythonhosted.org/PyQt-Fit/NonParam_tut.html (https://pythonhosted.org/PyQt-Fit/NonParam_tut.html)

[2.55423706 1.35190947 0.47450618]

Out[7]: array([0.12605755, 0.14212384, 0.05315968])
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