UNIVERSITÄT BERN

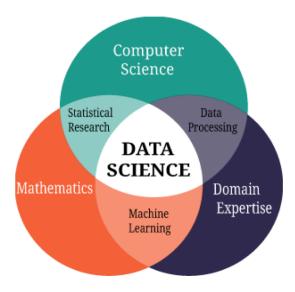
http://www.math.unibe.ch/continuing_education/cas_applied_data_science/index_eng.html

CAS Applied Data Science - Module 2 - Day 1

Statistical Inference for Data Science Start working on Notebook 1 (Ilias) !

Dr. Géraldine Conti, PD Dr. Sigve Haug

Bern, 2020-08-25, Sigve joins 09:15


Welcome in the Data Science World !

Data Science uses

- Mathematics and Statistics
- Computer Science
- Domain expertise

on data to build information and extract knowledge (for decisions and actions)

Very general skills increasingly needed in all empirical research and business

Module 2

	edit · vi			
General topics	Probability	Descriptive statistics	Inferential statistics	Specialized topics
 Levels of measurement Sampling Statistical survey Design of experiments Data analysis Statistical graphics History of statistics 	 Probability theory Random variable Probability distribution Independence Expected value Variance, covariance Central limit theorem 	 Averages Statistical dispersion Summary statistics Skewness Correlation Frequency distribution Contingency table 	 Hypothesis testing Estimator Maximum likelihood Bayesian inference Non-parametric statistics Analysis of variance Regression models 	 Computational statistics Decision theory Multilevel models Multivariate statistics Statistical process control Survival analysis Time series analysis

Schedule

gconti.epfl@gmail.com sigve.haug@math.unibe.ch

First day

• Descriptive statistics

Second day

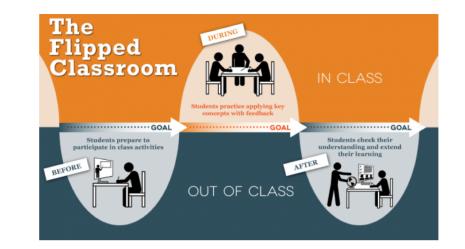
• Inferential statistics: Parameter Estimation

Third day

• Inferential statistics : Hypothesis Testing

Fourth day

• Putting it all together


Project

• Presentation session 2020-10-16/19

Teaching method

Inverted classroom based

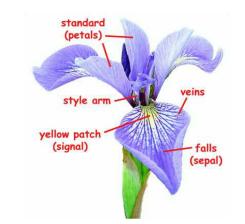
- Introduction lectures
- Real content you learn yourself with the notebooks
- Discussion sessions based on your questions and comments
- **Project** : Poster with poster presentation
- 1-2 questions to post every day on the chat

- Supposed to be better
- More fun

Why

• Learning by doing

To give back sense to being present (Marcel Lebrun)



Description

The Iris Dataset

- 3 classes : setosa, versicolour, virginica
- 4 observables :
 - petal : length, width
 - sepal : length, width

► How could you use this to characterize your dataset ?

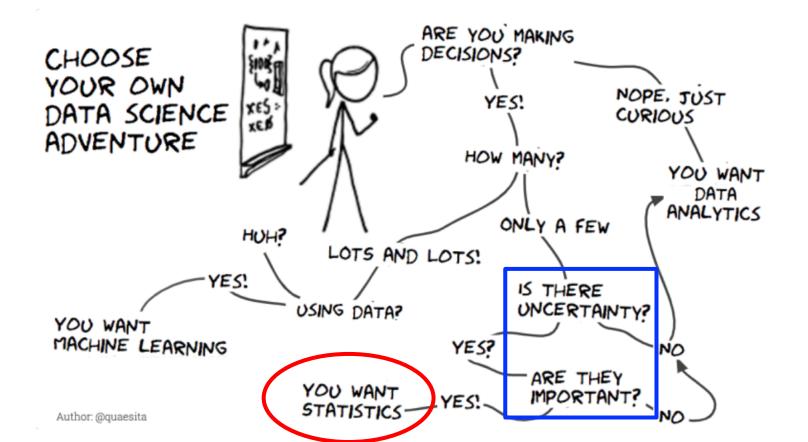
Foretaste (4th day) Descriptive statistics, hypothesis testing, ...

Some new company recently sequenced the genes of the Iris species Setosa and patented it, apparently in order to preserve this species because it is so beatiful. Due this patent it is not allowed to change the plant.

A big farmer and hater of Iris and with a field where Iris is a disturbing weed, has been using a new product from Sonte Manto for a couple of years. The product is supposed to effectively kill Iris plants.

A big Iris lover collected a sample of Iris plants from the farmer's field and thinks the Iris Setosa setal leaves are bigger than normal. She sent the sample to the company, which in turn came to the conclusion that Setosa must have mutated due to the product from Sonte Manto.

So the company sued Sonte Manto with the claim that they have changed the plant with their product. Sonte Manto may risk to pay a billion dollars.


The court is asking you to give a neutral and scientific advice.

The Project

- Find your own dataset of interest
- Group of 2 people
- 15min presentation, 15min questions
- Half-day presence on October 16th (morning) or 19th (either morning or afternoon)

The context

12

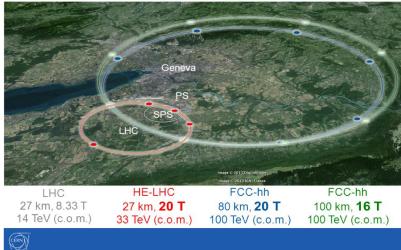
Describing Data

Why

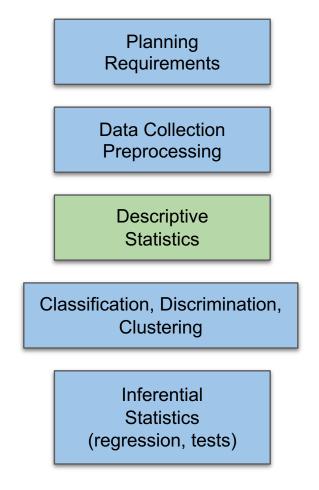
- Learn about the distributions
- Features, patterns
- Outliers, quality etc
- No inference can be better than what the data gives
- Create trust

Many possibilities

- Listing it all
- Words
- Mathematics (statistics)
- Tables
- Graphs (visualisation)
- Animations etc ...


Good description is the basis for good inference

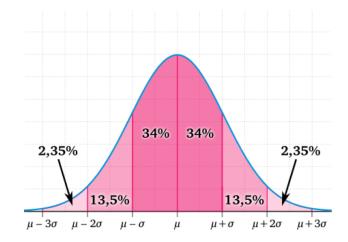
- Descriptive statistics helps choosing a good model
- The model can then be used for inference
 - Interpolation
 - Extrapolation
 - Hypothesis testing
 - Discoveries and exclusions


- Basis for good decisions
- Do you want to build this ?

Some possible FCC-hh geometries

Descriptive statistics : Definition

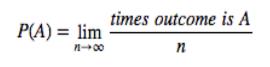
 Descriptive statistics are used to describe the basic features of the data in a study. They provide simple summaries about the sample and the measures. Together with simple graphics analysis, they form the basis of virtually every quantitative analysis of data.

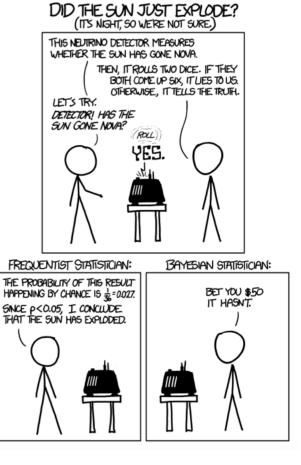


Descriptive statistics : Central Topics

- 1) Probability interpretation
- 2) Random Variables (RV)
- 3) Models:

Probability density functions(p.d.f.) (continuous) probability mass functions (p.m.f) (discrete)


- 4) Moments (center, shape, dispersion)
- 5) Summary tables and graphs (visualisation)
- 6) Dependence (correlations,...)



1) Probability interpretation

Objectivist

- Relative frequency
- Frequentist
- Frequentist statistics

Subjectivist

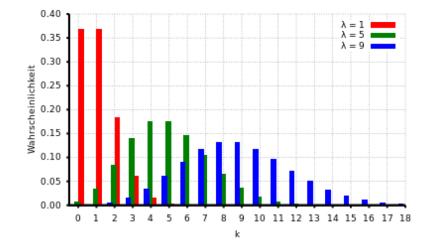
- Degree of belief
- Bayesian
- Bayesian statistics

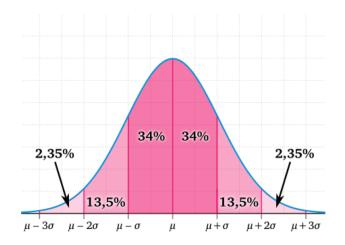
 $P(A) = degree \ of \ belief \ that A \ is \ true$

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

2) Random Variable (RV)

Why is it random?

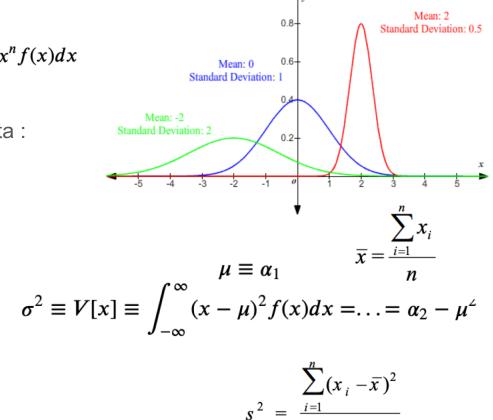

Example


- Based on a sample, not the full population
- Limited resolution
- Quantum mechanics

- RV = amount of CHF on Swiss bank accounts
- Sample by checking 1000 accounts
- Get a (normal?) distribution
- A new sample will not yield exactly the same distribution (statistical uncertainty)

3) Probability density/mass distributions

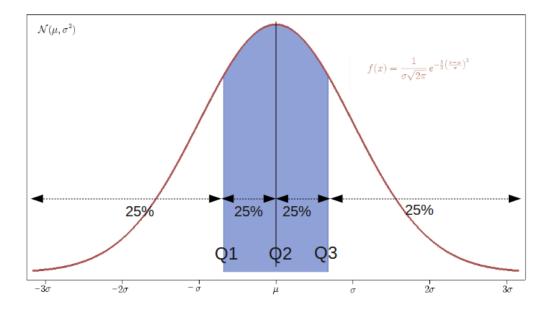
► Which is which (pdf, pmf) ?


4) Moments $\alpha_n \equiv E[x^n] = \int_{-\infty}^{\infty} x^n f(x) dx$

The moments are used to describe the data :

- 1. Moment (n=1) : Mean
- 2. Moment (n=2) : Variance σ^2
 - Standard deviation σ
- 3. Moment (n=3) : Skew (symmetry)
- 4. Moment (n=4) : Kurtosis (tails)

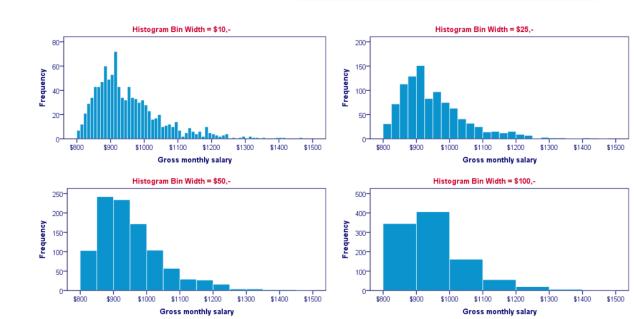
Standard error :


$$s_{\overline{x}} = \frac{s}{\sqrt{n}}$$

Quantiles

Values indicating certain surface fractions

- Percentiles
- Median (50%)
- Quartiles

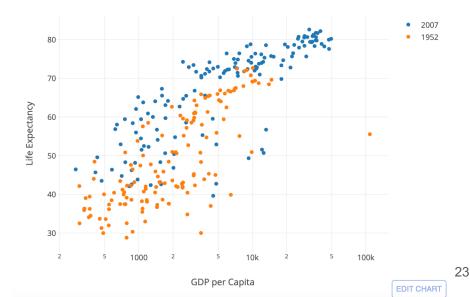

Are you able to "see or imagine" this distribution as a box plot?

5) Summary tables

Grouped data

 Frequency of data in defined bins/ groups

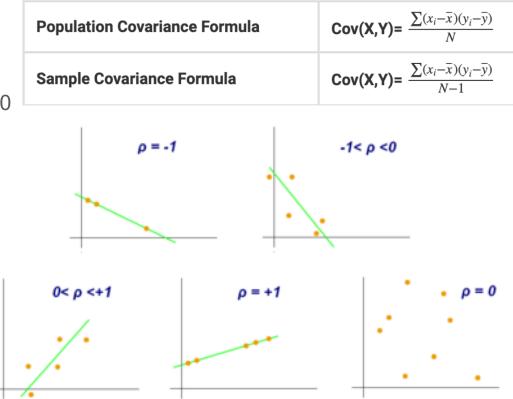
Time taken (in seconds)	Frequency
5≤t<10	1
10 ≤ t < 15	4
15 ≤ t < 20	6
20 ≤ t < 25	4
25 ≤ t < 30	2
30 ≤ t < 35	3


• The graph to the table would be a histogram

5) Summary tables

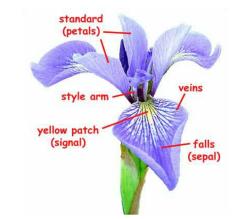
Contingency tables

- Frequency of multivariate data in a matrix format
- Here two random variables (sex and handedness)
- The graph to the table would be a scatter plot


Handed- ness Sex	Right handed	Left handed	Total
Male	43	9	52
Female	44	4	48
Total	87	13	100

$$\operatorname{cov}(X, Y) = \operatorname{E}\left[(X - \operatorname{E}[X])(Y - \operatorname{E}[Y])\right]$$

6) Dependence


- Two random variables with covariance = 0 are said to be uncorrelated
 - The normalised covariance is the correlation ρ
 - Two random variables with positive covariance are said to be correlated
 - negative is anti-correlated
 - If the variables are the same, we get the variance (Cov(X,X))

The Iris Dataset

- 3 classes : setosa, versicolour, virginica
- 4 observables :
 - petal : length, width
 - sepal : length, width

► How could you use this to characterize your dataset ?

