UNIVERSITÄT BERN

http://www.math.unibe.ch/continuing_education/cas_applied_data_science/index_eng.html

CAS Applied Data Science - Module 2 - Day 3

Statistical Inference for Data Science

Prof. Dr. Géraldine Conti, PD Dr. Sigve Haug

Bern, 2019-08-29

Discussion Session

- Review of Notebook 3
- Questions from the chat
- Summary
- The online book covering most of Module 2 and more : Think Stats 2e

Review of Notebook 3

```
In [15]: from scipy.optimize import curve fit
```

```
def func(x, a, b, c):
    return a * np.exp(-b * x) + c
```

```
xdata = np.linspace(0, 4, 50) #
y = func(xdata, 2.5, 1.3, 0.5)
plt.plot(xdata, y, 'g-', label='Generated data')
np.random.seed(1729)
y_noise = 0.2 * np.random.normal(size=xdata.size)
ydata = y + y_noise
plt.plot(xdata, ydata, 'b-', label='Generated data with noise')
plt.show()
```


[2.55423706 1.35190947 0.47450618]

Error (confidence interval, p-value)

3rd day : Hypothesis Testing

Introduction

- Hypotheses and tests
- Error types

Frequent tests

- Normality tests
- One-sample test
- Comparing two samples

Take home

Lorem ipsum dolor sit amet, consectetur adipiscing elit

Hypothesis Testing

Topics in Statistics edit · view							
	General topics	Probability	Descriptive statistics	Inferential statistics	Specialized topics		
• • • •	Levels of measurement Sampling Statistical survey Design of experiments Data analysis Statistical graphics History of statistics	 Probability theory Random variable Probability distribution Independence Expected value Variance, covariance Central limit theorem 	 Averages Statistical dispersion Summary statistics Skewness Correlation Frequency distribution Contingency table 	 Hypothesis testing Estimator Maximum likelihood Bayesian inference Non-parametric statistics Analysis of variance Regression models 	 Computational statistics Decision theory Multilevel models Multivariate statistics Statistical process control Survival analysis Time series analysis 		

Introduction

Traumatic brain injury causes millions of neurons to become hyperactive and this damages the neurons. A drug company invents a medication that suppresses this process. Will the drug work as an effective treatment for Traumatic brain injury ?

- The drug is not effective (Null hypothesis (H0)) ← hypothesis to be tested
- The drug reduces the damage and the patient will have a better recovery. The drug is effective (Alternative hypothesis (H1)).

Statistical test: test statistic of a sample is calculated and the p-value is given under the H0 assumption.

Errors Types

• Type 1 : Reject the null hypothesis due to a fluctuation (*false positive*)

• Type 2 : Keep the null hypothesis by interpreting a real effect as a fluctuation (*false negative*)

• Example : Guilty vs Innocent, jailed/set free

An innocent	An innocent
person is	person is
set free	jailed
A guilty	A guilty
person is	person is
set free	jailed

Data to be tested

1 sample

- Normal
- Symmetric

Tests can take advantage of relations (cancellations in divisions) Measure blood pressure from a group of patients before/after giving a medicine

Paired

Measure blood pressure from a group of patients who were given a medicine and from another group not given it

Dependent • Independent

2 samples (columns/sets/samples)

- Repeated measurements on the same object/individual
- From separate individuals

Unpaired

Normality tests

Quantify how close a sample of values are to the normal distribution

- Answers with a p-value to the question "If you randomly sample from a Gaussian population, what is the probability of obtaining a sample that deviates from a Gaussian distribution as much (or more so) as this sample does?"
- May not work very well for small samples (<10-20)

Exercise

- 3 slides (<team-nr>.pdf) to be uploaded to Ilias by 4pm today:
 - 1 slide : Question that the test tries to answer, assumptions to be able to use the test, other details
 - 1 slide : example from "real life" (provide reference)
 - 1 slide : your conclusions from the Notebook on this test
 - 1 question to another group
- Will be presented at tomorrow's discussion session

		Statistical Test to study	Question to team :	Team (by random break out rooms)
	1	One-sample t-test	4	
	2	Non-param Wilcoxon signed rank test	3	
)	3	Paired t-test	7	
	4	Wilcoxon matched- pairs signed rank test	5	
	5	Unpaired t-test	8	
	6	Unpaired t-test with Welsch's correction	2	
	7	Mann-Whitney rank test	1	
	8	One-way ANOVA	6	

Summary

Statistical tests

Next self study with Notebooks

- 1. Lorem ipsum dolor sit amet, consectetur adipiscing elit
- 2. Sed do eiusmod tempor incididunt ut labore
- 3. Ut enim ad minim veniam, quis nostrud exercitation