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Conway’s Data Science Venn Diagram
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Unsupervised Learning

From David MacKay’s 2004 book:

4 / 16



Unsupervised Learning Generative Adversarial Networks

Unsupervised Learning

4 / 16



Unsupervised Learning Generative Adversarial Networks

Unsupervised Learning

4 / 16



Unsupervised Learning Generative Adversarial Networks

Machine Learning

Supervised Learning

Well-know problem with available data and prior knowledge.

Model: p(y |x) or ŷ = f (x).

Tools to solve them: ensamble methods or neural nets.

Main Issue: Computation.

Unsupervised Learning

Data unstructured or unknown.

Model: p(y , x) or p(x).

Tools to solve them: density estimation or latent variable models.

Main issue: Scalability and automatization.
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What about reinforcement learning?
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Density Estimation

Standard problem in statistics.

learn the distribution from the data.

Classically: parametric family of densities:

pθ, θ ∈ Θ

Maximum likelihood estimation:

θ∗ = arg max
θ

Ep(x)[log(x)]
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Prescribed models

Prescribed models definition:

ensure that pθ defines a proper density.

Ability to evaluate density pθ at sample points x:

trivial for exponential families or mixtures.
impractical for complex model.

What are the other strategies for more complex models?
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Latent variable models

DeFinetti’s Theorem:

p(x1, x2, . . . , xN) =

∫ ∏
p(xi |θ)p(θ)dθ

for exchangeable observations.

Dimensionality reduction:

Principal Component Analysis/Factor Analysis.

Nonnegative Matrix Factorization.

LLE/Isomap/GPLVM.

Restricted Boltzmann Machine.

Dirichlet Processes (aka Chinese Restaurant Process).

Beta Processes (aka Indian Buffet Process).
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Interpretability

F. Dohsi-Velez et al. (NIPS 2015)

Objectives such as data exploration present unique challenges and
opportunities for problems in unsupervised learning. While in more typical
scenarios, the discovered latent structures are simply required for some
downstream task – such as features for a supervised prediction problem –
in data exploration, the model must provide information to a domain
expert in a form that they can readily interpret. It is not sufficient to
simply list what observations are part of which cluster; one must also be
able to explain why the data partition in that particular way. These
explanations must necessarily be succinct, as people are limited in the
number of cognitive entities that they can process at one time.
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Generative Adversarial Networks

Rely on representation learning, as
in supervised learning.

Substitute shallow likelihood for a
neural network.

Goal is not to model pθ, but
generate from it

In a way similar to inverting the
cumulative function:
x = F−1(u), u ∼ U [0, 1]
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From Optimal Discrimination to Generation

Proposed by Goodfellow and co-workers in 2014.

Transform density estimation into a classification problem:

Given data D = x1, . . . , xn from p.
Given n data points generated from a model pθ.
Find the optimal classifier:

qθ = p/(p + pθ)

Train the model (i.e. the generator) by minimizing the logistic
likelihood:

θ = arg min `∗(θ) = Ep̃θ [y ln qθ(x) + (1− y) ln(1− qθ(x))]

where p̃θ(x, y = 1) = p(x)/2 and p̃θ(x, y = 0) = pθ(x)/2
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From Real Discrimination to Generation

Optimal classifier is generally inaccessible.

Instead we define a classification model:

qφ : x→ [0; 1], φ ∈ Φ

Define objective via a bound:

`∗(θ) ≥ sup
φ
`(θ, φ)

`(θ, φ) :=Ep̃θ [y ln qφ(x) + (1− y) ln(1− qφ(x))]

find the best classifier within restricted family.
typically qφ is a deep neural network.
training objective for generator is implicit.
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Optimizing GANs

Saddle-point problem:

θ∗ = arg min
θ
{sup

φ
`(θ, φ)}

explicitly performing the inner sup is not practical.
varios methods for optimization / solving games.

Stochastic gradient descent:

θt+1 = θt − η∇θ`(θ
t , φt)

φt+1 = φt + η∇φ`(θ
t+1, φt)

It may diverge.

On going research: Tens of papers in the last couple of years.
Jury still out.
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Example: Image Generation

From Radford, Metz and Chintala 2015.
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Evaluating GANs

Convergence to p(x):

it is analyzed in Goodfellow et al. 2014.
moment matching (Liu, Bousquet and Chaudhuri 2017).
AdaGAN (Tolstikhin et al. 2017)

How to measure quality of implicit models? (fundamental question)

out-of-sample evaluations is not available for implicit models.
visual inspection (inception score).

Trade-offs:
1 noisy samples (e.g. blurry images), but adequate representation of

the variability.
2 faithful (as in good looking) samples, but lack of representation

(“mode dropping”).

which one is better?

Evaluation that is based on each application.
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