
Machine Learning
and Deep Learning

Simon Jenni
(slides by Paolo Favaro)

Deep Learning

• Objective: Build a machine that can learn from
experience and understand the world as a
hierarchy of concepts  

�2

Traditional Approach
• List of all the knowledge and formal rules
‣ works for games and simple systems
‣ leads to a combinatorial problem
‣ not general (often we do not know the rules)  
 
 
 
 
 
 
 

 3

Study the
problem Write the rules Evaluate

Analyse errors

Launch!

Good

Bad

Learning from Examples
• The machine automatically learns from examples
‣ machine learning
‣ no need to identify and explain rules
‣ general and flexible  

 4

Study the
problem

Train ML
algorithm Evaluate

Analyse errors

Launch!

Good

Bad

Data

Adapting to Change
• Machine Learning can automatically adapt to change
‣ Simply update the data and train again
‣ No need to change the underlying algorithm

 5

Train ML
algorithm Evaluate

Launch!

Good
Data

Update Data

Help Humans Learn
• Machine Learning algorithms can be inspected
‣ Might lead to new insights
‣ Can uncover patterns in the data

 6

Study the
problem

Train ML
algorithm Solution

Inspect
SolutionData

Better
Understanding

Insights
Iterate

Features
• Machines solve tasks/decisions by using the

provided information (data)

• Data is often encoded into more focused relevant
information (features) to simplify the decision  
 

• Features can be hand-made/encoded

• Operators often do not know the optimal features

x ! �(x)

data feature

�7

Representation Learning
• Features or, more in general, an internal

representation or a hierarchy of concepts should
be learned automatically

• The internal representation should separate all
factors of variation (i.e., concepts that summarize
important variation of the data)  
 
 
 

3D shape

colors/texture

illumination

category

3D pose

clutter

 8

Distributed Representation
• Use many features to represent data and each feature

should handle multiple data samples

• Example: Recognition of cars, trucks and birds and
each can be red, green or blue

• Case #1: 1 feature for each case  
(3x3 = 9 features)

• Case #2: 3 features for identity and 3 for color  
(3+3 = 6 features) 

�9

CHAPTER 1. INTRODUCTION

Visible layer
(input pixels)

1st hidden layer
(edges)

2nd hidden layer
(corners and

contours)

3rd hidden layer
(object parts)

CAR PERSON ANIMAL Output
(object identity)

Figure 1.2: Illustration of a deep learning model. It is difficult for a computer to understand
the meaning of raw sensory input data, such as this image represented as a collection
of pixel values. The function mapping from a set of pixels to an object identity is very
complicated. Learning or evaluating this mapping seems insurmountable if tackled directly.
Deep learning resolves this difficulty by breaking the desired complicated mapping into a
series of nested simple mappings, each described by a different layer of the model. The
input is presented at the visible layer, so named because it contains the variables that
we are able to observe. Then a series of hidden layers extracts increasingly abstract
features from the image. These layers are called “hidden” because their values are not given
in the data; instead the model must determine which concepts are useful for explaining
the relationships in the observed data. The images here are visualizations of the kind
of feature represented by each hidden unit. Given the pixels, the first layer can easily
identify edges, by comparing the brightness of neighboring pixels. Given the first hidden
layer’s description of the edges, the second hidden layer can easily search for corners and
extended contours, which are recognizable as collections of edges. Given the second hidden
layer’s description of the image in terms of corners and contours, the third hidden layer
can detect entire parts of specific objects, by finding specific collections of contours and
corners. Finally, this description of the image in terms of the object parts it contains can
be used to recognize the objects present in the image. Images reproduced with permission
from Zeiler and Fergus (2014).

6

Deep Learning
Introduces hierarchical representations (from simple to
complex, from low-level features to high-level features)

hierarchical
representation

data

�t � · · · � �1 � x

x

 10

Machine Learning Review
Simon Jenni

(slides by Paolo Favaro)

Contents

• Revision of basic concepts of Machine Learning  
 

• Based on Chapter 5 of Deep Learning by
Goodfellow, Bengio, Courville

�12

Context
• A more complete introduction to Machine Learning

through the following courses

• Machine Learning @ UniBe

• Machine Learning and Data Mining @ UniNe

• Pattern Recognition @ UniFr

• Statistical Learning Methods @ UniNe

�13

Resources
• Books and online material for further studies

• Machine Learning @ Stanford (Andrew Ng)

• Pattern Recognition and Machine Learning  
by Christopher M. Bishop

• Machine Learning: a Probabilistic Perspective
by Kevin P. Murphy

�14

Learning Pillars
• Supervised learning

• Semi-supervised learning

• Self-taught learning (unsupervised feature learning)

• Unsupervised learning (+self-supervised learning)

• Reinforcement learning  

�15

Definition

• Mitchell (1997)  
A computer program is said to learn from
experience E with respect to some class of tasks T
and performance measure P, if its performance at
tasks in T, as measured by P, improves with
experience E. 

�16

The Task T
• Example: if we want a robot to be able to walk, then

walking is the task

• Approaches

1.We could directly input directives for how we
think a robot should walk, or

2.We could provide examples of successful and
unsuccessful walking (this is machine learning)

�17

The Task T
• Given an input x (e.g., a vector) produce a function f, such that

f(x) = y (e.g., an integer, a probability vector)

• Examples

• Classification

• Regression

• Machine translation

• Denoising

• Probability density estimation

�18

The Performance Measure P
• To evaluate a ML algorithm we need a way to measure

how well it performs on the task

• It is measured on a separate set (the test set) from
what we use to build the function f (the training set)

• Examples

• Classification accuracy (portion of correct answers)
or error rate (portion of incorrect answers)

• Regression accuracy (e.g., least squares errors)

�19

The Experience E

• Specifies what data can be used to solve the task

• We can distinguish it based on the learning pillars

• Supervised: data is composed of both the input x
(e.g., features) and output y (e.g., labels/targets)

• Unsupervised: data is composed of just x; here we
typically aim for p(x) or a method to sample p(x)

• Reinforcement: data is dynamically gathered
based on previous experience

�20

Data
• We assume that all collected data samples in all

datasets:

1. come from the same distribution

2. are independent

• This assumption is denoted IID (independent and
identically distributed)

�21

p
⇣
x(1), . . . , x(m)

⌘
=

mY

i=1

p
⇣
x(i)

⌘
px(i)(x) = px(j)(x)

Example: Linear Regression
• Given IID data inputs and outputs

• Task T: predict y with the linear regressor  
need to find the weights w

• Experience E: training set ,  
and test set ,

• Performance P: Mean squared error  
 

�22

x 2 Rn

ŷ = w>x

Xtest
Xtrain 2 Rm⇥n Y train 2 Rm

Y test 2 RmXtest 2 Rm⇥n

MSEtest(w) =
1

m
|Xtestw � Y test|2

y 2 R

Linear Regression
• Solve task T by minimizing the MSEtrain 
 

• Compute the gradient of MSEtrain(w) with respect to
w and set to 0 (normal equations)

• The solution is (pseudo-inverse)  

�23

w =
⇣
Xtrain>Xtrain

⌘�1
Xtrain>Y train

MSEtrain(w) =
1

m
|Xtrainw � Y train|2

Linear Regression
�24

CHAPTER 5. MACHINE LEARNING BASICS

�1.0 �0.5 0.0 0.5 1.0

x1

�3

�2

�1

0

1

2

3

y

Linear regression example

0.5 1.0 1.5

w1

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

M
S
E

(t
ra

in
)

Optimization of w

Figure 5.1: A linear regression problem, with a training set consisting of ten data points,
each containing one feature. Because there is only one feature, the weight vector w

contains only a single parameter to learn, w1. (Left)Observe that linear regression learns
to set w1 such that the line y = w1x comes as close as possible to passing through all the
training points. (Right)The plotted point indicates the value of w1 found by the normal
equations, which we can see minimizes the mean squared error on the training set.

) rw

⇣
X

(train)
w � y

(train)
⌘> ⇣

X
(train)

w � y
(train)

⌘
= 0 (5.9)

) rw

⇣
w

>
X

(train)>
X

(train)
w � 2w

>
X

(train)>
y

(train) + y
(train)>

y
(train)

⌘
= 0

(5.10)
) 2X

(train)>
X

(train)
w � 2X

(train)>
y

(train) = 0 (5.11)

) w =
⇣
X

(train)>
X

(train)
⌘�1

X
(train)>

y
(train) (5.12)

The system of equations whose solution is given by equation 5.12 is known as
the normal equations. Evaluating equation 5.12 constitutes a simple learning
algorithm. For an example of the linear regression learning algorithm in action,
see figure 5.1.

It is worth noting that the term linear regression is often used to refer to
a slightly more sophisticated model with one additional parameter—an intercept
term b. In this model

ŷ = w
>
x + b (5.13)

so the mapping from parameters to predictions is still a linear function but the
mapping from features to predictions is now an affine function. This extension to
affine functions means that the plot of the model’s predictions still looks like a
line, but it need not pass through the origin. Instead of adding the bias parameter

109

Overfitting and Underfitting

• Performance P captures how well the learned
model predicts new unseen data

• Ideally we want to select the predictor with the best
performance

• What happens when we use predictors of different
complexity/capacity?

�25

Overfitting and Underfitting
�26

CHAPTER 5. MACHINE LEARNING BASICS

have more parameters than training examples. We have little chance of choosing
a solution that generalizes well when so many wildly different solutions exist. In
this example, the quadratic model is perfectly matched to the true structure of
the task so it generalizes well to new data.

x0

y

Underfitting

x0

y

Appropriate capacity

x0

y

Overfitting

Figure 5.2: We fit three models to this example training set. The training data was
generated synthetically, by randomly sampling x values and choosing y deterministically
by evaluating a quadratic function. (Left)A linear function fit to the data suffers from
underfitting—it cannot capture the curvature that is present in the data. (Center)A
quadratic function fit to the data generalizes well to unseen points. It does not suffer from
a significant amount of overfitting or underfitting. (Right)A polynomial of degree 9 fit to
the data suffers from overfitting. Here we used the Moore-Penrose pseudoinverse to solve
the underdetermined normal equations. The solution passes through all of the training
points exactly, but we have not been lucky enough for it to extract the correct structure.
It now has a deep valley in between two training points that does not appear in the true
underlying function. It also increases sharply on the left side of the data, while the true
function decreases in this area.

So far we have described only one way of changing a model’s capacity: by
changing the number of input features it has, and simultaneously adding new
parameters associated with those features. There are in fact many ways of changing
a model’s capacity. Capacity is not determined only by the choice of model. The
model specifies which family of functions the learning algorithm can choose from
when varying the parameters in order to reduce a training objective. This is called
the representational capacity of the model. In many cases, finding the best
function within this family is a very difficult optimization problem. In practice,
the learning algorithm does not actually find the best function, but merely one
that significantly reduces the training error. These additional limitations, such as

113

simple predictor optimal predictor complex predictor

shown data is the training set

Loss function
• Define a predictor function

• Define a loss function which
measures how different the two inputs are

• Examples

• 0-1 loss

• Quadratic loss  

�27

l : Y ⇥ Y 7! R

f : X 7! Y

l(y, f(x)) =

(
0 if y = f(x)

1 if y 6= f(x)

l(y, f(x)) = (y � f(x))2

Bayes Risk
• Bayes risk is defined as (average loss)  
 
 

• The optimal predictor function is 
 
 

�28

R(f) = Ex,y[l(f(x), y)] =

Z
l(f(x), y)p(x, y)dxdy

f⇤ = argmin
f

R(f)

Empirical Risk
• Given (xi,yi) with i = 1,…,m the empirical risk is 
 
 

• The empirical predictor is  
 
 

�29

R̂(f) =
1

m

mX

i=1

l(f(xi), yi)

f̂ = argmin
f2F

R̂(f)

Risks

• Bayes risk 

• Empirical risk 

• Bayes risk restricted
to function family

�30

min
f2F

R(f)

R(f⇤) = Ex,y[l(f
⇤(x), y)]

R̂(f̂) =
1

m

mX

i=1

l(f̂(xi), yi)

Estimation vs Approximation

• The excess risk is the gap between the empirical
risk and the optimal Bayes risk  
 
 
 

• Estimation (variance): due to training set

• Approximation (bias): due to function family

�31

R̂(f̂)�R(f⇤) = R̂(f̂)�min
f2F

R(f)
| {z }

estimation error

+min
f2F

R(f)�R(f⇤)
| {z }
approximation error

F

Estimation vs Approximation

�32

capacity of F

BiasVariance

excess risk

optimal capacity

underfitting overfitting

ris
k

Bias and Variance
�33

high bias

low bias

low variance high variance

Concept by Pedro Domingos
University of Washington

Regularization
• Define a parametric family of functions, where

regulates the complexity/capacity of the predictors

• Given the optimal predictor from the empirical risk  
 
 
 
we would like to choose the capacity based on
Bayes risk 
 

�35

F� �

f̂� = arg min
f2F�

R̂(f)

R(f̂�)

Training, Validation and Test
• In alternative, collect samples into training set

validation set and test set

• Use the training set to define the optimal predictor  

• Use the validation set to choose the capacity  

• Use the test set to evaluate the performance  

�36

Dtrain

Dval Dtest

f̂� = argmin
f2F

R̂Dtrain(f)

�̂ = argmin
�

R̂Dval(f̂�)

performance P = RDtest

⇣
f̂�̂

⌘

Supervised Learning
• Make a prediction of an output given an input

• Boils down to determining the conditional
probability 
 

• Formulate problem as that of finding for a
parametric family (Maximum Likelihood)  
 

�37

xy

p(y|x)

p(y|x; ✓)

✓

Maximum Likelihood
• Given IID input/output samples 
 
the conditional maximum likelihood estimate is  
 
 
 
 
 

�38

(xi, yi) ⇠ pdata(x, y)

✓ML = argmax
✓

mY

i=1

pdata(y
i|xi; ✓)

= argmax
✓

mX

i=1

log pdata(y
i|xi; ✓)

Logistic Regression
• Example: Binary classification

• We aim at determining  
 
where is the sigmoid function

• Class y=1 can be picked when  
 
 
 
which is equivalent to

�39

y 2 {0, 1}

p(y = 1|x; ✓) = �(✓>x)

�(z) =
1

1 + e�z

p(y = 1|x; ✓) > p(y = 0|x; ✓)

✓>x > 0

Features
�40

input

Learning
Algorithm

pixel 1
pixel 2

pixel 1

pi
xe

l 2 cars
non-cars

Features
�41

input

Learning
Algorithm

pixel 1

pi
xe

l 2 cars
non-cars

feature
representation

tires
headlights

headlights
tir

es

Unsupervised Learning
• Aim is to find a suitable data representation

• Probability density estimator

• Sampling procedure

• Data denoising

• Manifold learning

• Clustering

�42

Data Representation
• The ideal data representation should:

1. Preserve all task-relevant information

2. Be simpler than the original data and easier to use

(i) low-dimensional  

(ii) sparse 

(iii) independent

�43

CHAPTER 5. MACHINE LEARNING BASICS

�20 �10 0 10 20

x1

�20

�10

0

10

20

x
2

�20 �10 0 10 20

z1

�20

�10

0

10

20

z
2

Figure 5.8: PCA learns a linear projection that aligns the direction of greatest variance
with the axes of the new space. (Left)The original data consists of samples of x. In this
space, the variance might occur along directions that are not axis-aligned. (Right)The
transformed data z = x

>
W now varies most along the axis z1. The direction of second

most variance is now along z2.

representation that has lower dimensionality than the original input. It also learns
a representation whose elements have no linear correlation with each other. This
is a first step toward the criterion of learning representations whose elements are
statistically independent. To achieve full independence, a representation learning
algorithm must also remove the nonlinear relationships between variables.

PCA learns an orthogonal, linear transformation of the data that projects an
input x to a representation z as shown in figure 5.8. In section 2.12, we saw that
we could learn a one-dimensional representation that best reconstructs the original
data (in the sense of mean squared error) and that this representation actually
corresponds to the first principal component of the data. Thus we can use PCA
as a simple and effective dimensionality reduction method that preserves as much
of the information in the data as possible (again, as measured by least-squares
reconstruction error). In the following, we will study how the PCA representation
decorrelates the original data representation X.

Let us consider the m ⇥ n-dimensional design matrix X. We will assume that
the data has a mean of zero, E[x] = 0. If this is not the case, the data can easily
be centered by subtracting the mean from all examples in a preprocessing step.

The unbiased sample covariance matrix associated with X is given by:

Var[x] =
1

m � 1
X

>
X. (5.85)

148

Principal Components
Analysis

• Definition: Project data  
 so that the largest
variation of the projected
data is axis-
aligned 
 
 
 
 
 

�44

X = U⌃V >

U>U = I V >V = I⌃ =

2

6664

�0 0 . . . 0
0 �1 . . . 0
...

...
. . .

...
0 0 . . . �n

3

7775

�0 � �1 � · · · � �n � 0

Z = U>X

X

singular values

Principal Components
Analysis

• Unsupervised learning method for linearly
transformed data

• A low-dimensional representation (by thresholding
the singular values)

• Yields independent (uncorrelated) components  
 

�45

K-Means Clustering
• Definition: Find k clusters

of data samples similar to
each other 
 
Alternate between:  
 
 
 
 
 

�46

cj =

P
i �[wi = j]xiP
i �[wi = j]

wi = argmin
j

|xi � cj |2

K-Means Clustering
�47

• Unsupervised learning method (handles nonlinearly
transformed data)

• A sparse representation (assignments wi encode
one sample with one of the cluster centers cj)

• Depends on initialization

• Ill-posed (multiple solutions can be valid)

• Number of clusters is usually unknown

Conclusion
• Machine Learning is about making computers better at

some task by learning from data

• Many different ML systems:  
- Supervised (regression, classification, …)  
- Unsupervised (clustering, dim. reduction, …)

• We maximize the model likelihood over the training set
and hope it will generalise to unseen data

• Data is important (garbage in, garbage out)!  
Model complexity should fit the data.

�48

Thank you for your attention!  

Questions?

