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Contents
• Introduction to Feedforward Neural Networks: 

definition, design, training  
 

• Based on Chapter 6 (and 4) of Deep Learning by 
Goodfellow, Bengio, Courville 

• References to Machine Learning and Pattern 
Recognition by Bishop
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Resources
• Books and online material for further studies 

• CS231 @ Stanford (Fei-Fei Li) 

• Pattern Recognition and Machine Learning  
by Christopher M. Bishop 

• Machine Learning: a Probabilistic Perspective 
by Kevin P. Murphy
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Feedforward Neural 
Networks

• Feedforward networks are a sequence of layers, 
each processing the output of the previous layer(s)
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Feedforward Neural 
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Feedforward Neural 
Networks
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h1 = f1,1(x)
h2 = f1,2(x)

z1 = f2,1(h1, h2)
z2 = f2,2(h1, h2)
z3 = f2,3(h1, h2)
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q2 = f3,2(z1, z2, z3)
q3 = f3,3(z1, z2, z3)

y = f4(q1, q2, q3)



Feedforward Neural 
Networks
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Feedforward Neural 
Networks
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Feedforward Neural 
Networks
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Feedforward Neural 
Networks

• Feedforward neural networks define a family of 
functions  

• The goal is to find parameters      that define the 
best mapping 
 
 
 
between input x and output y 

• The key constraints are the I/O dependencies
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Deploying a Neural Network

• Given a task (in terms of I/O mappings)  

• We need 

• Cost function 

• Neural network model (e.g., choice of units, 
their number, their connectivity) 

• Optimization method (back-propagation)
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Example: Learning XOR
• Objective is the XOR  

operation between  
two binary inputs  
x1 and x2  
 

• Training set of (x,y) pairs is 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Figure 6.1: Solving the XOR problem by learning a representation. The bold numbers
printed on the plot indicate the value that the learned function must output at each point.
(Left)A linear model applied directly to the original input cannot implement the XOR
function. When x1 = 0, the model’s output must increase as x2 increases. When x1 = 1,
the model’s output must decrease as x2 increases. A linear model must apply a fixed
coefficient w2 to x2. The linear model therefore cannot use the value of x1 to change
the coefficient on x2 and cannot solve this problem. (Right)In the transformed space
represented by the features extracted by a neural network, a linear model can now solve
the problem. In our example solution, the two points that must have output 1 have been
collapsed into a single point in feature space. In other words, the nonlinear features have
mapped both x = [1, 0]> and x = [0, 1]> to a single point in feature space, h = [1, 0]>.
The linear model can now describe the function as increasing in h1 and decreasing in h2.
In this example, the motivation for learning the feature space is only to make the model
capacity greater so that it can fit the training set. In more realistic applications, learned
representations can also help the model to generalize.
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Cost Function

• Let us use the Mean Squared Error (MSE) as a first 
attempt  
 
 
 
 

�13

J(✓) =
1

4

4X

i=1

�
yi � f(xi; ✓)

�2



Linear Model
• Let us try a linear model of the form  
 

• This choice leads to the normal equations (see 
slides on Machine Learning Review) and the 
following values for the parameters  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f(x;w, b) = w>x+ b

w = 0, b =
1
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Nonlinear Model

• Let us try a simple feedforward 
network with one hidden layer 
and two hidden units
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Figure 6.2: An example of a feedforward network, drawn in two different styles. Specifically,
this is the feedforward network we use to solve the XOR example. It has a single hidden
layer containing two units. (Left)In this style, we draw every unit as a node in the graph.
This style is very explicit and unambiguous but for networks larger than this example
it can consume too much space. (Right)In this style, we draw a node in the graph for
each entire vector representing a layer’s activations. This style is much more compact.
Sometimes we annotate the edges in this graph with the name of the parameters that
describe the relationship between two layers. Here, we indicate that a matrix W describes
the mapping from x to h, and a vector w describes the mapping from h to y. We
typically omit the intercept parameters associated with each layer when labeling this kind
of drawing.

model, we used a vector of weights and a scalar bias parameter to describe an
affine transformation from an input vector to an output scalar. Now, we describe
an affine transformation from a vector x to a vector h, so an entire vector of bias
parameters is needed. The activation function g is typically chosen to be a function
that is applied element-wise, with hi = g(x>

W:,i + ci). In modern neural networks,
the default recommendation is to use the rectified linear unit or ReLU (Jarrett
et al., 2009; Nair and Hinton, 2010; Glorot et al., 2011a) defined by the activation
function g(z) = max{0, z} depicted in figure 6.3.

We can now specify our complete network as

f(x; W , c, w, b) = w
> max{0, W >

x + c} + b. (6.3)

We can now specify a solution to the XOR problem. Let

W =


1 1
1 1

�
, (6.4)

c =


0

�1

�
, (6.5)
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Nonlinear Model
• If each activation function is 

linear then the composite 
function would also be linear  

• We would have the same poor 
result as before 

• We must consider nonlinear 
activation functions
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Nonlinear Model
�17
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We can now specify our complete network as
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x + c} + b. (6.3)
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h(x) = ReLU(W>x+ c)

y(h) = w>h+ b

f(x;W, c, w, b) = w> max{0,W>x+ c}+ b



Optimization
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f(x;W, c, w, b) = w> max{0,W>x+ c}+ b

At this stage we would use optimization to fit f  to the y 
in the training set. In this example, we skip this step 
and assume that some oracle gives us the parameters  
 
 
 
 
 
 

W =


1 1
1 1

�
c =


0
�1

�

w =


1
�2

�
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Simulation
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Step-by-Step Analysis
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Cost Function

• Based on the conditional distribution 

• Maximum Likelihood (i.e., cross-entropy 
between model pdf and data pdf)  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min
✓

�Ex,y⇠p̂data [log pmodel(y|x; ✓)]

pmodel(y|x; ✓)



Saturation
• Functions that saturate (have flat regions) have a very small 

gradient and slow down gradient descent 

• We choose loss functions that have a non flat region when the 
answer is incorrect (it might be flat otherwise) 

• E.g., exponential functions  
saturate in the negative domain;  
with a binary variable  
map errors to the nonflat region  
and then minimize 

• The logarithm also helps with saturation (see next slides)
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errors

exp(z(1� 2y))

z(1� 2y)

y 2 {0, 1}
correct



Output Units
• The choice of the output representation (e.g., a 

probability vector or the mean estimate) determines 
the cost function 

• Let us denote with  
 
 
 
 
the output of the layer before the output unit
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h = f(x; ✓)



Linear Units
• With a little abuse of terminology, linear units include 

affine transformations  
 
 
can be seen as the mean of the conditional Gaussian 
distribution (in the Maximum Likelihood loss)  
 

• The Maximum Likelihood loss becomes  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ŷ = W>h+ b

p(y|x) = N (y; ŷ, I)

� log p(y|ŷ) = |y � ŷ|2 + const
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Softplus
• The softplus function is 

defined as 
 
 
 
 
and it is a smooth 
approximation of the 
Rectified Linear Unit (ReLU)  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⇣(x) = log(1 + exp(x))

CHAPTER 3. PROBABILITY AND INFORMATION THEORY

Figure 3.3: The logistic sigmoid function.
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Figure 3.4: The softplus function.
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Sigmoid Units
• Use to predict binary variables or to predict the 

probability of binary variables 

• The sigmoid unit defines a suitable mapping  
 
 
where we have used the  
logistic sigmoid function  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p(y = 0|x) 2 [0, 1]

ŷ = �(w>h+ b)

�(x) =
1

1 + e�x
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Figure 3.3: The logistic sigmoid function.

Figure 3.4: The softplus function.

69



Sigmoid Cross-Entropy
• Let                      . Then, we can define the Bernoulli 

distribution  
 

• The loss function with Maximum Likelihood is then  
 
 
 
and saturation occurs only when the output is 
correct (y=0 and z<0 or y=1 and z>0)
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z = w>h+ b

p(y|z) = �(z)y(1� �(z))(1�y)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

� log p(y|z) = y log �(z) + (1� y) log(1� �(z))
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>



Smoothed Max
• An extension to the softplus function is the 

smoothed max 
 
 
which gives a smooth approximation to 

• If we rewrite the softplus function as  
 
 
 
we can see that it is the case with 
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log
X

j

exp(zj)

max
j

zj

log(1 + exp(z)) = log(exp(0) + exp(z))

z1 = 0, z2 = z



Softmax Units
• An extension of the logistic sigmoid to multiple variables 

• Used as the output of a multi-class classifier 

• The Softmax function is defined as 
 
 

• Shift-invariance: 
 
gives numerically stable implementation  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softmax(z)i =
exp(zi)P
j exp(zj)

softmax(z + 1c) = softmax(z)

softmax(z �max
j

zj) = softmax(z)



Softmax Cross-Entropy
• In Maximum Likelihood we have 
 
 
 

• Recall the smoothed max, then we can write  

• Maximization, with                          , yields  
 
                                 and
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log softmax(z)i = zi � log
X

j

exp(zj)

log softmax(z)i ' zi �max
j

zj

softmax(z)j 6=i = 0softmax(z)i = 1

i = argmax
j

zj

� log p(y|z) =
KX

i=1

yi log softmax(z)i
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Softmax Units
• Softmax is an extension to the logistic sigmoid 

where we have 2 variables and  
 

• Softmax is a winner-take-all formulation  

• Softmax is more related to the arg max function 
than the max function
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z1 = 0, z2 = z

p(y = 1|x) = softmax(z)1 = �(z2)



Hidden Units
• The design of a neural network is so far still an art 

• The basic principle is the trial and error process: 
1. Start from a known model 
2. Modify  
3. Implement and test (go back to 2. if needed) 

• A good choice is to always use ReLUs 

• In general the hidden unit picks a g for  

�32

h(x) = g(W>x+ b)



Rectified Linear Units
• ReLUs typically use also  

an affine transformation  
 
 

• Good initialization is b = 0.1 (initially, a linear layer) 

• Negative axis cannot learn due to null gradient 

• Generalizations help avoid the null gradient
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Leaky ReLUs and More
• A generalisation of ReLU is  

• To avoid a null gradient the following are in use  

1. Absolute value rectification 
2. Leaky ReLU 
3. Parametric ReLU                           learnable 
4. Maxout Units 

�34

g(z,↵) = max{0, z}+ ↵min{0, z}

↵ = �1

↵ = 0.01

↵

g(z)i = max
j2Si

zj

[iSi = [1, . . . ,m]

Si \ Sj = ? i 6= j



Network Design

• The network architecture is the overall structure of 
the network: number of units and their connectivity  

• Today, the design for a task must be found 
experimentally via a careful analysis of the training 
and validation error
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Depth
• A general rule is that depth helps generalization 

• It is better to have many simple layers than few 
highly complex ones  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Figure 6.6: Empirical results showing that deeper networks generalize better when used
to transcribe multi-digit numbers from photographs of addresses. Data from Goodfellow
et al. (2014d). The test set accuracy consistently increases with increasing depth. See
figure 6.7 for a control experiment demonstrating that other increases to the model size
do not yield the same effect.

Another key consideration of architecture design is exactly how to connect a
pair of layers to each other. In the default neural network layer described by a linear
transformation via a matrix W , every input unit is connected to every output
unit. Many specialized networks in the chapters ahead have fewer connections, so
that each unit in the input layer is connected to only a small subset of units in
the output layer. These strategies for reducing the number of connections reduce
the number of parameters and the amount of computation required to evaluate
the network, but are often highly problem-dependent. For example, convolutional
networks, described in chapter 9, use specialized patterns of sparse connections
that are very effective for computer vision problems. In this chapter, it is difficult
to give much more specific advice concerning the architecture of a generic neural
network. Subsequent chapters develop the particular architectural strategies that
have been found to work well for different application domains.
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Depth
• Other network modifications do not have the same 

effect  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Figure 6.7: Deeper models tend to perform better. This is not merely because the model is
larger. This experiment from Goodfellow et al. (2014d) shows that increasing the number
of parameters in layers of convolutional networks without increasing their depth is not
nearly as effective at increasing test set performance. The legend indicates the depth of
network used to make each curve and whether the curve represents variation in the size of
the convolutional or the fully connected layers. We observe that shallow models in this
context overfit at around 20 million parameters while deep ones can benefit from having
over 60 million. This suggests that using a deep model expresses a useful preference over
the space of functions the model can learn. Specifically, it expresses a belief that the
function should consist of many simpler functions composed together. This could result
either in learning a representation that is composed in turn of simpler representations (e.g.,
corners defined in terms of edges) or in learning a program with sequentially dependent
steps (e.g., first locate a set of objects, then segment them from each other, then recognize
them).
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Optimization
• Given a task we define 

• The training data 

• A network design 

• The loss function 

• Next, we optimize the network parameters 

• This operation is called training

�38

f(x; ✓)

{xi, yi}i=1,...,m

✓

J(✓) =
mX

i=1

loss
�
yi, f(xi; ✓)

�



Optimization
• The MSE cost function          is convex with a linear 

model 
 
 
 
 
 
 
 
 

�39

J(✓)

✓

J(✓)

global optimum



Optimization
• However, since the cost function          is typically 

non convex in the parameters, we use an iterative 
solution 

• We consider the gradient descent method  
  
 
 
where             is the learning rate  
 

�40

J(✓)

↵ > 0

✓t+1 = ✓t � ↵rJ(✓t)
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Optimization
�42
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gradient gradient

move move
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Local Minima
• Does gradient descent reach a (local) minimum 

even with a non convex function?  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✓
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Optimization
• For more efficiency, we use the stochastic 

gradient descent method 

• The gradient of the loss function is computed on a 
small set of samples from the training set  
  
 
 
and the iteration is as before  
 

�44

J̃(✓) =
P

i⇠[1,...,m] loss
�
yi, f(xi; ✓)

�

✓t+1 = ✓t � ↵rJ̃(✓t)



Backpropagation Algorithm
• An efficient implementation of the chain-rule to 

compute derivatives w.r.t. the network weights 

• It is applied automatically by all popular 
frameworks
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Momentum
• Standard gradient descent is often very slow 

• Accelerated gradient methods are therefore the 
standard in practice 

• The most basic is Gradient Descent + Momentum
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Gradient Descent  
+ Momentum 

• The update rule for Gradient Descent with 
Momentum is: 
 
 

• The hyper-parameter     controls the amount of 
momentum  

•               is often a good choice
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Conclusion
• Introduced the basic building blocks of Neural Networks: 

• Cost Function & Output Units: 
- Sigmoid + binary cross-entropy  
- Softmax + categorical cross-entropy  
- Linear + MSE  

• Network Design: 
- Typically ReLU variants in the hidden layers  
- Deeper often generalizes better  
- Don’t reinvent the wheel 

• Optimization: 
- Gradient Descent (+ Momentum)
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Thank you for your attention!  

Questions?


