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Regularization
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• A central problem in ML is generalization: How do 
we design an algorithm that can perform well not 
only on training data but also on new data? 

• Regularization aims at reducing the generalization 
error of an algorithm  



Generalization
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• Problems with generalization (see also Machine 
Learning Review slides) 

• Underfitting (large bias but low variance) 

• Overfitting (small bias but high variance) 

• Neural networks typically are in the second case 
and regularization aims at reducing variance



Regularization
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• Strategies 

• Constrain model (e.g., restrict model family or 
parameter space) 

• Add terms to loss function (equivalent to soft 
constraints to the model) — can encode priors 

• Ensemble methods (combine multiple 
hypotheses)



Dataset Augmentation
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• The best way to make the model generalize well is 
to train it on more data 

• One way to augment our dataset is to apply a 
number of realistic transformations to the data we 
already have and create new synthetic samples, 
which share the same label 

• This process of data manipulation is also called 
jittering



Dataset Augmentation
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Noise Robustness
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• Apply noise to the input data at each iteration 

• Apply noise to the inputs of the hidden units (Poole 
et al 2014) 

• Dropout can be seen as multiplicative noise
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Noise Robustness
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• Apply noise to the weights 

• Model weights as random variables 

• Encourage stability of learned mapping (weights 
find minima with a flat neighborhood)  



Label Smoothing
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• Labels might be wrong (remember: it is human 
annotation) 

• Let us model noise in the labels 

• For example, 

• Label smoothing replaces 0s and 1s with  
 
              and              respectively

p(y) = (1� ✏)p̂(y) + ✏U [1,K]

✏

K � 1
1� ✏

labeling



Semi-Supervised Learning
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• Semi-supervised learning uses unlabeled samples 
from p(x) and labeled samples from p(x,y) to build 
p(y|x) or directly predict y from x 

• The probability density p(x) can be seen as a prior 
on the input data  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class 2

class 1

class 2
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Early Stopping
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• Neural networks require iterative algorithms for 
training (typically a gradient descent-type) 

• The larger the number of iterations and the lower 
the training error 

• A technique to increase the generalization of the 
model is to limit the number of iterations



Early Stopping
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CHAPTER 7. REGULARIZATION FOR DEEP LEARNING
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Figure 7.3: Learning curves showing how the negative log-likelihood loss changes over
time (indicated as number of training iterations over the dataset, or epochs). In this
example, we train a maxout network on MNIST. Observe that the training objective
decreases consistently over time, but the validation set average loss eventually begins to
increase again, forming an asymmetric U-shaped curve.

greatly improved (in proportion with the increased number of examples for the
shared parameters, compared to the scenario of single-task models). Of course this
will happen only if some assumptions about the statistical relationship between
the different tasks are valid, meaning that there is something shared across some
of the tasks.

From the point of view of deep learning, the underlying prior belief is the
following: among the factors that explain the variations observed in the data
associated with the different tasks, some are shared across two or more tasks.

7.8 Early Stopping

When training large models with sufficient representational capacity to overfit
the task, we often observe that training error decreases steadily over time, but
validation set error begins to rise again. See figure 7.3 for an example of this
behavior. This behavior occurs very reliably.

This means we can obtain a model with better validation set error (and thus,
hopefully better test set error) by returning to the parameter setting at the point in
time with the lowest validation set error. Every time the error on the validation set
improves, we store a copy of the model parameters. When the training algorithm
terminates, we return these parameters, rather than the latest parameters. The
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terminate while validation set
performance is better



Early Stopping
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• Since the validation set is not used for training, 
after early stopping one can either  
 
1) retrain the network on all the data (training + 
validation sets) and then stop after the same 
number of steps of the early stopping or  
 
2) continue training the network on all the data 
(training + validation sets) and then stop when the 
loss on the validation set is below the loss on the 
training set (at the early stopping iteration time)



Deep Feedforward 
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Contents

• Optimization in Feedforward Neural Networks 

• Batch and mini batch algorithms, stochastic 
gradient descent, weight initialization 

• Based on Chapter 8 of Deep Learning by 
Goodfellow, Bengio, Courville
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Batch and Minibatch 
Algorithms
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• Batch or deterministic gradient methods use the 
whole training set at each iteration 

• Minibatch stochastic gradient methods use a 
batch of samples at each iteration 

• Stochastic gradient methods use only one sample 
at each iteration 

• Today, it is common practice to call minibatch 
stochastic simply stochastic



Choice of the Batch Size
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• Larger batches give better gradients, but the estimate 
improvement is low 

• Small batches might underutilize multicore 
architectures 

• Examples in a batch are processed in parallel; amount 
of memory defines the maximum size 

• GPUs may prefer sizes that are a power of 2 

• Small batches may have a regularization effect



Choice of the Batch Size
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• The size depends also on the gradient method 

• Methods based on only the loss gradient require 
small batch sizes 

• Methods based on higher order derivatives (e.g., 
Hessian) require large batch sizes (to 
compensate for the larger approximation error)



Shuffling
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• An unbiased estimate of the expected gradient 
requires independent samples 

• Using data where the order is fixed might lead to 
batches where all samples are highly correlated 

• Common practice is to randomly visit the training 
set 

• Can save a dataset where the data has been 
randomly permuted (data shuffling)



Basic Algorithms



Stochastic Gradient Descent
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• Learning rate      and initial parameter 

• while (stopping criterion not met) do 

• Sample a minibatch of m examples from the training 
set with the corresponding targets 

• Compute gradient estimate 

• Apply update 

• end while

✏k

ĝ  1

m
r✓

X

i

L(f(xi; ✓), yi)

✓

✓  ✓ � ✏kĝ



Stochastic Gradient Descent
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• Probably the most used algorithm in deep learning 

• Main setting is the learning rate  

• It is necessary to gradually decrease the learning 
rate over iteration time k 

• Sufficient conditions (in addition to others on the 
cost) to guarantee convergence of SGD are that  
 

✏k

1X

k=1

✏k = 1
1X

k=1

✏2k < 1



Weight Initialization 
Strategies
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• Since the optimization problem is non convex, 
initialization determines the quality of the solution 

• Current initialization strategies are simple and 
heuristic 

• Some initial points may be beneficial to the 
optimization task, but not to generalization 

• One criterion is that the initial parameters need to 
break the symmetry between different units



Weight Initialization 
Strategies

�26

• Two hidden units with the same activation function 
and inputs should have different initial parameters 

• Otherwise a deterministic learning algorithm will 
update both of these units in the same way 

• The goal of diversifying the computed functions 
motivates random initialization 

• Random weights can be obtained from a Gaussian 
or Uniform distribution



Learning Based  
Initialization Strategies
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• Another strategy is to initialize weights by 
transferring weights learned via an unsupervised 
learning method 

• This is also a technique called fine-tuning which 
aims at exploiting small annotated datasets by 
combining them with large unlabeled ones



Adaptive Learning Rates
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• The learning rate is one of the most difficult 
parameters to set 

• It has a significant impact on the model 
performance 

• It is therefore treated as a hyperparameter that 
requires adjustment during training



Batch Normalization
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Choosing the Optimization 
Algorithm
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• Currently there is no consensus on what algorithm 
performs best 

• Most popular choices are: SGD, SGD+Momentum, 
RMSProp, RMSProp+Momentum, AdaDelta, Adam 

• Strategy: Pick one and get familiar with the tuning



Convolutional Neural 
Networks
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Contents

• Convolutional Neural Networks 

• Convolutions (standard, unshared, tiled) 

• Based on Chapter 9 of Deep Learning by 
Goodfellow, Bengio, Courville
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Convolutional Networks
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• A specialized neural network for data arranged on 
a grid (e.g., audio signals, images) 

• Allow neural networks to deal with high-dimensional 
data 

• Key idea is to substitute fully connected layers with 
a convolution



Fully Connected Layers
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The Convolution Operation
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kernelinputfeature map

s[m,n] = (x ⇤ w)[m,n] =
X

i,j

x[m� i, n� j]w[i, j]

=
X

i,j

w[m� i, n� j]x[i, j]symmetric

linear in x  
with fixed w



Toeplitz Matrix
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kernel

Toeplitz matrix

s[n] = (x ⇤ w)[n]

=
X

i

A[n, i]x[i]



Variants
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• Input data is typically a 4D tensor: 2 dimensions for the 
spatial domain, 1 dimension for the channels (e.g., 
colors), and 1 dimension for the batch 

• The convolution (correlation) applies to the spatial 
domain only  
 
 
 
 
 

Zi,j,k =
X

l,m,n

Vl,j+m,k+nKi,l,m,n

input kerneloutput



Convolution Example
�38

Input

Kernel

Source: https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2

Convolution 
Operation

Output

https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2


Stride
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• We can also skip outputs by defining a stride s 
larger than 1  
 
 
 
 
 

Zi,j,k =
X

l,m,n

Vl,j⇥s+m,k⇥s+nKi,l,m,n



Stride Example
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Source: https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2

increasing stride from 1 to 2

https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2


Padding
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• The output of a convolution is valid as long as the 
summation uses available values 

• In a convolution the valid output size is equal to: 
the input size - the size of the kernel + 1 

• Unless we make boundary assumptions, a convolution 
will lead to a progressive shrinking of the input 

• Padding is the assumption that outside the given 
domain the input takes some fixed values (e.g., zero)



Padding Example
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Source: https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2

adding zero padding of one pixel

https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2


Pooling Layers
• The most common way to reduce the spatial 

dimension in classification tasks is max-pooling 

• No learnable parameters  

• Defined by window size, stride and padding
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Data Types
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• Input data can be in different formats 

• 1D: Audio waveforms (single channel) and skeleton 
animation data/motion (multi-channel) 

• 2D: Audio data preprocessed via Fourier (single 
channel), color image data (multi-channel) 

• 3D: Volumetric data such as CT scans (single 
channel), color video data (multi-channel)



Random or  
Unsupervised Features
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• Kernels can be initialized  

• with random weights  
 
 
 
 
 
 
 



Random or  
Unsupervised Features
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• Kernels can be initialized  

• with hand-designed features  
 
 
 
 
 
 
 

CHAPTER 9. CONVOLUTIONAL NETWORKS

Figure 9.18: Gabor functions with a variety of parameter settings. White indicates
large positive weight, black indicates large negative weight, and the background gray
corresponds to zero weight. (Left)Gabor functions with different values of the parameters
that control the coordinate system: x0, y0, and ⌧ . Each Gabor function in this grid is
assigned a value of x0 and y0 proportional to its position in its grid, and ⌧ is chosen so
that each Gabor filter is sensitive to the direction radiating out from the center of the grid.
For the other two plots, x0, y0, and ⌧ are fixed to zero. (Center)Gabor functions with
different Gaussian scale parameters �x and �y. Gabor functions are arranged in increasing
width (decreasing �x) as we move left to right through the grid, and increasing height
(decreasing �y) as we move top to bottom. For the other two plots, the � values are fixed
to 1.5⇥ the image width. (Right)Gabor functions with different sinusoid parameters f
and �. As we move top to bottom, f increases, and as we move left to right, � increases.
For the other two plots, � is fixed to 0 and f is fixed to 5⇥ the image width.

(replacing black with white and vice versa).
Some of the most striking correspondences between neuroscience and machine

learning come from visually comparing the features learned by machine learning
models with those employed by V1. Olshausen and Field (1996) showed that
a simple unsupervised learning algorithm, sparse coding, learns features with
receptive fields similar to those of simple cells. Since then, we have found that
an extremely wide variety of statistical learning algorithms learn features with
Gabor-like functions when applied to natural images. This includes most deep
learning algorithms, which learn these features in their first layer. Figure 9.19
shows some examples. Because so many different learning algorithms learn edge
detectors, it is difficult to conclude that any specific learning algorithm is the
“right” model of the brain just based on the features that it learns (though it can
certainly be a bad sign if an algorithm does not learn some sort of edge detector
when applied to natural images). These features are an important part of the
statistical structure of natural images and can be recovered by many different
approaches to statistical modeling. See Hyvärinen et al. (2009) for a review of the
field of natural image statistics.
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Random or  
Unsupervised Features
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• Kernels can be initialized  

• with unsupervised learning algorithms (e.g., 
apply k-means clustering to patches, then use 
centroids as kernels)  
 
 
 
 
 

CHAPTER 9. CONVOLUTIONAL NETWORKS

Figure 9.19: Many machine learning algorithms learn features that detect edges or specific
colors of edges when applied to natural images. These feature detectors are reminiscent of
the Gabor functions known to be present in primary visual cortex. (Left)Weights learned
by an unsupervised learning algorithm (spike and slab sparse coding) applied to small
image patches. (Right)Convolution kernels learned by the first layer of a fully supervised
convolutional maxout network. Neighboring pairs of filters drive the same maxout unit.

9.11 Convolutional Networks and the History of Deep
Learning

Convolutional networks have played an important role in the history of deep
learning. They are a key example of a successful application of insights obtained
by studying the brain to machine learning applications. They were also some of
the first deep models to perform well, long before arbitrary deep models were
considered viable. Convolutional networks were also some of the first neural
networks to solve important commercial applications and remain at the forefront
of commercial applications of deep learning today. For example, in the 1990s, the
neural network research group at AT&T developed a convolutional network for
reading checks (LeCun et al., 1998b). By the end of the 1990s, this system deployed
by NEC was reading over 10% of all the checks in the US. Later, several OCR
and handwriting recognition systems based on convolutional nets were deployed by
Microsoft (Simard et al., 2003). See chapter 12 for more details on such applications
and more modern applications of convolutional networks. See LeCun et al. (2010)
for a more in-depth history of convolutional networks up to 2010.

Convolutional networks were also used to win many contests. The current
intensity of commercial interest in deep learning began when Krizhevsky et al.
(2012) won the ImageNet object recognition challenge, but convolutional networks
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Thank you for your attention!  

Questions?


