b UNIVERSITÄT BERN

Deep Feedforward Networks - Regularization

Simon Jenni (slides by Paolo Favaro)

Contents

- Regularization in Feedforward Neural Networks
 - Parameters, optimization, dataset augmentation, I/O noise, semi-supervised learning, early stopping
- Based on Chapter 7 of Deep Learning by Goodfellow, Bengio, Courville

Regularization

- A central problem in ML is generalization: How do we design an algorithm that can perform well not only on training data but also on new data?
- Regularization aims at reducing the generalization error of an algorithm

Generalization

- Problems with generalization (see also Machine Learning Review slides)
 - Underfitting (large bias but low variance)
 - Overfitting (small bias but high variance)
- Neural networks typically are in the second case and regularization aims at reducing variance

Regularization

- Strategies
 - Constrain model (e.g., restrict model family or parameter space)
 - Add terms to loss function (equivalent to soft constraints to the model) — can encode priors
 - Ensemble methods (combine multiple hypotheses)

Dataset Augmentation

- The best way to make the model generalize well is to train it on more data
- One way to augment our dataset is to apply a number of realistic transformations to the data we already have and create new synthetic samples, which share the same label
- This process of data manipulation is also called jittering

Dataset Augmentation

affine distortion

noise

elastic deformation

7

hue shift

original

horizontal flip

random translation

Noise Robustness

- Apply noise to the input data at each iteration
- Apply noise to the inputs of the hidden units (Poole et al 2014)
- **Dropout** can be seen as multiplicative noise

Noise Robustness

- Apply noise to the weights
 - Model weights as random variables
 - Encourage stability of learned mapping (weights find minima with a flat neighborhood)

Label Smoothing

- Labels might be wrong (remember: it is human annotation)
- Let us model noise in the labels

,....labeling

- For example, $p(y) = (1 \epsilon)\hat{p}(y) + \epsilon \mathcal{U}[1, K]$
- Label smoothing replaces 0s and 1s with

$$\frac{\epsilon}{K-1}$$
 and $1-\epsilon$ respectively

Semi-Supervised Learning

- Semi-supervised learning uses unlabeled samples from *p(x)* and labeled samples from *p(x,y)* to build *p(y|x)* or directly predict *y* from *x*
- The probability density *p(x)* can be seen as a prior on the input data

Early Stopping

- Neural networks require iterative algorithms for training (typically a gradient descent-type)
- The larger the number of iterations and the lower the training error
- A technique to increase the generalization of the model is to **limit the number of iterations**

Early Stopping

• Since the validation set is not used for training, after early stopping one can either

1) retrain the network on all the data (training + validation sets) and then stop after the same number of steps of the early stopping or

2) continue training the network on all the data (training + validation sets) and then stop when the loss on the validation set is below the loss on the training set (at the early stopping iteration time)

b UNIVERSITÄT BERN

Deep Feedforward Networks - Optimization

Paolo Favaro

Contents

- Optimization in Feedforward Neural Networks
 - Batch and mini batch algorithms, stochastic gradient descent, weight initialization
- Based on Chapter 8 of Deep Learning by Goodfellow, Bengio, Courville

Batch and Minibatch Algorithms

- Batch or deterministic gradient methods use the whole training set at each iteration
- Minibatch stochastic gradient methods use a batch of samples at each iteration
- Stochastic gradient methods use only one sample at each iteration
- Today, it is common practice to call minibatch stochastic simply stochastic

Choice of the Batch Size

- Larger batches give better gradients, but the estimate improvement is low
- Small batches might underutilize multicore architectures
- Examples in a batch are processed in parallel; amount of memory defines the maximum size
- GPUs may prefer sizes that are a power of 2
- Small batches may have a regularization effect

Choice of the Batch Size

- The size depends also on the gradient method
 - Methods based on only the loss gradient require small batch sizes
 - Methods based on higher order derivatives (e.g., Hessian) require large batch sizes (to compensate for the larger approximation error)

Shuffling

- An unbiased estimate of the expected gradient requires independent samples
- Using data where the order is fixed might lead to batches where all samples are highly correlated
- Common practice is to randomly visit the training set
- Can save a dataset where the data has been randomly permuted (data shuffling)

Basic Algorithms

Stochastic Gradient Descent

- Learning rate ϵ_k and initial parameter θ
- while (stopping criterion not met) do
 - Sample a minibatch of *m* examples from the training set with the corresponding targets
 - Compute gradient estimate $\hat{g} \leftarrow \frac{1}{m} \nabla_{\theta} \sum_{i} L(f(x_i; \theta), y_i)$
 - Apply update $\theta \leftarrow \theta \epsilon_k \hat{g}$
- end while

Stochastic Gradient Descent

- Probably the most used algorithm in deep learning
- Main setting is the learning rate ϵ_k
 - It is necessary to gradually decrease the learning rate over iteration time k
 - Sufficient conditions (in addition to others on the cost) to guarantee convergence of SGD are that

$$\sum_{k=1}^{\infty} \epsilon_k = \infty$$

Weight Initialization Strategies

- Since the optimization problem is non convex, initialization determines the quality of the solution
- Current initialization strategies are simple and heuristic
- Some initial points may be beneficial to the optimization task, but not to generalization
- One criterion is that the initial parameters need to break the symmetry between different units

Weight Initialization Strategies

- Two hidden units with the same activation function and inputs should have different initial parameters
- Otherwise a deterministic learning algorithm will update both of these units in the same way
- The goal of diversifying the computed functions motivates random initialization
- Random weights can be obtained from a Gaussian or Uniform distribution

Learning Based Initialization Strategies

- Another strategy is to initialize weights by transferring weights learned via an unsupervised learning method
- This is also a technique called **fine-tuning** which aims at exploiting small annotated datasets by combining them with large unlabeled ones

Adaptive Learning Rates

- The learning rate is one of the most difficult parameters to set
- It has a significant impact on the model performance
- It is therefore treated as a hyperparameter that requires adjustment during training

Batch Normalization

Input: Values of x over a mini-batch: $\mathcal{B} = \{x_{1...m}\};\$ Parameters to be learned: γ, β **Output:** $\{y_i = BN_{\gamma,\beta}(x_i)\}$ $\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i$ $\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^{m} (x_i - \mu_{\mathcal{B}})^2$ // mini-batch mean // mini-batch variance $\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}}$ // normalize $y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv \mathbf{BN}_{\gamma,\beta}(x_i)$ // scale and shift

Choosing the Optimization Algorithm

- Currently there is no consensus on what algorithm performs best
- Most popular choices are: SGD, SGD+Momentum, RMSProp, RMSProp+Momentum, AdaDelta, Adam
- Strategy: Pick one and get familiar with the tuning

b UNIVERSITÄT BERN

b

71.

Convolutional Neural Networks

Simon Jenni (slides by Paolo Favaro)

Contents

- Convolutional Neural Networks
 - Convolutions (standard, unshared, tiled)
- Based on Chapter 9 of Deep Learning by Goodfellow, Bengio, Courville

Convolutional Networks

- A specialized neural network for data arranged on a grid (e.g., audio signals, images)
- Allow neural networks to deal with high-dimensional data
- Key idea is to substitute fully connected layers with a convolution

Fully Connected Layers

matrix product

The Convolution Operation

feature map input kernel $s[m,n] = (x * w)[m,n] = \sum_{i=1}^{n} x[m-i,n-j]w[i,j]$ symmetric $\longrightarrow = \sum_{i,j} w[m-i, n-j]x[i, j]$ linear in x with fixed w

Toeplitz Matrix

Variants

- Input data is typically a 4D tensor: 2 dimensions for the spatial domain, 1 dimension for the channels (e.g., colors), and 1 dimension for the batch
- The convolution (correlation) applies to the spatial domain only

$$Z_{i,j,k} = \sum_{l,m,n} V_{l,j+m,k+n} K_{i,l,m,n}$$
output input kernel

Convolution Example

Input						
1	1	1	0	0		
0	1	1	1	0		
0	0	1	1	1		
0	0	1	1	0		
0	1	1	0	0		

Kernel

Convolution Operation

1x1	1 x 0	1x1	0	0
0x0	1x1	1x0	1	0
0x1	0x0	1x1	1	1
0	0	1	1	0
0	1	1	0	0

Source: https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2

Stride

 We can also skip outputs by defining a stride s larger than 1

$$Z_{i,j,k} = \sum_{l,m,n} V_{l,j\times s+m,k\times s+n} K_{i,l,m,n}$$

Stride Example

increasing stride from 1 to 2

Source: https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2

Padding

- The output of a convolution is valid as long as the summation uses available values
- In a convolution the valid output size is equal to: the input size - the size of the kernel + 1
- Unless we make boundary assumptions, a convolution will lead to a progressive shrinking of the input
- **Padding** is the assumption that outside the given domain the input takes some fixed values (e.g., zero)

Padding Example

Stride 1

 Feature Map
 Stride 1 with Padding
 Feature Map

adding zero padding of one pixel

Source: https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2

Pooling Layers

- The most common way to reduce the spatial dimension in classification tasks is max-pooling
- No learnable parameters
- Defined by window size, stride and padding

Data Types

- Input data can be in different formats
- 1D: Audio waveforms (single channel) and skeleton animation data/motion (multi-channel)
- 2D: Audio data preprocessed via Fourier (single channel), color image data (multi-channel)
- 3D: Volumetric data such as CT scans (single channel), color video data (multi-channel)

Random or Unsupervised Features

- Kernels can be initialized
 - with random weights

Random or Unsupervised Features

- Kernels can be initialized
 - with hand-designed features

////	0.0.0.0.0.0.0.0.0.00	
/////	10 10 10 10 10 10 10	
1111=== 1111	0.0.0.0.0.0.0.0.00	
1 11 11 11 10 10 10 10 10	0.0.0.0.0.0.0.0.00	
0 0 0 0 0 0 0 0 0	0.0.0.0.0.0.0.0.00	
1 1 1 = = // // //	0 0 0 0 0 0 0 0	
1 1 1 = = = 1 1/1	0 0 0 0 0 0 0 0	
	0 0 0 0 0 0 0	

Random or Unsupervised Features

- Kernels can be initialized
 - with unsupervised learning algorithms (e.g., apply k-means clustering to patches, then use centroids as kernels)

Thank you for your attention!

Questions?