
Deep Feedforward
Networks - Regularization

Simon Jenni
(slides by Paolo Favaro)

Contents

• Regularization in Feedforward Neural Networks

• Parameters, optimization, dataset augmentation,
I/O noise, semi-supervised learning, early
stopping

• Based on Chapter 7 of Deep Learning by
Goodfellow, Bengio, Courville

�2

Regularization
�3

• A central problem in ML is generalization: How do
we design an algorithm that can perform well not
only on training data but also on new data?

• Regularization aims at reducing the generalization
error of an algorithm  

Generalization
�4

• Problems with generalization (see also Machine
Learning Review slides)

• Underfitting (large bias but low variance)

• Overfitting (small bias but high variance)

• Neural networks typically are in the second case
and regularization aims at reducing variance

Regularization
�5

• Strategies

• Constrain model (e.g., restrict model family or
parameter space)

• Add terms to loss function (equivalent to soft
constraints to the model) — can encode priors

• Ensemble methods (combine multiple
hypotheses)

Dataset Augmentation
�6

• The best way to make the model generalize well is
to train it on more data

• One way to augment our dataset is to apply a
number of realistic transformations to the data we
already have and create new synthetic samples,
which share the same label

• This process of data manipulation is also called
jittering

Dataset Augmentation
�7

affine
distortion noise

elastic
deformation

horizontal
flip

random
translation

hue shift

original

Noise Robustness
�8

• Apply noise to the input data at each iteration

• Apply noise to the inputs of the hidden units (Poole
et al 2014)

• Dropout can be seen as multiplicative noise

Dropout

x

h1

h2

z1

z2

z3

q1

q2

q3

y

x

h1

z2

z3

q1

q3

y

Randomly
drop units

Noise Robustness
�10

• Apply noise to the weights

• Model weights as random variables

• Encourage stability of learned mapping (weights
find minima with a flat neighborhood)  

Label Smoothing
�11

• Labels might be wrong (remember: it is human
annotation)

• Let us model noise in the labels

• For example,

• Label smoothing replaces 0s and 1s with  
 
 and respectively

p(y) = (1� ✏)p̂(y) + ✏U [1,K]

✏

K � 1
1� ✏

labeling

Semi-Supervised Learning
�12

• Semi-supervised learning uses unlabeled samples
from p(x) and labeled samples from p(x,y) to build
p(y|x) or directly predict y from x

• The probability density p(x) can be seen as a prior
on the input data  
 
 
 

class 1

class 2

class 1

class 2

new sample

p(x)

Early Stopping
�13

• Neural networks require iterative algorithms for
training (typically a gradient descent-type)

• The larger the number of iterations and the lower
the training error

• A technique to increase the generalization of the
model is to limit the number of iterations

Early Stopping
�14

CHAPTER 7. REGULARIZATION FOR DEEP LEARNING

0 50 100 150 200 250

Time (epochs)

0.00

0.05

0.10

0.15

0.20

L
os

s
(n

eg
at

iv
e

lo
g-

li
ke

li
h
o
o
d
)

Training set loss

Validation set loss

Figure 7.3: Learning curves showing how the negative log-likelihood loss changes over
time (indicated as number of training iterations over the dataset, or epochs). In this
example, we train a maxout network on MNIST. Observe that the training objective
decreases consistently over time, but the validation set average loss eventually begins to
increase again, forming an asymmetric U-shaped curve.

greatly improved (in proportion with the increased number of examples for the
shared parameters, compared to the scenario of single-task models). Of course this
will happen only if some assumptions about the statistical relationship between
the different tasks are valid, meaning that there is something shared across some
of the tasks.

From the point of view of deep learning, the underlying prior belief is the
following: among the factors that explain the variations observed in the data
associated with the different tasks, some are shared across two or more tasks.

7.8 Early Stopping

When training large models with sufficient representational capacity to overfit
the task, we often observe that training error decreases steadily over time, but
validation set error begins to rise again. See figure 7.3 for an example of this
behavior. This behavior occurs very reliably.

This means we can obtain a model with better validation set error (and thus,
hopefully better test set error) by returning to the parameter setting at the point in
time with the lowest validation set error. Every time the error on the validation set
improves, we store a copy of the model parameters. When the training algorithm
terminates, we return these parameters, rather than the latest parameters. The

246

terminate while validation set
performance is better

Early Stopping
�15

• Since the validation set is not used for training,
after early stopping one can either  
 
1) retrain the network on all the data (training +
validation sets) and then stop after the same
number of steps of the early stopping or  
 
2) continue training the network on all the data
(training + validation sets) and then stop when the
loss on the validation set is below the loss on the
training set (at the early stopping iteration time)

Deep Feedforward
Networks - Optimization

Paolo Favaro

Contents

• Optimization in Feedforward Neural Networks

• Batch and mini batch algorithms, stochastic
gradient descent, weight initialization

• Based on Chapter 8 of Deep Learning by
Goodfellow, Bengio, Courville

�17

Batch and Minibatch
Algorithms

�18

• Batch or deterministic gradient methods use the
whole training set at each iteration

• Minibatch stochastic gradient methods use a
batch of samples at each iteration

• Stochastic gradient methods use only one sample
at each iteration

• Today, it is common practice to call minibatch
stochastic simply stochastic

Choice of the Batch Size
�19

• Larger batches give better gradients, but the estimate
improvement is low

• Small batches might underutilize multicore
architectures

• Examples in a batch are processed in parallel; amount
of memory defines the maximum size

• GPUs may prefer sizes that are a power of 2

• Small batches may have a regularization effect

Choice of the Batch Size
�20

• The size depends also on the gradient method

• Methods based on only the loss gradient require
small batch sizes

• Methods based on higher order derivatives (e.g.,
Hessian) require large batch sizes (to
compensate for the larger approximation error)

Shuffling
�21

• An unbiased estimate of the expected gradient
requires independent samples

• Using data where the order is fixed might lead to
batches where all samples are highly correlated

• Common practice is to randomly visit the training
set

• Can save a dataset where the data has been
randomly permuted (data shuffling)

Basic Algorithms

Stochastic Gradient Descent

�23

• Learning rate and initial parameter

• while (stopping criterion not met) do

• Sample a minibatch of m examples from the training
set with the corresponding targets

• Compute gradient estimate

• Apply update

• end while

✏k

ĝ 1

m
r✓

X

i

L(f(xi; ✓), yi)

✓

✓ ✓ � ✏kĝ

Stochastic Gradient Descent

�24

• Probably the most used algorithm in deep learning

• Main setting is the learning rate

• It is necessary to gradually decrease the learning
rate over iteration time k

• Sufficient conditions (in addition to others on the
cost) to guarantee convergence of SGD are that  
 

✏k

1X

k=1

✏k = 1
1X

k=1

✏2k < 1

Weight Initialization
Strategies

�25

• Since the optimization problem is non convex,
initialization determines the quality of the solution

• Current initialization strategies are simple and
heuristic

• Some initial points may be beneficial to the
optimization task, but not to generalization

• One criterion is that the initial parameters need to
break the symmetry between different units

Weight Initialization
Strategies

�26

• Two hidden units with the same activation function
and inputs should have different initial parameters

• Otherwise a deterministic learning algorithm will
update both of these units in the same way

• The goal of diversifying the computed functions
motivates random initialization

• Random weights can be obtained from a Gaussian
or Uniform distribution

Learning Based
Initialization Strategies

�27

• Another strategy is to initialize weights by
transferring weights learned via an unsupervised
learning method

• This is also a technique called fine-tuning which
aims at exploiting small annotated datasets by
combining them with large unlabeled ones

Adaptive Learning Rates
�28

• The learning rate is one of the most difficult
parameters to set

• It has a significant impact on the model
performance

• It is therefore treated as a hyperparameter that
requires adjustment during training

Batch Normalization
�29

Choosing the Optimization
Algorithm

�30

• Currently there is no consensus on what algorithm
performs best

• Most popular choices are: SGD, SGD+Momentum,
RMSProp, RMSProp+Momentum, AdaDelta, Adam

• Strategy: Pick one and get familiar with the tuning

Convolutional Neural
Networks

Simon Jenni
(slides by Paolo Favaro)

Contents

• Convolutional Neural Networks

• Convolutions (standard, unshared, tiled)

• Based on Chapter 9 of Deep Learning by
Goodfellow, Bengio, Courville

�32

Convolutional Networks
�33

• A specialized neural network for data arranged on
a grid (e.g., audio signals, images)

• Allow neural networks to deal with high-dimensional
data

• Key idea is to substitute fully connected layers with
a convolution

Fully Connected Layers
�34

= •m

p

m

p
n

n

must match

matrix product

The Convolution Operation
�35

kernelinputfeature map

s[m,n] = (x ⇤ w)[m,n] =
X

i,j

x[m� i, n� j]w[i, j]

=
X

i,j

w[m� i, n� j]x[i, j]symmetric

linear in x  
with fixed w

Toeplitz Matrix
�36

kernel

Toeplitz matrix

s[n] = (x ⇤ w)[n]

=
X

i

A[n, i]x[i]

Variants
�37

• Input data is typically a 4D tensor: 2 dimensions for the
spatial domain, 1 dimension for the channels (e.g.,
colors), and 1 dimension for the batch

• The convolution (correlation) applies to the spatial
domain only  
 
 
 
 
 

Zi,j,k =
X

l,m,n

Vl,j+m,k+nKi,l,m,n

input kerneloutput

Convolution Example
�38

Input

Kernel

Source: https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2

Convolution
Operation

Output

https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2

Stride
�39

• We can also skip outputs by defining a stride s
larger than 1  
 
 
 
 
 

Zi,j,k =
X

l,m,n

Vl,j⇥s+m,k⇥s+nKi,l,m,n

Stride Example
�40

Source: https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2

increasing stride from 1 to 2

https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2

Padding
�41

• The output of a convolution is valid as long as the
summation uses available values

• In a convolution the valid output size is equal to: 
the input size - the size of the kernel + 1

• Unless we make boundary assumptions, a convolution
will lead to a progressive shrinking of the input

• Padding is the assumption that outside the given
domain the input takes some fixed values (e.g., zero)

Padding Example
�42

Source: https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2

adding zero padding of one pixel

https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2

Pooling Layers
• The most common way to reduce the spatial

dimension in classification tasks is max-pooling

• No learnable parameters

• Defined by window size, stride and padding

�43

Data Types
�44

• Input data can be in different formats

• 1D: Audio waveforms (single channel) and skeleton
animation data/motion (multi-channel)

• 2D: Audio data preprocessed via Fourier (single
channel), color image data (multi-channel)

• 3D: Volumetric data such as CT scans (single
channel), color video data (multi-channel)

Random or  
Unsupervised Features

�45

• Kernels can be initialized

• with random weights  
 
 
 
 
 
 
 

Random or  
Unsupervised Features

�46

• Kernels can be initialized

• with hand-designed features  
 
 
 
 
 
 
 

CHAPTER 9. CONVOLUTIONAL NETWORKS

Figure 9.18: Gabor functions with a variety of parameter settings. White indicates
large positive weight, black indicates large negative weight, and the background gray
corresponds to zero weight. (Left)Gabor functions with different values of the parameters
that control the coordinate system: x0, y0, and ⌧ . Each Gabor function in this grid is
assigned a value of x0 and y0 proportional to its position in its grid, and ⌧ is chosen so
that each Gabor filter is sensitive to the direction radiating out from the center of the grid.
For the other two plots, x0, y0, and ⌧ are fixed to zero. (Center)Gabor functions with
different Gaussian scale parameters �x and �y. Gabor functions are arranged in increasing
width (decreasing �x) as we move left to right through the grid, and increasing height
(decreasing �y) as we move top to bottom. For the other two plots, the � values are fixed
to 1.5⇥ the image width. (Right)Gabor functions with different sinusoid parameters f
and �. As we move top to bottom, f increases, and as we move left to right, � increases.
For the other two plots, � is fixed to 0 and f is fixed to 5⇥ the image width.

(replacing black with white and vice versa).
Some of the most striking correspondences between neuroscience and machine

learning come from visually comparing the features learned by machine learning
models with those employed by V1. Olshausen and Field (1996) showed that
a simple unsupervised learning algorithm, sparse coding, learns features with
receptive fields similar to those of simple cells. Since then, we have found that
an extremely wide variety of statistical learning algorithms learn features with
Gabor-like functions when applied to natural images. This includes most deep
learning algorithms, which learn these features in their first layer. Figure 9.19
shows some examples. Because so many different learning algorithms learn edge
detectors, it is difficult to conclude that any specific learning algorithm is the
“right” model of the brain just based on the features that it learns (though it can
certainly be a bad sign if an algorithm does not learn some sort of edge detector
when applied to natural images). These features are an important part of the
statistical structure of natural images and can be recovered by many different
approaches to statistical modeling. See Hyvärinen et al. (2009) for a review of the
field of natural image statistics.

370

Random or  
Unsupervised Features

�47

• Kernels can be initialized

• with unsupervised learning algorithms (e.g.,
apply k-means clustering to patches, then use
centroids as kernels)  
 
 
 
 
 

CHAPTER 9. CONVOLUTIONAL NETWORKS

Figure 9.19: Many machine learning algorithms learn features that detect edges or specific
colors of edges when applied to natural images. These feature detectors are reminiscent of
the Gabor functions known to be present in primary visual cortex. (Left)Weights learned
by an unsupervised learning algorithm (spike and slab sparse coding) applied to small
image patches. (Right)Convolution kernels learned by the first layer of a fully supervised
convolutional maxout network. Neighboring pairs of filters drive the same maxout unit.

9.11 Convolutional Networks and the History of Deep
Learning

Convolutional networks have played an important role in the history of deep
learning. They are a key example of a successful application of insights obtained
by studying the brain to machine learning applications. They were also some of
the first deep models to perform well, long before arbitrary deep models were
considered viable. Convolutional networks were also some of the first neural
networks to solve important commercial applications and remain at the forefront
of commercial applications of deep learning today. For example, in the 1990s, the
neural network research group at AT&T developed a convolutional network for
reading checks (LeCun et al., 1998b). By the end of the 1990s, this system deployed
by NEC was reading over 10% of all the checks in the US. Later, several OCR
and handwriting recognition systems based on convolutional nets were deployed by
Microsoft (Simard et al., 2003). See chapter 12 for more details on such applications
and more modern applications of convolutional networks. See LeCun et al. (2010)
for a more in-depth history of convolutional networks up to 2010.

Convolutional networks were also used to win many contests. The current
intensity of commercial interest in deep learning began when Krizhevsky et al.
(2012) won the ImageNet object recognition challenge, but convolutional networks

371

Thank you for your attention!  

Questions?

