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Regularization

* A central problem in ML is generalization: How do
we design an algorithm that can perform well not
only on training data but also on new data”

* Regularization aims at reducing the generalization
error of an algorithm



(Generalization

* Problems with generalization (see also Machine
Learning Review slides)

* Underfitting (large bias but low variance)
* Qverfitting (small bias but high variance)

* Neural networks typically are in the second case
and regularization aims at reducing variance



Regularization

e Strategies

* Constrain model (e.q., restrict model family or
parameter space)

 Add terms to loss function (equivalent to soft
constraints to the model) — can encode priors

* Ensemble methods (combine multiple
hypotheses)



Dataset Augmentation

* The best way to make the model generalize well is
to train it on more data

* One way to augment our dataset is to apply a
number of realistic transformations to the data we
already have and create new synthetic samples,
which share the same label

* This process of data manipulation is also called
jittering



Dataset Augmentation
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Nolise Robustness

* Apply noise to the input data at each iteration

* Apply noise to the inputs of the hidden units (Poole
et al 2014)

* Dropout can be seen as multiplicative noise



Randomly
drop units



Nolise Robustness

* Apply noise to the weights
* Model weights as random variables

* Encourage stability of learned mapping (weights
find minima with a flat neighborhood)
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|_abel Smoothing

Labels might be wrong (remember: it is human
annotation)

Let us model noise In the labels
o For example, p(y) = (1 —¢€)p(y) + eU][l, K]

* Label smoothing replaces Os and 1s with

€

1 and 1 —e€ respectively
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Semi-Supervised Learning

e Semi-supervised learning uses unlabeled samples
from p(x) and labeled samples from p(X,y) to build
p(V1x) or directly predict y from X

* The probability density p(x) can be seen as a prior
on the input data



Early Stopping

* Neural networks require iterative algorithms for
training (typically a gradient descent-type)

* The larger the number of iterations and the lower
the training error

* A technique to increase the generalization of the
model is to limit the number of iterations
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Early Stopping
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Early Stopping

* Since the validation set is not used for training,
after early stopping one can either

1) retrain the network on all the data (training +
validation sets) and then stop after the same
number of steps of the early stopping or

2) continue training the network on all the data
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Contents

* Optimization in Feedforward Neural Networks

* Batch and mini batch algorithms, stochastic
gradient descent, weight initialization

 Based on Chapter 8 of Deep Learning by
Goodfellow, Bengio, Courville
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Batch and Minibatch
Algorithms

Batch or deterministic gradient methods use the
whole training set at each iteration

Minibatch stochastic gradient methods use a
batch of samples at each iteration

Stochastic gradient methods use only one sample
at each iteration

Today, it Is common practice to call minibatch
stochastic simply stochastic



Choice of the Batch Size

* Larger batches give better gradients, but the estimate
improvement Is low

« Small batches might underutilize multicore
architectures

« Examples in a batch are processed In parallel; amount
of memory defines the maximum size

» GPUs may prefer sizes that are a power of 2

 Small batches may have a regularization effect
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Choice of the Batch Size

* The size depends also on the gradient method

* Methods based on only the loss gradient require
small batch sizes

* Methods based on higher order derivatives (e.g.,
Hessian) require large batch sizes (to
compensate for the larger approximation error)



Shuffling

An unbiased estimate of the expected gradient
requires independent samples

Using data where the order is fixed might lead to
batches where all samples are highly correlated

Common practice is to randomly visit the training
set

Can save a dataset where the data has been
randomly permuted (data shuffling)
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Basic Algorithms



Stochastic Gradient Descent

* Learning ratee; and initial parameterg
* while (stopping criterion not met) do

 Sample a minibatch of m examples from the training
set with the corresponding targets

* Compute gradient estimate g < Vg Z L(f(x;;0

 Apply update 60 < 0 — €rg

- end while
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Stochastic Gradient Descent

* Probably the most used algorithm in deep learning
* Main setting is the learning rate ¢

* |tis necessary to gradually decrease the learning
rate over iteration time k

e Sufficient conditions (in addition to others on the
cost) to guarantee convergence of SGD are that

o0 0

Zek:oo Zei<oo

k=1 k=1
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Weignt Initialization
Strategies

Since the optimization problem is non convex,
initialization determines the quality of the solution

Current initialization strategies are simple and
heuristic

Some initial points may be beneficial to the
optimization task, but not to generalization

One criterion is that the initial parameters need to
break the symmetry between difterent units



Weignt Initialization
Strategies

Two hidden units with the same activation function
and inputs should have ditterent initial parameters

Otherwise a deterministic learning algorithm will
update both of these units in the same way

The goal of diversitying the computed functions
motivates random initialization

Random weights can be obtained from a Gaussian
or Unitorm distribution
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|_earning Based
Initialization Strategies

* Another strategy is to Initialize weights by
transferring weights learned via an unsupervised
learning method

* Thisis also a technique called fine-tuning which
aims at exploiting small annotated datasets by
combining them with large unlabeled ones
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Adaptive Learning Rates

* The learning rate is one of the most difficult
parameters to set

* |t has a significant impact on the model
performance

* |tis therefore treated as a hyperparameter that
requires adjustment during training
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Batch Normalization

Input: Values of x over a mini-batch: B = {z1_ . };
Parameters to be learned: v, 3
Output: {y; = BN, g(z;)}

1 T o

B < — E x; // mini-batch mean
m —
1 e’

O — — E (z; — pun)? // mini-batch variance
g

~ Ly — HUB :

XTi 4 - : i // normalize
Vop e

yi < vx; + B = BN, g(z;) // scale and shift
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Choosing the Optimization
Algorithm

* Currently there is no consensus on what algorithm
performs best

 Most popular choices are: SGD, SGD+Momentum,
RMSProp, RMSProp+Momentum, AdaDelta, Adam

o Strategy: Pick one and get familiar with the tuning
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Contents

* Convolutional Neural Networks
* Convolutions (standard, unshared, tiled)

* Based on Chapter 9 of Deep Learning by
Goodfellow, Bengio, Courville
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Convolutional Networks

* A specialized neural network for data arranged on
a grid (e.g., audio signals, images)

* Allow neural networks to deal with high-dimensional
data

* Key idea Is to substitute fully connected layers with
a convolution
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Fully Connected Layers

3 g
g =

P < must match

D

matrix product



The Convolution Operation

slm,n] = (x x w) me t,n — jlwli, j
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loeplitz Matrix

L L
kernel ..

\ L

s[n] = (z + w)[n] B

-
— ZA[n,z’]x[i] .

K— Toeplitz matrix




Variants

* |nput data is typically a 4D tensor: 2 dimensions for the
spatial domain, 1 dimension for the channels (e.g.,
colors), and 1 dimension for the batch

e The convolution (correlation) applies to the spatial
domain only

Z’i,j,k — E ‘/z,j+m,k+nKi,l,m,n

[,m,n
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Convolution Example

Qutput

Convolution
Operation
1x1{1x0 | 1x1| 0
0x0|1x1 [1x0| 1
Ox1|0x0[1x1| 1
0lo0 1|1
0|l 1]|1]o0

Input

1 1 1 0
0 1 1 1
0 0 1 1
0 0 1 1
0 1 1 0
Kernel

1 0 1

0 1 0

1 0 1

Source: https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134cie?
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Stride

* We can also skip outputs by defining a stride s
larger than 1

Zi,j,k — E W,sz+m,RXS+nKi,l,m,n

[,m.,n
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Stride Example

Stride 1 Feature Map ‘ Stride 2 Feature Map ‘.

increasing stride from 1 to 2

Source: https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134cie?



https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2

Paading

The output of a convolution is valid as long as the
summation uses available values

In a convolution the valid output size is equal to:
the input size - the size of the kernel + 1

Unless we make boundary assumptions, a convolution
will lead to a progressive shrinking of the input

Padding is the assumption that outside the given
domain the input takes some fixed values (e.q., zero)
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Padding Example

Stride 1 Feature Map

Feature Map

adding zero padding of one pixel

Source: https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134cie?



https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2

Pooling Layers

* The most common way to reduce the spatial
dimension in classification tasks is max-pooling

* No learnable parameters

* Defined by window size, stride and padding

2 | 4

max pool with 2x2
window and stride 2 6 Q

1
6
2
2

— | | ul]| —~

7 | 3
110 3| 4
5| 4




Data lypes

Input data can be In different formats

1D: Audio waveforms (single channel) and skeleton
animation data/motion (multi-channel)

2D: Audio data preprocessed via Fourier (single
channel), color image data (multi-channel)

3D: Volumetric data such as CT scans (single
channel), color video data (multi-channel)
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Random or
Unsupervised Features

e Kernels can be initialized

* with random weights
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Random or
Unsupervised Features

e Kernels can be initialized

* with hand-designed features
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Random or
Unsupervised Features

e Kernels can be initialized

* with unsupervised learning algorithms (e.g.,
apply k-means clustering to patches, then use
centroids as kernels)
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Thank you for your attention!

Questions?



