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• Autoencoders 

• Variational autoencoders 

• Based on Chapter 14 of Deep Learning by 
Goodfellow, Bengio, Courville

�2



Autoencoders
�3

• A network that replicates the input 

• Internally it builds a representation of the input 
(e.g., as a vector) 

• The network before the internal representation is 
the encoder and the network following it is the 
decoder  
 
 

CHAPTER 14. AUTOENCODERS

to the activations on the reconstructed input. Recirculation is regarded as more
biologically plausible than back-propagation, but is rarely used for machine learning
applications.
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Figure 14.1: The general structure of an autoencoder, mapping an input x to an output
(called reconstruction) r through an internal representation or code h. The autoencoder
has two components: the encoder f (mapping x to h) and the decoder g (mapping h to
r).

14.1 Undercomplete Autoencoders

Copying the input to the output may sound useless, but we are typically not
interested in the output of the decoder. Instead, we hope that training the
autoencoder to perform the input copying task will result in h taking on useful
properties.

One way to obtain useful features from the autoencoder is to constrain h to
have smaller dimension than x. An autoencoder whose code dimension is less
than the input dimension is called undercomplete. Learning an undercomplete
representation forces the autoencoder to capture the most salient features of the
training data.

The learning process is described simply as minimizing a loss function

L(x, g(f(x))) (14.1)

where L is a loss function penalizing g(f(x)) for being dissimilar from x, such as
the mean squared error.

When the decoder is linear and L is the mean squared error, an undercomplete
autoencoder learns to span the same subspace as PCA. In this case, an autoencoder
trained to perform the copying task has learned the principal subspace of the
training data as a side-effect.

Autoencoders with nonlinear encoder functions f and nonlinear decoder func-
tions g can thus learn a more powerful nonlinear generalization of PCA. Unfortu-
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Avoiding the Trivial Identity
• Undercomplete autoencoders 

• h has lower dimension than x 

• f or g has low capacity (e.g., a shallow g) 

• Discard information up to h 

• Overcomplete autoencoders 

• h has higher dimension than x 

• Must be regularized
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Undercomplete 
Autoencoders
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• A way to obtain a useful representation h is to 
constrain it to have a smaller dimension than x 

• In this case the AE is called undercomplete 

• We force the AE to focus on the most important 
attributes of the training data 

• A linear decoder and MSE loss L learns to map the 
representation to the same subspace as PCA



Overcomplete  
Autoencoders
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• Choosing the representation size and the capacity 
of the encoder and decoder depends on the 
complexity of the data distribution  

• A useful strategy to avoid trivial mappings is to 
introduce regularization (e.g., sparsity of the 
representation, smoothness of the representation, 
robustness to noise or missing data)



Denoising Autoencoders
�7

• A denoising autoencoder (DAE) maps noisy data 
to the original uncorrupted data 

• Let               be a corruption process 

• Training set  

• Optimize 
 

CHAPTER 14. AUTOENCODERS
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Figure 14.3: The computational graph of the cost function for a denoising autoencoder,
which is trained to reconstruct the clean data point x from its corrupted version x̃.
This is accomplished by minimizing the loss L = � log pdecoder(x | h = f(x̃)), where
x̃ is a corrupted version of the data example x, obtained through a given corruption
process C(x̃ | x). Typically the distribution pdecoder is a factorial distribution whose mean
parameters are emitted by a feedforward network g.

corrupted samples x̃, given a data sample x. The autoencoder then learns a
reconstruction distribution preconstruct(x | x̃) estimated from training pairs
(x, x̃), as follows:

1. Sample a training example x from the training data.

2. Sample a corrupted version x̃ from C(x̃ | x = x).

3. Use (x, x̃) as a training example for estimating the autoencoder reconstruction
distribution preconstruct(x | x̃) = pdecoder(x | h) with h the output of encoder
f(x̃) and pdecoder typically defined by a decoder g(h).

Typically we can simply perform gradient-based approximate minimization (such
as minibatch gradient descent) on the negative log-likelihood � log pdecoder(x | h).
So long as the encoder is deterministic, the denoising autoencoder is a feedforward
network and may be trained with exactly the same techniques as any other
feedforward network.

We can therefore view the DAE as performing stochastic gradient descent on
the following expectation:

� Ex⇠p̂data(x)Ex̃⇠C(x̃|x) log pdecoder(x | h = f(x̃)) (14.14)

where p̂data(x) is the training distribution.
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Denoising Autoencoders
�8

CHAPTER 14. AUTOENCODERS

x

x̃
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Figure 14.4: A denoising autoencoder is trained to map a corrupted data point x̃ back to
the original data point x. We illustrate training examples x as red crosses lying near a
low-dimensional manifold illustrated with the bold black line. We illustrate the corruption
process C(x̃ | x) with a gray circle of equiprobable corruptions. A gray arrow demonstrates
how one training example is transformed into one sample from this corruption process.
When the denoising autoencoder is trained to minimize the average of squared errors
||g(f(x̃))�x||

2, the reconstruction g(f(x̃)) estimates Ex,x̃⇠pdata(x)C(x̃|x)[x | x̃]. The vector
g(f(x̃))� x̃ points approximately towards the nearest point on the manifold, since g(f(x̃))
estimates the center of mass of the clean points x which could have given rise to x̃. The
autoencoder thus learns a vector field g(f(x)) � x indicated by the green arrows. This
vector field estimates the score rx log pdata(x) up to a multiplicative factor that is the
average root mean square reconstruction error.
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Applications
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• Dimensionality reduction (representation learning) 

• More effective than PCA 

• Low-dim representations useful in other tasks 
(e.g., classification) 

• Information retrieval (matching query to entries in a 
database) 

• More efficient and accurate search



Generative Models
�10

• Autoencoders can be generalized to generative 
models 

• An important example is the variational 
autoencoder

• Encode the moments of a Gaussian distribution  

• Sample the distribution to generate data  



Variational Autoencoders
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Reparametrization-Trick:



Variational Autoencoders
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Cost function:



Using the Model

• After training we obtain the parameters     and we 
use the decoder after sampling z from the Normal 
distribution  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VAE on MNIST
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VAE on MNIST
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Limitations
• VAEs produce samples that typically have a lower 

quality than those of other generative models 

• A possible limitation is the Gaussian assumption for 
p(x|z) 

• Indeed it is not true that real images can be 
obtained by adding Gaussian noise to a real image 

• This might the reason why generated samples tend 
to be blurry
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Generative  
Adversarial Networks

Simon Jenni 
(slides by Paolo Favaro)



Contents
• Generative Adversarial Networks 

• Generative modeling, Principles of Adversarial Learning, 
Issues: Vanishing gradient and Mode Collapse  

• Based on the tutorial paper 

• NIPS 2016 Tutorial: GAN by Goodfellow, 2016 

• Other resources 

• How GAN and its Variants Work: An Overview of GAN 
by Hong, Hwang, You and Yoon, 2018
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The GAN Framework
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real data

synthetic data

z ⇠ N (0, Id)

fake or real?
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Dgenerator
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The GAN Framework
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x sampled from 
data

Differentiable 
function D

D(x) tries to be 
near 1

Input noise z

Differentiable 
function G

x sampled from 
model

D

D tries to make 
D(G(z)) near 0,
G tries to make 
D(G(z)) near 1

real data generated data



Example of a Generator: 
DCGAN Architecture
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(Radford et al 2015)

Most “deconvs” are batch normalized



Loss Function

• G tries to minimize the cost 

• The minimum is achieved when D(x) = 0 and D(G(z)) = 1 
That is, when D thinks that x is fake and G(z) is real 

• D tries to maximize the cost 

• The maximum is achieved when D(x) = 1 and D(G(z)) = 0 
That is, when D thinks that x is real and G(z) is fake

�22
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Training
• Use SGD-like algorithm of choice (e.g., Adam) on 

two minibatches simultaneously: 

• A minibatch of training examples 

• A minibatch of generated samples 

• Optional: run k steps of one player (Discriminator) 
for every step of the other player (Generator)
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Heuristic Cost
• To avoid the vanishing gradient of G optimize 

instead 
 
 
 
 
 
obtained by flipping the two probabilities in the loss 

• This moves the cost in G also to the high gradient 
region (when D converges)
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Representation Linearity
�25

CHAPTER 15. REPRESENTATION LEARNING

- + =

Figure 15.9: A generative model has learned a distributed representation that disentangles
the concept of gender from the concept of wearing glasses. If we begin with the repre-
sentation of the concept of a man with glasses, then subtract the vector representing the
concept of a man without glasses, and finally add the vector representing the concept
of a woman without glasses, we obtain the vector representing the concept of a woman
with glasses. The generative model correctly decodes all of these representation vectors to
images that may be recognized as belonging to the correct class. Images reproduced with
permission from Radford et al. (2015).

common is that one could imagine learning about each of them without having to
see all the configurations of all the others. Radford et al. (2015) demonstrated that
a generative model can learn a representation of images of faces, with separate
directions in representation space capturing different underlying factors of variation.
Figure 15.9 demonstrates that one direction in representation space corresponds
to whether the person is male or female, while another corresponds to whether
the person is wearing glasses. These features were discovered automatically, not
fixed a priori. There is no need to have labels for the hidden unit classifiers:
gradient descent on an objective function of interest naturally learns semantically
interesting features, so long as the task requires such features. We can learn about
the distinction between male and female, or about the presence or absence of
glasses, without having to characterize all of the configurations of the n � 1 other
features by examples covering all of these combinations of values. This form of
statistical separability is what allows one to generalize to new configurations of a
person’s features that have never been seen during training.
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Tricks to Train GANs

• Use labels 

• Use Spectral Normalization 

• Use existing working network architectures 

• Use the Adam optimizer
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Mode Collapse
• Although our target is multimodal, the generator 

converges to only one or only some of the modes 

• The generator learns to map multiple z to the same 
image x  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Under review as a conference paper at ICLR 2017

Figure 1: Unrolling the discriminator stabilizes GAN training on a toy 2D mixture of Gaussians
dataset. Columns show a heatmap of the generator distribution after increasing numbers of training
steps. The final column shows the data distribution. The top row shows training for a GAN with
10 unrolling steps. Its generator quickly spreads out and converges to the target distribution. The
bottom row shows standard GAN training. The generator rotates through the modes of the data
distribution. It never converges to a fixed distribution, and only ever assigns significant mass to a
single data mode at once.

responding to. This extra information helps the generator spread its mass to make the next D step
less effective instead of collapsing to a point.

In principle, a surrogate loss function could be used for both D and G. In the case of 1-step unrolled
optimization this is known to lead to convergence for games in which gradient descent (ascent) fails
(Zhang & Lesser, 2010). However, the motivation for using the surrogate generator loss in Section
2.2, of unrolling the inner of two nested min and max functions, does not apply to using a surrogate
discriminator loss. Additionally, it is more common for the discriminator to overpower the generator
than vice-versa when training a GAN. Giving more information to G by allowing it to ‘see into the
future’ may thus help the two models be more balanced.

3 EXPERIMENTS

In this section we demonstrate improved mode coverage and stability by applying this technique
to three datasets of increasing complexity. Evaluation of generative models is a notoriously hard
problem (Theis et al., 2016). As such the de facto standard in GAN literature has become sample
quality as evaluated by a human and/or evaluated by a heuristic (Inception score for example, (Sal-
imans et al., 2016)). While these evaluation metrics do a reasonable job capturing sample quality,
they fail to capture sample diversity. In our first 2 experiments diversity is easily evaluated via visual
inspection. In our last experiment this is not the case, and we will introduce new methods to quantify
coverage of samples.

When doing stochastic optimization, we must choose which minibatches to use in the unrolling
updates in Eq. 7. We experimented with both a fixed minibatch and re-sampled minibatches for
each unrolling step, and found it did not significantly impact the result. We use fixed minibatches
for all experiments in this section.

3.1 MIXTURE OF GAUSSIANS DATASET

To illustrate the impact of discriminator unrolling, we train a simple GAN architecture on a 2D
mixture of 8 Gaussians arranged in a circle. For a detailed list of architecture and hyperparameters
see Appendix A. Figure 1 shows the dynamics of this model through time. Without unrolling the
generator rotates around the valid modes of the data distribution but is never able to spread out
mass. When adding in unrolling steps G quickly learns to spread probability mass and the system
converges to the data distribution.

3.2 PATHOLOGICAL MODELS

To evaluate the ability of this approach to improve trainability, we look to a traditionally challenging
family of models to train – recurrent neural networks (RNN). In this experiment we try to generate
MNIST samples using an LSTM (Hochreiter & Schmidhuber, 1997). MNIST digits are 28x28 pixel
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Figure 1: Unrolling the discriminator stabilizes GAN training on a toy 2D mixture of Gaussians
dataset. Columns show a heatmap of the generator distribution after increasing numbers of training
steps. The final column shows the data distribution. The top row shows training for a GAN with
10 unrolling steps. Its generator quickly spreads out and converges to the target distribution. The
bottom row shows standard GAN training. The generator rotates through the modes of the data
distribution. It never converges to a fixed distribution, and only ever assigns significant mass to a
single data mode at once.

responding to. This extra information helps the generator spread its mass to make the next D step
less effective instead of collapsing to a point.

In principle, a surrogate loss function could be used for both D and G. In the case of 1-step unrolled
optimization this is known to lead to convergence for games in which gradient descent (ascent) fails
(Zhang & Lesser, 2010). However, the motivation for using the surrogate generator loss in Section
2.2, of unrolling the inner of two nested min and max functions, does not apply to using a surrogate
discriminator loss. Additionally, it is more common for the discriminator to overpower the generator
than vice-versa when training a GAN. Giving more information to G by allowing it to ‘see into the
future’ may thus help the two models be more balanced.

3 EXPERIMENTS

In this section we demonstrate improved mode coverage and stability by applying this technique
to three datasets of increasing complexity. Evaluation of generative models is a notoriously hard
problem (Theis et al., 2016). As such the de facto standard in GAN literature has become sample
quality as evaluated by a human and/or evaluated by a heuristic (Inception score for example, (Sal-
imans et al., 2016)). While these evaluation metrics do a reasonable job capturing sample quality,
they fail to capture sample diversity. In our first 2 experiments diversity is easily evaluated via visual
inspection. In our last experiment this is not the case, and we will introduce new methods to quantify
coverage of samples.

When doing stochastic optimization, we must choose which minibatches to use in the unrolling
updates in Eq. 7. We experimented with both a fixed minibatch and re-sampled minibatches for
each unrolling step, and found it did not significantly impact the result. We use fixed minibatches
for all experiments in this section.

3.1 MIXTURE OF GAUSSIANS DATASET

To illustrate the impact of discriminator unrolling, we train a simple GAN architecture on a 2D
mixture of 8 Gaussians arranged in a circle. For a detailed list of architecture and hyperparameters
see Appendix A. Figure 1 shows the dynamics of this model through time. Without unrolling the
generator rotates around the valid modes of the data distribution but is never able to spread out
mass. When adding in unrolling steps G quickly learns to spread probability mass and the system
converges to the data distribution.

3.2 PATHOLOGICAL MODELS

To evaluate the ability of this approach to improve trainability, we look to a traditionally challenging
family of models to train – recurrent neural networks (RNN). In this experiment we try to generate
MNIST samples using an LSTM (Hochreiter & Schmidhuber, 1997). MNIST digits are 28x28 pixel
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Learning the Loss
�28

• We might not know the best loss function for a task 
beforehand 

• One solution is then to learn it 

• Generative adversarial networks (GAN) provide 
one such framework



Learning the Loss



Current SOTA in GANs

(Karras et al, 2018)



Current SOTA in GANs

(Brock et al, 2018)
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Contents

• Self-supervised learning, principles, overview of the 
literature, recent developments, transfer learning 

• Based on recent works in the literature  
(citations provided throughout the slides)
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Supervised Learning
�34
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Self-Supervised Learning
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Self-Supervised Learning
• Example #1: A Puzzle (hide the original spatial placement)

• Task: rearrange parts to form a familiar object 

• No additional information is  
made available to us in addition  
to the photo 

• What knowledge do we need  
to be able to solve the puzzle? 
 
 

�36



Self-Supervised Learning
• Example #1: A Puzzle (hide the original spatial placement)

• Task: rearrange parts to form a familiar object 

• No additional information is  
made available to us in addition  
to the photo 

• What knowledge do we need  
to be able to solve the puzzle? 

• We need to know  
how objects are made

�37



• Example #1

• Predict the hidden part of the data  
(the ordering of the puzzle tiles)  
 
 
 
 
 
 
 
 

Self-Supervision  
by Hiding Data

�38

1. image 2. puzzle 3. learning 4. ordered

Unsupervised learning of visual representations by solving jigsaw puzzles 
M. Noroozi and P. Favaro, ECCV 2016
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• Example #2

• Predict the hidden part of the data  
(an image tile) 
 
 
 
 
 
 
 
 

Self-Supervision  
by Hiding Data

�39

1. image 2. context 3. learning 4. missing tile

Context encoders: Feature learning by inpainting 
D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell, and A. Efros, CVPR 2016
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Self-Supervision  
by Hiding Data

• Example #3

• Predict the hidden part of the data (colors)  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1. image 2. de-color 3. learning 4. color

Learning representations for automatic colorization 
G. Larsson, M. Maire, and G. Shakhnarovich, ECCV 2016



Self-Supervision  
by Hiding Data

• Example #4

• Predict the hidden part of the data (orientation) 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1. image 2. rotate randomly 3. learning 4. color

Learning representations for automatic colorization 
G. Larsson, M. Maire, and G. Shakhnarovich, ECCV 2016
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Deep Recurrent  
Neural Networks
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Sequence Modeling
�43

• While convolutional neural networks are used for 
data on a grid, recurrent neural networks (RNN) 
are used for sequential data 
 

• Based on parameter sharing (across time)



Sequence Modeling
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• RNNs define dynamical systems described by  
 
 
 
 
where h is the state of the system, x is the input, 
and 𝜃 are the parameters of the network

h(t) = f
⇣
h(t�1), x(t); ✓

⌘



Recurrent Neural Networks
�45

• We can describe RNNs with a graph containing 
cycles

CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

information flow forward in time (computing outputs and losses) and backward
in time (computing gradients) by explicitly showing the path along which this
information flows.

10.2 Recurrent Neural Networks

Armed with the graph unrolling and parameter sharing ideas of section 10.1, we
can design a wide variety of recurrent neural networks.
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Figure 10.3: The computational graph to compute the training loss of a recurrent network
that maps an input sequence of x values to a corresponding sequence of output o values.
A loss L measures how far each o is from the corresponding training target y. When using
softmax outputs, we assume o is the unnormalized log probabilities. The loss L internally
computes ŷ = softmax(o) and compares this to the target y. The RNN has input to hidden
connections parametrized by a weight matrix U , hidden-to-hidden recurrent connections
parametrized by a weight matrix W , and hidden-to-output connections parametrized by
a weight matrix V . Equation 10.8 defines forward propagation in this model. (Left)The
RNN and its loss drawn with recurrent connections. (Right)The same seen as an time-
unfolded computational graph, where each node is now associated with one particular
time instance.

Some examples of important design patterns for recurrent neural networks
include the following:
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delay of one  
 time step



RNN Sequence Mappings
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one to one one to many many to one many to many
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RNN Example I
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• Train with:  
The Sonnets by William Shakespeare 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RNN Example I
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RNN Example II


