
05/02/2019 Tutorial V_T-V_split_solution.ipynb - Colaboratory

https://colab.research.google.com/drive/1n3HgM96qxz13inZ-IxGmjaUZyCtHEqt-#scrollTo=rX1slv0m95-c&printMode=true 1/4

Tutorial V: Deep models

Bern Winter School on Machine Learning, 28.01-01.02 2019
Mykhailo Vladymyrov

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0
International License.

In this session we will use the pretrained Inception model to build own image classi�er. We will aslo
learn how to save our trained models.

Double-cliquez (ou appuyez sur Entrée) pour modi�er

if using colab, upload the material.tgz and run the next cell

unpack libraries

!tar -xvzf material.tgz

1. Load necessary libraries

import sys
import os

import numpy as np
import matplotlib.pyplot as plt
import IPython.display as ipyd
import tensorflow as tf
from PIL import Image

We'll tell matplotlib to inline any drawn figures like so:
%matplotlib inline
plt.style.use('ggplot')
from utils import gr_disp
from utils import inception

from IPython.core.display import HTML
HTML("""<style> .rendered_html code {
 padding: 2px 5px;
 color: #0000aa;
 background-color: #cccccc;
} </style>""")

def tfSessionLimited(graph=None):
 session_config=tf.ConfigProto(gpu_options=tf.GPUOptions(per_process_gpu_memor
 session_config.gpu_options.visible_device_list = str(0) #use 1st gpu
 return tf.Session(graph=graph, config=session_config)

2. Load the model

http://creativecommons.org/licenses/by-nc-sa/4.0/

05/02/2019 Tutorial V_T-V_split_solution.ipynb - Colaboratory

https://colab.research.google.com/drive/1n3HgM96qxz13inZ-IxGmjaUZyCtHEqt-#scrollTo=rX1slv0m95-c&printMode=true 2/4

inception module here is a small module that performs loading the inception model as well as image
preparation for the training.

net, net_labels = inception.get_inception_model()

#get model graph definition and change it to use GPU
gd = net

str_dg = gd.SerializeToString()
#uncomment next line to use GPU acceleration
str_dg = str_dg.replace(b'/cpu:0', b'/gpu:0') #a bit extreme approach, but works =
gd = gd.FromString(str_dg)

#gr_disp.show(gd)

3. Create the graph

This whole model won't �t in GPU memory. We will take only the part from input to the main output
and copy it to a second graph, that we will use further.

gd2 = tf.graph_util.extract_sub_graph(gd, ['output'])
g2 = tf.Graph() # full graph
with g2.as_default():
 tf.import_graph_def(gd2, name='inception')

One can see all operations de�ned in the graph:

gr_disp.show(g2.as_graph_def())

#get names of all operation
names = [op.name for op in g2.get_operations()]
names

↳ 3 cellules masquées

4. Build own regressor on top

↳ 8 cellules masquées

5. Dataset

↳ 2 cellules masquées

6. Load trained variables

↳ 10 cellules masquées

7. Loading graph and variables. Saving constant subgraph.

05/02/2019 Tutorial V_T-V_split_solution.ipynb - Colaboratory

https://colab.research.google.com/drive/1n3HgM96qxz13inZ-IxGmjaUZyCtHEqt-#scrollTo=rX1slv0m95-c&printMode=true 3/4

↳ 3 cellules masquées

8. Loading constant graph

↳ 17 cellules masquées

9. Improving the results

12. Excercise 1

In the above example is a serius problem: the training and validation datasets are not independent. We
generated 5 randomly scaled images from each initial image. With high probability from 5 images
(generated from same initial one!) some will end up im the training and some in validation datasets.
Since they are generated from the same initial ones, they are not fully independent. This compromises
evaluation of model performance, leading to overestimate of the performance.

1. Modify the generation of the training and validation datasets to ful�l requirenment of
independance.

2. Check how validation accuracy and loss changes

13. Excercise 2

(Hope we have time left....) Test the performance of model trained on NOT rescaled images, on the
wiki screenshots.

#copy the above code here
#load the checkpoint ch-0 instead of ch-1

....

14. Homework (3 options)

14.1 Improve training set

So far we scaled images as a whole.

Try to scale differently in and direction.
Check how it affects performace.
Which else transformation would make sence for the text data?
Get hands dirty.

� �

14.2 Try to use lower layers' outputs from Inception to build the classi�er.

05/02/2019 Tutorial V_T-V_split_solution.ipynb - Colaboratory

https://colab.research.google.com/drive/1n3HgM96qxz13inZ-IxGmjaUZyCtHEqt-#scrollTo=rX1slv0m95-c&printMode=true 4/4

So far we used last output of Inception.

Look at the Inception more carefully.
Inspect the size of the data array at different layers.
Since inside you have 3D data (2D image * features at each position) you will need to �atten it.
Look how this is done in last layers (head0).
Ask, google it, and get your hands dirty!

14.3 Classify 3 languages.

So far we tried two languages.

Create 50 crops of text in another language (better use 5 sources with different fonts, otherwise
you risk to learn font, not language), images size > 300 x 300 (to allow scaling).
Upload them to the ML3 directory inside of a new directory xx.
Repeat everything with 3 classes.
Think of the case when this approach won't work.
Get hands dirty!!!

