

(https://github.com/coderefinery/documentation)

Overview

Lesson (/documentation/) | Credit and license (/documentation/license/) | Instructor guide (/documentation/guide/) |
Quick reference (/documentation/reference/)

(/documentation
/01-
wishlist/)

 Code documentation lesson (/documentation/): Popular
tools and solutions (/documentation

/04-
sphinx/)

Teaching: 10 min
Exercises: 0 min
Questions

What tools are out there?
What are their pros and cons?

Objectives
Choose the right tool for the right reason.

What tools and solutions are out there?
Comments in the source code
README files in the source tree
Wikis
LaTeX/PDF
Doxygen
reStructuredText and Markdown
HTML static site generators

Comments in the source code
Advantages

Good for programmers
Version controlled alongside code
Can be used to auto-generate documentation for functions/classes

Disadvantage
Probably not enough for users

README files in the source tree
Advantage

Versioned (goes with the code development)
It is often good enough to have a README.md or README.rst along with your code/script

Disadvantage
You need a terminal or GitHub/GitLab browser to read them
Sometimes users have no access to the source tree

If you use README files, use either RST (http://docutils.sourceforge.net/rst.html) or Markdown
(https://commonmark.org/help/) markup

Wikis
Popular solutions (but many others exist):

MediaWiki (https://www.mediawiki.org)
Dokuwiki (https://www.dokuwiki.org)

Advantage
Barrier to write and edit is low

Disadvantages

Popular tools and solutions - Code documentatio... https://coderefinery.github.io/documentation/03...

1 of 3 6/18/20, 4:04 PM

Typically disconnected from source code repository (reproducibility)
Difficult to serve multiple versions
Difficult to check out a specific old version
Typically needs to be hosted and maintained

LaTeX/PDF
Advantage

Popular and familiar in the physics and mathematics community
Disadvantages

PDF format is not ideal for copy-paste ability of examples
Possible, but not trivial to automate rebuilding documentation after every Git push

Doxygen
Auto-generates API documentation
Documented directly in the source code
Popular in the C++ community
Has support for C, Fortran, Python, Java, etc., see Doxygen Github Repo (https://github.com/doxygen
/doxygen)
Many keywords are understood by Doxygen: Doxygen special commands (http://www.doxygen.nl/manual
/commands.html)
Can be used to also generate higher-level (“human”) documentation
Can be deployed to GiHub/GitLab/Bitbucket Pages

reStructuredText and Markdown
Two of the most popular lightweight markup languages.
reStructuredText (RST) has more features than Markdown but the choice is a matter of taste.
Markdown convenient for smaller documents, but for larger and more complicated documents RST may be a
better option.
There are (unfortunately) many flavors of Markdown (https://github.com/jgm/CommonMark/wiki/Markdown-
Flavors).

This is a section in Markdown This is a section in RST

 ========================

This is a subsection This is a subsection

Nothing special needed for Nothing special needed for

a normal paragraph. a normal paragraph.

 ::

 This is a code block This is a code block

Bold and *emphasized*. **Bold** and *emphasized*.

A list: A list:

- this is an item - this is an item

- another item - another item

There is more: images, There is more: images,

tables, links, ... tables, links, ...

We will use RST in a Sphinx example and Markdown in a GiHub pages example

Experiment with Markdown:

Learn Markdown in 60 seconds (http://commonmark.org/help/)
https://dillinger.io (http://dillinger.io)

Popular tools and solutions - Code documentatio... https://coderefinery.github.io/documentation/03...

2 of 3 6/18/20, 4:04 PM

 Key Points
Some popular solutions make reproducibility and maintenance of multiple code versions difficult.

https://stackedit.io (https://stackedit.io)

HTML static site generators
There are many tools that can turn RST or Markdown into beautiful HTML pages:

Sphinx (http://sphinx-doc.org) <- we will exercise this
Generate HTML/PDF/LaTeX from RST and Markdown.
Basically all Python projects use Sphinx but Sphinx is not limited to Python
Read the docs (http://readthedocs.org) hosts public Sphinx documentation for free!

Jekyll (https://jekyllrb.com) <- this is how this lesson material is built
Generates HTML from Markdown.
GitHub supports this without adding extra build steps.

pkgdown (https://pkgdown.r-lib.org/)
Popular in the R community

MkDocs (https://www.mkdocs.org/)
GitBook (https://www.gitbook.com/)
Hugo (https://gohugo.io)
Hexo (https://hexo.io)

There are many more …

GitHub, GitLab, and Bitbucket make it possible to serve HTML pages:

GitHub Pages (https://pages.github.com)
Bitbucket Pages (https://pages.bitbucket.io/)
GitLab Pages (https://pages.gitlab.io)

(/documentation
/01-
wishlist/)

(/documentation
/04-
sphinx/)

Popular tools and solutions - Code documentatio... https://coderefinery.github.io/documentation/03...

3 of 3 6/18/20, 4:04 PM

(https://github.com/coderefinery/documentation)

Overview

Lesson (/documentation/) | Credit and license (/documentation/license/) | Instructor guide (/documentation/guide/) |
Quick reference (/documentation/reference/)

(/documentation
/03-
tools/)

 Code documentation lesson (/documentation/): Sphinx
and reStructuredText (/documentation

/05-
rtd/)

Teaching: 5 min
Exercises: 15 min
Questions

How do we get started on writing Sphinx documentation in RST?

Objectives
Create example Sphinx documentation and learn some RST along the way.

Group exercise: Build Sphinx documentation using
RST
We will take the first steps in creating documentation using Sphinx, and learn some RST syntax along the way.

Our goal in this episode is to build HTML pages locally on our computers.
In the next episode we will learn how to deploy the documentation to a cloud service upon every git push .
Please write your questions in the collaborative HackMD document so that we can answer them and discuss
them together after the group sessions.

Prerequisites: Check whether we have the software we need
Before we start, make sure that Sphinx is part of your Python installation or environment. If you use Anaconda,
you are set. If you use Miniconda or virtual environments, make sure Sphinx is installed into the Miniconda or
virtual environment.

Test Sphinx installation within Python:

$ python --version

Python 3.7.0

$ python -c "import sphinx; print(sphinx.__version__)"

2.0.1

$ python -c "import sphinx_rtd_theme"

this should produce no output

Test Sphinx tool installation:

$ sphinx-quickstart --version

sphinx-quickstart 2.0.1

The the above commands produce an error instead of printing versions (any version would do) e.g. command
not found or ModuleNotFoundError please follow our installation instructions (https://coderefinery.github.io
/installation/python/#installing-required-packages).

Sphinx and reStructuredText - Code documenta... https://coderefinery.github.io/documentation/04...

1 of 7 6/18/20, 4:04 PM

✏ Exercise 1: Generate the basic documentation template
Create a directory for the example documentation, step into it, and inside generate the basic documentation
template:

$ mkdir doc-example

$ cd doc-example

$ sphinx-quickstart

The quickstart utility will ask you some questions. For this exercise, you can go with the default answers except
to specify a project name, author name, and project release:

> Separate source and build directories (y/n) [n]: <hit enter>

> Project name: <your project name>

> Author name(s): <your name>

> Project release [0.1]: 0.1

> Project language [en]: <hit enter>

A couple of files and directories are created:

File/directory Contents

conf.py Documentation configuration file

index.rst Documentation master file

_build/ Directory where docs are built

_templates/ Your own HTML templates

_static/ Static files (images, styles, etc.)
copied to output directory on
build

Makefile & make.bat Makefiles to build documentation
using make

Makefile and make.bat (for Windows) are build scripts that wrap the sphinx commands, but we will be
doing it explicitly.

Let’s have a look at the index.rst file, which is the main file of your documentation:

.. myproject documentation master file, created by

 sphinx-quickstart on Mon Oct 21 21:46:06 2019.

 You can adapt this file completely to your liking, but it should at least

 contain the root `toctree` directive.

Welcome to myproject's documentation!

=====================================

.. toctree::

 :maxdepth: 2

 :caption: Contents:

Indices and tables

==================

* :ref:`genindex`

* :ref:`modindex`

* :ref:`search`

We will not use the Indices and tables section now, so remove it and everything below.
The top four lines, starting with .. , are a comment.
The next lines are the table of contents. We can add content below:

Sphinx and reStructuredText - Code documenta... https://coderefinery.github.io/documentation/04...

2 of 7 6/18/20, 4:04 PM

.. toctree::

 :maxdepth: 2

 :caption: Contents:

 feature-a

A common gotcha with directives is that the first line of the content must be indented to the same level as
the options (i.e., :maxdepth).

feature-a refers to a file feature-a.rst . Let’s create it:

Feature A

=========

Subsection

Exciting documentation in here.

Let's make a list (empty surrounding lines required):

- item 1

 - nested item 1

 - nested item 2

- item 2

- item 3

We now build the site:

$ ls

_build _static _templates conf.py feature-a.rst index.rst

$ sphinx-build . _build

Running Sphinx v1.5.1

loading pickled environment... done

building [mo]: targets for 0 po files that are out of date

building [html]: targets for 1 source files that are out of date

updating environment: 1 added, 1 changed, 0 removed

reading sources... [100%] index

looking for now-outdated files... none found

pickling environment... done

checking consistency... done

preparing documents... done

writing output... [100%] index

generating indices... genindex

writing additional pages... search

copying static files... done

copying extra files... done

dumping search index in English (code: en) ... done

dumping object inventory... done

build succeeded.

$ ls _build

_sources _static feature-a.html genindex.html index.html objects.inv search.htm

l searchindex.js

Now open the file _build/index.html in your browser by:

Linux users type:

Sphinx and reStructuredText - Code documenta... https://coderefinery.github.io/documentation/04...

3 of 7 6/18/20, 4:04 PM

$ xdg-open _build/index.html

macOS users type:

$ open _build/index.html

Windows users type:

$ start _build/index.html

Others:

enter file:///home/user/doc-example/_build/index.html in your browser (adapting the path to your
case).

Hopefully you can now see a website. If so, then you are able to build Sphinx pages locally. This is useful to
check how things look before pushing changes to GitHub or elsewhere.

Note that you can change the styling by editing conf.py and changing the value html_theme (for instance
you can set it to sphinx_rtd_theme to have the Read the Docs look).

Sphinx and reStructuredText - Code documenta... https://coderefinery.github.io/documentation/04...

4 of 7 6/18/20, 4:04 PM

✏ Exercise 2: Add content to your example documentation
1. Add a entry below feature-a labeled feature-b to the index.rst file.
2. Create a file feature-b.rst in the same directory as your feature-a.rst file.
3. Add some content to feature-b, rebuild with sphinx-build , and refresh the browser to look at the results

(Help (http://docutils.sourceforge.net/docs/ref/rst/directives.html)).

Experiment with the following RST syntax:
Emphasized text and **bold text**
Headings

Level 1

=======

Level 2

Level 3

^^^^^^^

Level 4

"""""""

An image: .. image:: image.png
`A link <http://www.google.com>`_
Numbered lists (can be automatic using #)

1. item 1

2. item 2

#. item 3

#. item 4

Simple tables

====== ======

No. Prime

====== ======

1 No

2 Yes

3 Yes

4 No

====== ======

Code block using special marker ::

The following is a code block::

 def hello():

 print("Hello world")

Code block specifying syntax highlighting for other language than Python

.. code-block:: c

 #include <stdio.h>

 int main()

 {

 printf("Hello, World!");

 return 0;

 }

You could include the contents of an external file using literalinclude directive, as follows:

Sphinx and reStructuredText - Code documenta... https://coderefinery.github.io/documentation/04...

5 of 7 6/18/20, 4:04 PM

 Key Points
Sphinx and RST are relatively lightweight options for writing documentation.

.. literalinclude:: filename

It is possible to combine literalinclude with code highlighting, line numbering, and even line
highlighting.
We can also use jupyter notebooks (*.ipynb) with sphinx. It requires nbsphinx extension to be installed.
See nbsphinx documentation (http://nbsphinx.readthedocs.io/en/latest/) for more information

.. toctree::

 :maxdepth: 2

 :caption: Contents:

 feature-a

 <python_notebook_name>.ipynb

Rendering (LaTeX) math equations
There are two different ways to display mathematical equations within Sphinx: pngmath and MathJax . While
pngmath displays an equation as an image, MathJax is using scalable vector graphics (quality remains the

same after zooming). For this reason, we strongly encourage you to use MathJax for your mathematical
equations.

To enable MathJax in Sphinx, you need first to add sphinx.ext.mathjax to the list of extensions in
conf.py :

extensions = ['sphinx.ext.mathjax']

The following shows how to inline mathematics within a text:

This is an inline equation embedded :math:`a^2 + b^2 = c^2` in text.

An equation and equation array:

.. math::

 :label: myequation

 a^2 + b^2 = c^2

.. math::

 :label: myarray

 \begin{eqnarray}

 x^2 & : x < 0 \\

 x^3 & : x \ge 0 \\

 \end{eqnarray}

These equations can then be referenced using :eq:`myequation` and :eq:`myarray` .

Where to find more
For more RST functionality, see the Sphinx documentation (http://www.sphinx-doc.org/en/stable/rest.html) and
the quick-reference (http://docutils.sourceforge.net/docs/user/rst/quickref.html).
For Sphinx additions to standard RST, see Sphinx Markup Constructs (http://www.sphinx-doc.org/en/1.7
/markup/index.html).
https://docs.python-guide.org/writing/documentation/ (https://docs.python-guide.org/writing/documentation/)

Sphinx and reStructuredText - Code documenta... https://coderefinery.github.io/documentation/04...

6 of 7 6/18/20, 4:04 PM

(/documentation
/03-
tools/)

(/documentation
/05-
rtd/)

Sphinx and reStructuredText - Code documenta... https://coderefinery.github.io/documentation/04...

7 of 7 6/18/20, 4:04 PM

(https://github.com/coderefinery/documentation)

Overview

Lesson (/documentation/) | Credit and license (/documentation/license/) | Instructor guide (/documentation/guide/) |
Quick reference (/documentation/reference/)

(/documentation
/04-
sphinx/)

 Code documentation lesson (/documentation/):
Deploying Sphinx documentation to Read the Docs (/documentation

/06-
gh-
pages/)

Teaching: 0 min
Exercises: 20 min
Questions

How do Python projects deploy their documentation?
Can we use their solutions for projects which do not use Python?

Objectives
Create a basic workflow which you can take home and adapt for your project.

Read the Docs (https://readthedocs.org)
Runs Sphinx and converts RST or Markdown to HTML and PDF and hosts them for you
Equations and images no problem
Layout can be styled
Many projects use Read the Docs (https://readthedocs.org) as their main site
It is no problem to serve using your own URL http://myproject.org instead of
http://myproject.readthedocs.io

Typical Read the Docs workflow
Host source code with documentation sources on a public Git repository.
Each time you git push to the repository, a post-receive hook triggers Read the Docs to rebuild the
documentation.
Read the Docs then clones the repository, runs Sphinx, and rebuilds HTML and PDF.
No problem to build several branches (versions) of your documentation.

Deploying Sphinx documentation to Read the Do... https://coderefinery.github.io/documentation/05-rtd/

1 of 3 6/18/20, 4:05 PM

✏ Exercise: Deploy Sphinx documentation to Read the Docs
In this exercise we will make a copy of an example repository (https://github.com/coderefinery/word-count/) on
GitHub and deploy it to Read the Docs. The example project contains a script for counting the frequency
distribution of words in a given file and some documentation generated using Sphinx. For bigger projects, we
will have much more source files.

We will use GitHub for this exercise but it will also work with any Git repository with public read access.

1. In the first step, we will make a copy of the example repository and then clone the newly created repository
to our laptop.

2. In the second step, we will enable the project on Read the Docs, then commit and push some changes and
check that the documentation is automatically rebuilt.

Step 1: Go to the word-count project template (https://github.com/coderefinery/word-
count/generate) and copy it to your namespace

Clone the repository

The repository contains following two folders, among few other files and folders:
source folder contains the source code
doc folder contains the Sphinx documentation

The doc folder contains the Sphinx configuration file (conf.py) and the index file (index.rst) and some
contents (other RST files). The conf.py file has been adjusted to be able to autogenerate documentation
from sources.

Build HTML pages locally

Inside the cloned repository, build the documentation and verify the result in your browser:

$ sphinx-build doc _build

Test HTML pages links

Inside the cloned repository, check the integrity of all external links:

$ sphinx-build doc -W -b linkcheck -d _build/doctrees _build/html

Step 2: Enable the project on Read the Docs (https://readthedocs.org)

Import a project to Read the Docs by connecting to GitHub

Log into Read the Docs (https://readthedocs.org) and visit your dashboard (https://readthedocs.org
/dashboard/)
Click “Import a Project”
Select “Connect to GitHub”, and choose the word-count repository
Rename the project to user-word-count (replacing “user” with your GitHub username: we need a unique
project name)
Click “Next”

Verify the result

That’s it! Your site should now be live on http://user-word-count.readthedocs.io (replace project name).

Verify refreshing the documentation

Finally, make some changes to your documentation
Add documentation related to other functions
Prerequisites and how to use the program
Rules for contribution
Some example results (figures, tables, …)

Deploying Sphinx documentation to Read the Do... https://coderefinery.github.io/documentation/05-rtd/

2 of 3 6/18/20, 4:05 PM

Commit and push them, and verify that the documentation website refreshes after your changes (can take
few seconds or a minute)

Do not add the generated build directory to your repository
The _build directory is generated locally with the command sphinx-build doc _build and allows you to
check the content locally but it should not be part of the Git repository. We recommend to add _build to
.gitignore to prevent you from accidentally adding files below _build to the Git repository.

Running your own sphinx server
We recommend to use Read the Docs to host your documentation but if you prefer, you can host your own
Sphinx server. If you want to know more about it, look at:

https://docs.readthedocs.io/en/latest/install.html (https://docs.readthedocs.io/en/latest/install.html)
https://pypi.org/project/sphinx-autobuild/ (https://pypi.org/project/sphinx-autobuild/)
https://pypi.org/project/sphinx-server/ (https://pypi.org/project/sphinx-server/)

Migrating your own documentation to Sphinx/ Read the Docs
First convert your documentation to RST using Pandoc (https://pandoc.org)
Create a file index.rst which lists all other RST files and provides the table of contents.
Add a conf.py file. You can generate a starting point for conf.py and index.rst with
sphinx-quickstart , or you can take the examples in this lesson as inspiration.

Test building the documentation locally with sphinx-build .
Once this works, enable the project on Read the Docs and try to push a change to your documentation.

(/documentation
/04-
sphinx/)

(/documentation
/06-
gh-
pages/)

Deploying Sphinx documentation to Read the Do... https://coderefinery.github.io/documentation/05-rtd/

3 of 3 6/18/20, 4:05 PM

(https://github.com/coderefinery/documentation)

Overview

Lesson (/documentation/) | Credit and license (/documentation/license/) | Instructor guide (/documentation/guide/) |
Quick reference (/documentation/reference/)

(/documentation
/05-
rtd/)

 Code documentation lesson (/documentation/): Hosting
websites/homepages on GitHub Pages (/documentation

/07-
discussion/

Teaching: 0 min
Exercises: 20 min
Questions

How to serve a website/homepage using GitHub

✏

Hosting websites/homepages on GitHub Pages
You can host your personal homepage or group webpage or project website on GitHub using GitHub Pages
(https://pages.github.com/).

GitLab (https://about.gitlab.com/features/pages/) and Bitbucket (https://confluence.atlassian.com/bitbucket
/publishing-a-website-on-bitbucket-cloud-221449776.html) also offer a very similar solution.

Unless you need user authentication or a sophisticated database behind your website, GitHub Pages
(https://pages.github.com/) can be a very nice alternative to running your own web servers.

This is how all https://coderefinery.org (https://coderefinery.org) material is hosted.

Exercise
Deploy own website reusing a template:

Follow https://pages.github.com/ (https://pages.github.com/)
Select “Project site”
Select “Choose a theme” (for instance “Minimal”)
Click “Select theme”
Adjust the README.md and commit
Browse your page on http://username.github.io/repository (adjust “username” and “repository”)

Make a change to the repository after the webpage has been deployed for the first time
Verify that the change shows up on the website a minute or two later

The documentation for GitHub Pages is very good so no need for us to duplicate screenshots:
https://pages.github.com/ (https://pages.github.com/)

Hosting websites/homepages on GitHub Pages -... https://coderefinery.github.io/documentation/06...

1 of 2 6/18/20, 4:06 PM

Real-life examples
Research Software Hour

Source: https://raw.githubusercontent.com/ResearchSoftwareHour/researchsoftwarehour.github.io
/master/about.md (https://raw.githubusercontent.com/ResearchSoftwareHour
/researchsoftwarehour.github.io/master/about.md)
Result: https://researchsoftwarehour.github.io/about/ (https://researchsoftwarehour.github.io/about/)

This lesson
Source: https://raw.githubusercontent.com/coderefinery/documentation/gh-pages/_episodes/06-gh-
pages.md (https://raw.githubusercontent.com/coderefinery/documentation/gh-pages/_episodes/06-gh-
pages.md)
Result: this page

Discussion
You can use HTML directly or another static site generator if you prefer to not use the default Jekyll
(https://jekyllrb.com/).
It is no problem to use a custom domain instead of *.github.io .

(/documentation
/05-
rtd/)

(/documentation
/07-
discussion/

Hosting websites/homepages on GitHub Pages -... https://coderefinery.github.io/documentation/06...

2 of 2 6/18/20, 4:06 PM

