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Hands on!
Exercise One



Predictive Maintenance - Car Rentals
Business Case

● Breakdowns are costly! 
○ Repairs
○ Unavailability
○ Customer dissatisfaction.

● Our Goal:
Replace those cars that are mostly likely to 

breakdown before the problem occurs

Predictive Maintenance - Car Rentals
Business Case

To predict vehicle failures, we will will build an end-to-end 
predictive model yielding insights on:

● Common factors behind failures
● Which cars will be most likely to fail



Supporting Data - Three Datasets

● usage:

number of miles the cars have been driven, collected at various points

● maintenance: 

service records, date, which parts were serviced, the reason for service, 
and the quantity of parts replaced during maintenance

● failure: 

whether a vehicle had a recorded failure (not all cases are labelled)

Understanding our Problem
The “failure” Dataset

● What values are in the column “failure_bin”?
● What do they represent?
● What type of ML problem is this?
● Specifically, what type of class of ML problem is this? 

Asset ID, available in each file, uniquely 
identifies each car

https://downloads.dataiku.com/public/website-additional-assets/data/usage.csv.gz
https://downloads.dataiku.com/public/website-additional-assets/data/maintenance.csv.gz
https://downloads.dataiku.com/public/website-additional-assets/data/failure.csv.gz


Workflow Overview

Import
 Data

 Data 
Transformations

Splitting  Data Scoring
Unseen Data

Merging

 Machine
Learning

Connecting to your instances

https://dssX-design-bern.training.dataiku.com/

login : userY
password : obifYi



ToDo: Create a New Project

Add a unique identifier (initials) to your project 

Project Homepage

● This is a Project
● Landing page
● Overview of 

assets & objects

● G+F hotkeys to 
the Flow



Show them how to get to the data
Import the “maintenance” Dataset Import the “maintenance” Dataset



Three Datasets The “usage” dataset

The identifier ID for the asset (car)
Multiple observations per “Asset”

Unclear reference to “Time”

The the total number of miles a car 
has driven at the specified “Time”



Working the “usage” Dataset

● For most individual cars, we have many Use readings (rows) at 
many different times.

● However, we want the data to reflect the individual car so that we 
can model outcomes at the vehicle-level. 

● How would you normally collapse data with to a level of singular 
(vehicle) granularity?

Group By
Collapse on Asset

● Use a visual recipe to collapse rows based on an aggregation - GroupBy

● But first convert the stored data types to formats that are conducive to aggregation type 
transformations



Step 1: 
Navigate to “Settings”

Step 2: 
Select “Schema”

Step 3: 
Change 
“Time” to bigint and 
“Use” to double

Group By
To Do: Collapse on Asset

Schema corrected! … Let’s proceed with the 
GroupBy:

1. From the usage dataset, initiate a Group By 
recipe from the Actions menu.

2. Choose to Group By Asset in the dropdown 
menu.

3. Keep the default output dataset name 
usage_by_Asset.

4. In the Group step, we want the count for each 
group (selected by default). Add to this the Min 
and Max for both Time and Use.

5. Run the recipe, updating the schema to six 
output columns.



We have aggregated at the level of a unique rental car



Your Flow (G+F) Should Look Similar
The “maintenance” Dataset

The maintenance dataset documents activity 
that has occurred with respect to:

● a given Asset
● organized by Part (what was repaired) 

and 
● Time (when it was repaired). 

● A Reason variable codifies the nature of 
the problem.



ToDo: Adjust the schema on the “maintenance” Dataset

As we did before, set the schema to have:

● “Time” as bigint

● “Quantity” as a bigint

Introducing the Pivot recipe
Preparing the “maintenance” Dataset

As before, we want to organize the maintenance dataset to the level of unique vehicles. 

Previously, we used the Group recipe. Here, we’ll use the Pivot recipe.

● The current dataset has many observations for each vehicle
● We need the output dataset to be “pivoted” at the level of each vehicle that is: 

Transformed from Narrow to Wide.



Introducing the Pivot recipe .. where we are going:
Preparing the “maintenance” Dataset

Narrow Wide

Pivoting “maintenance”

Use the Pivot recipe to restructure the “maintenance” dataset at the level of each vehicle. 

● With maintenance chosen as the input dataset, choose to Pivot By Reason.



Pivoting “maintenance”

● At the Pivot step, select Asset as the row identifier.



Pivoting “maintenance”

● Reason should already be selected under Create columns with. 
● Although it should make no difference in this case, change Pivoted values to all so that all 

values of Reason are pivoted into columns.

Pivoting “maintenance”

● Populate content with the sum of Quantity. 
● Deselect Count of records.



Your Flow (G+F) Should Look Similar



Modify “failure” Dataset
An Short Introduction to Prepare Recipe

Modify “failure” Dataset
An Short Introduction to Prepare Recipe



Modify “failure” Dataset
An Short Introduction to Prepare Recipe



Introducing the “Join” recipe
Merging Data

● Now have three datasets at the same level of granularity: the Asset, i.e. an 
individual rental car. 

● Joining them together will give us the most possible information for a model.

● The Asset ID can serve as the common component for the joins.

ToDo: Join all on Asset
1. From the failure_prepared dataset, initiate 

a Join recipe.
2. Add usage_by_Asset as the second input 

dataset.
3. Name the output data_by_Asset. Click 

Create Recipe.

4. Add maintenance_by_Reason as the third 
input dataset.

5. Both joins should be Left Joins. Asset 
should be the joining key in all cases.

6. Run the recipe and update the schema to 
21 columns.



data_by_Asset now has information from 
maintenance and usage, labelled by failures

Working toward a Training And to-Score Datasets
Splits

To train models, we’ll use the Split recipe to create two separate datasets from the merged 
dataset, data_by_Asset:

● a training dataset will contain labels for whether or not there was a failure event on an 
asset (car). We’ll use it to train a predictive model.

● a scoring dataset will contain no data on failures, i.e. unlabelled. We will use it to predict 
whether or not these assets have a high probability of failure.



ToDo - Split to Create training and scoring Datasets

1. From the data_by_Asset recipe, initiate a 
Split recipe.

2. Add two output datasets, named training 
and scoring, selecting Create Dataset 
each time. Then Create Recipe.

3. At the Splitting step, choose to Map values 
of a single column. Then choose 
failure_bin as the column on which to split.

4. Assign values of 0 and 1 to the training set, 
and all “Other values” to the scoring set.

5. Run the recipe.

Your Flow (G+F) Should Look Similar



Feature Generation

● Before making our first model on the training dataset, let’s create a few more features 
that may be useful in predicting failure outcomes.

● Because we are still designing this workflow, we’ll create a sandbox environment that 
won’t create an output dataset, yet. 

● By going into the Lab, we can test out such transformations as well as try out some 
modeling strategies, plus much more. Nothing is added back to the Flow until we are 
done testing and ready to deploy!

Working in Lab Mode

1. With the training dataset selected, find the 
Lab in the Actions menu or in the right-click 
menu.

2. Under the Visual Analysis side, select New 
and accept the default name Analyze 
training.



Working in Lab Mode

1. In the screen which looks similar to a Prepare 
recipe, create two new variables with the 
formula processor

● distance from the expression:

Use_max - Use_min

● time_in_service from the expression:

Time_max - Time_min

Working in Lab Mode

2. Use the Fill empty cells with fixed value processor to replace 
empty values with 0 in columns starting with the letter R

You can use the regular expression ^R.*_Quantity_sum$ to 
apply across multiple columns

3. To make the model results more interpretable, use the Rename 
columns processor according to the table below:

Old column name New column name

count times_measured

Time_min age_initial

Time_max age_last_known

Use_min distance_initial

Use_max distance_last_known



Working in the Lab

Note

● It is not necessary to deploy a script created in the Lab to the Flow in 
order to make use of the new features in the modeling process. 

● Any models created in a Visual Analysis have access to any features 
created in the same Visual Analysis.

Creating Models to Predict Car Breakdowns

From the open Lab Script, navigate to the Models tab. 

Create our First Model. Dataiku DSS lets us choose between 
two types of modeling tasks:

1. Prediction (or supervised learning): to predict a target 
variable (including labels), given a set of input features

2. Clustering (or unsupervised learning): to create groups of 
observations based on some shared patterns or 
characteristics

In this case, we are trying to determine whether or not a rental 
car will have problems. So, opt for a Prediction model.



Creating Models to Predict Car Breakdowns

You can customize the model through either the option of 
Automated Machine Learning or Expert Mode.

Automated Machine Learning helps with some important 
decisions like choosing the type of algorithms and parameters 
of those algorithms. 

● Select Automated Machine Learning and then Quick 
Prototypes, the default suggestions.

Dataiku DSS then asks us to select the target variable. 

In this case, we want to calculate the probabilities for one of two 
outcomes: failure or non-failure, i.e. perform two-class (binary) 
classification. 

Accordingly, choose failed as the target variable.

Review the Design Tab of your Models



Train Some Models Understanding the Model

● Model metrics can be found under the Results tab. Dataiku 

For example, we can compare how models performed against 
each other. By default, the AUC is graphed for each model. 

● You can switch from the Sessions view to the Table view to see 
a side-by-side comparison of model performance across a 
number of metrics. 

● By selecting a model, many additional insights and ready-made 
analysis are available.

Examples: Confusion Matrix, ROC curves, Tree visualizations, 
Variable Importance … 



Deploy Top Performer to the Flow

1. From within the Lab, select the Model page 
and find the Deploy button near the top right.

2. Because we created this visual analysis from 
the training dataset, it should already be 
selected as the Train dataset in the “Deploy 
prediction model” window.

3. In the same window, you can change the 
default Model name to Prediction of failure on 
training data. 

4. Click Create.

Your Flow (G+F) Should Look Similar



Scoring Unlabelled Data

1. In the Flow, select the model we just created. 
Initiate a Score recipe from the right sidebar.

2. Select scoring as the input dataset and the 
Prediction Model. 

3. Name the output dataset scoring_scored.
4. Create and run the recipe with the default 

settings.

Scoring Unlabelled Data

The resulting dataset now contains three new columns:

● proba_1: probability of failure
● proba_0: probability of non-failure (1 - proba_1)
● prediction: model prediction of failure or not 

(based on probability threshold)



Your Final Flow Should Look Like
Remind Me ...

The goal here was to build an end-to-end data 
product to predict car failures from a workflow 
entirely in Dataiku DSS. 

● We ingested, transformed, merged and split 
data. 

● We engineered new features and 
● Used Auto-ML to quickly prototype ML models 
● Used the platform to interpret those models
● We scored unseen data!

This data product will help the company better 
identify car failures before they happen!



Moving forward

Once we have a single working model built, we could try to go further to 
improve the accuracy of this predictive workflow, such as:

● Adding features to the model by combining information in datasets in 
more ways

● Trying different algorithms and hyper-parameter settings

To make the model more operational, we can packaged and deployed the 
models through a REST API, to be consumed in real time by external 
applications. 

It is possible to do all of this using Dataiku DSS for an end-to-end 
deployment!


