
Key concept: project 

A Dataiku DSS project is a container for all your work on a particular activity. The project 
home acts as the command center from which you can see the overall status of a project, view 
recent activity, and collaborate through comments, tags, and a project to-do list.

Each project has a name and a unique project ID. Project names can be changed, but project 
IDs cannot.

Key concept: dataset 

In Dataiku DSS, a Dataset is any piece of data that you have, and which is of a tabular nature.

A CSV file like orders.csv is a dataset. A sheet in an Excel file is also a dataset.

More generally, companies (and people) have systems to store all their data. They can store it 
in an Excel file, a relational database, or a distributed storage system if they have larger 
amounts of data.

Most of the time, creating a dataset means that you merely inform Dataiku DSS of how it can 
access the data. These external or source datasets remember the location of the original data. 
The data is not copied into DSS. The dataset in DSS is a view of the data in the original 
system.

The uploaded files dataset we just created is a bit specific, because in that precise case, the 
data is copied into DSS (since we don’t have another database to host it yet).

For more information about datasets, check out the main Dataiku DSS concepts

Key concept: recipe 

A Dataiku DSS recipe is a set of actions to perform on one or more input datasets, resulting in
one or more output datasets. A recipe can be visual or code.

A visual recipe allows a quick and interactive transformation of the input dataset through a 
number of prepackaged operations available in a visual interface. A code recipe allows a user 
with coding skills to go beyond visual recipe functionality to take control of the 
transformation using any supported language (SQL, Python, R, etc).

Dataiku allows “coders” and “clickers” to seamlessly collaborate on the same project through 
code and visual recipes.

Key concept: preparation script

When using a preparation recipe, you are building a sequence of actions, or steps, that 
are registered in the script. Each step in the sequence is called a processor and reflects a 
single data transformation.

The original data is never modified, but you are visualizing the changes on a sample of 
your data (10,000 lines by default).

https://en.wikipedia.org/wiki/Relational_database
https://www.dataiku.com/learn/portals/code.html
https://www.dataiku.com/learn/guide/getting-started/universes-and-concepts.html
https://en.wikipedia.org/wiki/Clustered_file_system


To apply the transformations to your whole dataset and create the output dataset with the cleaned 
data, you’ll have to Run the recipe as we will see later on.

A preparation script has many benefits:

• First, it is like a Cancel menu on steroids. You can modify/delete any step that you added 
earlier.

• Second, it is a history of actions that tells you how a dataset is being modified for future 
reference.

You will learn more about the power of processors in the Tutorial: From Lab to 
Flow

Types of joins

There are multiple methods for joining two datasets; the method you choose will depend upon your 
data and your goals in analysis.

• Left join keeps all rows of the left dataset and adds information from the right dataset when 
there is a match. This is useful when you need to retain all the information in the rows of the
left dataset, and the right dataset is providing extra, possibly incomplete, information. 

• Inner join keeps only the rows that that match in both datasets. This is useful when only the 
rows with complete information from both datasets will be useful downflow. 

• Outer join keeps all rows from both datasets, combining rows where there is a match. This 
is useful when you need to retain all the information in both datasets. 

• Right join is similar to a left join, but keeps all rows of the right dataset and adds 
information from the left dataset when there is a match. 

• Cross join is a Cartesian product that matches all rows of the left dataset with all rows of the
right dataset. This is useful when you need to compare every row in one dataset to every row
of another 

• Advanced join provides custom options for row selection and deduplication for when none 
of the other options are suitable. 

By default, the Join Recipe performs a Left join.

Key concept: Lab

The Lab is a place for drafting your work, whether it is preliminary data exploration and cleansing 
or machine learning models creation. The lab environment contains:

• the Visual analysis tool to let you draft data preparation, charts, and machine learning 
models 

• the Code Notebooks to let you explore your data interactively in the language of your 
choice 

Note that some tasks can be performed both in the lab environment and using Recipes in the Flow. 
Here are the main differences and how to use them complementarily:

https://academy.dataiku.com/latest/tutorial/lab/index.html
https://academy.dataiku.com/latest/tutorial/lab/index.html


• A lab environment is attached to a dataset in the Flow, allowing you to organize your draft 
and preliminary work easily without overcrowding the Flow with unnecessary items. The 
Flow is mostly meant to keep the work that is steady and will be reused in the future by you 
or your colleagues. 

• When working in the Lab, the original dataset is never modified and no new dataset is 
created. Instead, you will be able to interactively visualize the results of the changes that you
will be performing on the data (most of the time on a sample). The speed of this interactivity
will provide you a comfortable space to quickly assess what your data contain. 

• Once you’re satisfied with your labwork, you can deploy it to the Flow as a code or visual 
recipe. The newly created recipe and the associated output dataset will be appended to the 
original dataset pipeline, thus, making all your labwork available for future data 
reconstruction or automation. 

The Visual analysis tool has three main tabs:

    Script for interactive data preparation
    Charts for creating charts
    Models for creating machine learning models

Key concept: Charts in analysis

We have already used charts on a dataset in the first tutorial. When you create charts in a visual 
analysis, the charts actually use the preparation script that is being defined as part of the visual 
analysis.

In other words, you can create new columns or clean data in the Script tab, and immediately start 
graphing this new or cleaned data in the Charts tab. This provides a very productive and efficient 
loop to view the results of your preparation steps.

Chart Engines and Sampling

To display charts, DSS needs to compute the values to display. Computation is 
performed by an engine. Depending on the dataset kinds, several different engines can 
be used.

By default, DSS uses a builtin engine which preprocesses the data for high visualization
performance. This builtin engine is efficient for datasets up to a few million records.

When working with huge datasets, it is advised to store datasets so that DSS can push 
down all these computations to an external processing engine. This is the case when the 
dataset is stored in a SQL database or when you are able to use Impala or Hive. You 
can find more information on Sampled vs. Complete data for more information on in-
database charts creation.

Different kinds of modeling tasks

Prediction models are learning algorithms that are supervised, e.g. they are trained on past 
examples for which the actual values (the target column) is known. The nature of the target variable 
will drive the kind of prediction task.

https://www.dataiku.com/learn/guide/getting-started/sampled-vs-complete-data.html


• Regression is used to predict a real-valued quantity (i.e a duration, a quantity, an amount 
spent…). 

• Two-class classification is used to predict a boolean quantity (i.e presence / absence, yes / 
no…). 

• Multiclass classification is used to predict a variable with a finite set of values 
(red/blue/green, small/medium/big…). 

Clustering models are inferring a function to describe hidden structure from “unlabeled” data. 
These unsupervised learning algorithms are grouping similar rows given features.

The model summaries contain some important information:

• the type of model 
• a performance measure; here the Area Under the ROC Curve or AUC is displayed 
• a summary of the most important variables in predicting your target 

The Confusion matrix compares the actual values of the target variable with predicted values 
(hence values such as false positives, false negatives…) and some associated metrics: precision, 
recall, f1-score. A machine learning model usually outputs a probability of belonging to one of the 
two groups, and the actual predicted value depends on which cut-off threshold we decide to use on 
this probability; e.g., at which probability do we decide to classify our customer as a high value 
one?

The Decision Chart represents precision, recall, and f1 score for all possible cut-offs:

The Lift charts and ROC curve are visual aids, perhaps the most useful, to assess the performance 
of your model. While, of course, a longer version about the construction and interpretation of the 
Lift charts and ROC curve can be found separately, you can remember for now that, in both cases, 
the steeper the curves are at the beginning of the graphs, the better the model.

Finally, the Density chart shows the distribution of the probability to be high-value customer, 
compared across the two actual groups. A good model will be able to separate the 2 curves as much 
as possible, as we can see here:

The last section, Model Information, is a recap about how the model has been built. 

The Type of the variable is very important to define how it should be preprocessed before it is fed 
to the machine learning algorithm:

• Numerical variables are real-valued ones. They can be integer or numerical with decimals. 
• Categorical variables are the ones storing nominal values: red/blue/green, a zip code, a 

gender, etc. Also, there will often be times when a variable that looks like Numerical should 

https://en.wikipedia.org/wiki/F1_score
https://en.wikipedia.org/wiki/Precision_and_recall
https://en.wikipedia.org/wiki/Precision_and_recall


actually be Categorical instead. For example, this will be the case when an “id” is used in 
lieu of the actual value. 

• Text is meant for raw blocks of textual data, such as a Tweet, or customer review. Dataiku 
DSS is able to handle raw text features with specific preprocessing. 

Naming and describing models

From the main Results view, you can “star” a model. When you dive into the individual summary 
of a model, you can edit the model name and give it a description. This helps you document your 
best models and allow others to find and understand them more easily.

Deploy the Model
We are now going to deploy this model to the Flow, where we’ll be able to use it to score another 
dataset. Click on the Deploy button on the top right.

A new important popup shows up. It will let you create a new Train recipe. Train recipes, in 
Dataiku DSS, are the way to automatically deploy a model in the dataflow, where you can then use 
it to produce predictions on new records.

Without going into too much detail in this tutorial, notice that the model is marked as the Active 
version. If your data were to evolve over time (which is very likely in real life!), you would have 
the ability from this screen to train again your model (clicking on Actions and then Retrain). In 
this case, new versions of the models would be available, and you would be able to select which 
version of the model you’d like to use.

Go back to the Flow screen, you can visualize your final workflow:

• start from the “history data” 
• apply a training recipe 
• get a trained model 
• apply the model to get the scores on the unlabeled dataset. 

Recipe Run Options

After accepting the schema changes, it is not necessary to run the recipe at this time. The next few 
visual recipes can be created by saving and updating the schema each time, without building the 
datasets. Wait for instructions to build the dataset to better understand Dataiku’s Run options.

Specifying the recipe to rebuild dependent datasets within the Settings means that any time it is run,
Dataiku will build the upstream datasets. If we don’t want rebuilding to be a permanent setting, we 
can change it after running the recipe. Alternatively, we could select the 
orders_by_customer_pivoted dataset and build it recursively.

https://doc.dataiku.com/dss/latest/flow/building-datasets.html#build-to-here


The Flow is the visual representation of a data pipeline, showing datasets and their transformations 
(through what we call Recipes). Thanks to the Flow, Dataiku is aware of the dependencies each 
dataset has and can optimally rebuild datasets whenever one of the parent datasets or recipes has 
been modified. Note that the dependency of the data can be set using a finer granularity than the 
dataset using partitions to minimize computation time.

Although the Prepare recipe includes a pivot processor, the Pivot recipe allows you to transform 
rows into columns with greater control and more customized aggregations. The Pivot recipe can 
also execute the pivot natively on external systems, such as SQL databases or Hive.

Automation and Production

When a Flow is ready to be hooked up to ever-changing production data, it’s time to automate 
metrics checks and bundle the project up for the Automation node. When a model is ready to be 
used for real-time scoring, it’s time to deploy it to an API node.

https://doc.dataiku.com/dss/latest/other_recipes/pivot.html
https://doc.dataiku.com/dss/latest/preparation/processors/pivot.html
https://doc.dataiku.com/dss/latest/partitions/index.html
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