Module 2 :
Deep Networks

Deep Forward
Networks

Géraldine Conti, August 2020 1

Bibliography

* Deep Learning book (Goodfellow, Bengio, Courville)

* Machine Learning @ Stanford (Prof Andrew Ng)

* Hands-On Machine Learning with Scikit-Learn & Tensorflow
(Aurélien Géron)

Learning Objectives

* What are Deep Forward Networks ?
* Regularization for deep learning

* Training and optimization for deep
models

Deep Learning

- Definition
- Motivations

- Comparison with
Machine Learning

Deep
Learning:
Apparition

Ability of a machine to act in a
way that imitates intelligent
human behaviour \

Artificial Intelligence

Early artificial intelligence stirs
excitement.

1950's 1960's 1970's

Study of the algorithms and methods that enable
computers to solve specific tasks without being
explicitly instructed how to solve these tasks

/

Machine Learning
Machine learning begins to flourish.

Deep Learning

Deep learning breakthroughs drive
Al boom.

1980's 1990's 2000's 2010's

Subset of ML algorithms that make use of
large arrays of Artificial Neural Networks

* Multiple levels of features represented by multiple layers

* Each level represents abstract features that are
discovered from the features represented in the previous
level.

Deep * level of abstraction increases with each level

Learning:
Definition Machine Learning

6o iy 33

Input Feature extraction Classification

Deep Learning

o - 23737 - Il

Input Feature extraction + Classification Output

* How do we get Al ?

* Knowledge = Learning =~ wechin Lo

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Deep Learning
Deep learning breakthroughs drive

* Generalization

* Fight the curse of
Deep dimensionality

Learning:
Motivations

* 3 key ingredients for ML towards Al :
* Lots of data
* Very flexible models (as we get more data)
* we change the number of hidden units

* Powerful priors to defeat curse of dimensionality

1) distributed representations

2) deep architecture

* Possible to represent an Multi-
I l ChJStering Sllh_\lmnilmnﬁfnh— dartition 2
exponential number of regions AT
with a linear number of

Sub—partition |1
parameters
1. Distributed * Can learn a very complicated
Representations function with a low number of
examples

Clustering
* Features are individually
meaningful

Algorithms using non-
distributed representations ?

e Universal approximation property (shallow NN
sufficient to represent any function with required
degree of accuracy)

 Deep network allows to represent the same function

2. Deep with fewer hidden units.

Architecture
e Number of units needed in a shallow network can be

exponentially larger than in deep enough network

Does depth imply to have a flexible family of functions ?
% Do deeper networks correspond to a higher capacity ?

Does deeper mean that we can represent more functions ?

Example :
MNIST

label = 5 label = 0 label = 4 label = 1 label = 9

=
L
g
0

o
o
o
I
w
I
g
o
. X
I
IS

label = 2 label = 1

53
W
e 3

label = 3 label =5

o
o
o
I

w
o
o
o
I

o
o
o
o
I

-

=
N
7y
S
—

label = 7 label = 2

o
o
o
o
I

o
o
o
]
I

©

| =

o
o
o

N
L
)
o
o

Example :
MNIST

H 0.0 0.02 0
: 1.5 0.09
Input of size (1, 784) b 1x200 LE .UJ 0
N\, 0.7 0.04 0
0.4 0-03 Cross-entro
o i Lt Py 0
xW7p | [+b1f— xWz | |+hof-02is =000 |, 0,02 < 0
- Haadal 0
784x200 0 200x10 9 0.2 1
X g 4x 1x20 X 1x10 3.5 Softmax 0.70 0
o ReLU °-1 0-02 o
0.1 0.02 L
Logits Probabilities One-hot-encoded

(Py) label (L)

Importance
of Deep Nets

* Form a basis for many commercial applications

1) CNNSs are a special kind of FNN

- Used to recognize objects from photos,...

2) They are a conceptual stepping stone to RNNs
- Power many Natural Language Processing (NLP) applications

Information Retrieval

Doc
Doc 2
Doc3

Sentiment Analysis

Information Extraction

o

Machine Translation

Natura I QuestionAnswering

Language

Processing

Criteria

Machine Learning

Deep Learning

Data size

Computer
infrastructure

Feature
engineering

Nature of
problem

e Similar to linear model

* Basics of gradient descent :
* Optimizer
e Cost function
* Form of output units

DDe.Si.gn e Unique to DFNN
eClISIons

* Concept of hidden layer
e Activation functions

* Architecture of network
* Number of layers
* How they are connected to each other
* Number of units in each layer

* Learning requires gradients of complicated functions
* Backpropagation

* Example : 10 layers with 100s of neurons each,
connected by hundreds of thousands of connections

* Vanishing/exploding gradient problem
Training * Problem affecting deep neural networks
Challenges * Makes lower layers very hard to train

* Training would be extremely slow with such a large
network

* Model with millions of parameters would severely
risk overfitting the training set

VANISKING

EXPLOD NG .
GRADI ENT GRADIENT
| |6 | I
S \f S]
Vanishing/ W ’ 3
Exploding 5 " E}z /
gradient a A o
———— ==
problem o e b b
Vanishing gradient problem :
Exploding gradient problem Gradients often get smaller and
(mostly in RNNs) : smaller as the algorithm progresses

down to the lower layers

* Gradient Descent update leaves
the lower layer connection weights
virtually unchanged (training never
converges to a good solution)

* Gradients grow bigger and bigger

* Many layers get insanely large
weight updates

* The algorithm diverges

Solution to
the Gradient
Problem

* Problem found to be a combination of logistic sigmoid
activation functions with random initialization of the

weights
* Prefer ELU or any variant of ReLU activation functions

ELL activation function (o~ 1}

e Use another weight initialization (see next slide)

* The initial parameters need to break
the symmetry between different units

» Use Xavier weights, the best ones to

Weight prevent gradient problems from
Initialization happening: random draws from
truncated normal distribution with :
2
U = 0 and o = a+h

* Another strategy is to initialize weights
by transfering weights learnt via an
unsupervised learning method
(method also called fine-tuning)

Batch
Normalization

 Tackles the vanishing/exploding gradient problems

Input: Values of r over a mini-batch: B = {x; . }:
Parameters to be leamed: ~, 3
Output: {y; = BN, 5(z;)}

Tl

1 |
g A— — T f mini-batch mean
]t B T ;
1 Tl
2 2 .. :
T t— — n. — M mini-batch vanance
B m Z[J‘z 1“5}
1=1
s "‘r:!. - ! '
T A Ei BB /f normalize
ATy I:FH + E
y; + ~vr; + 3 = BN, 5(x;) /f scale and shift

Networks much less sensitive to weight initialization

Possible to use much larger learning rates

Add an operation in the
model just before the
activation function of each
layer to zero-center and
normalize inputs:mean/std
evaluation using the
current mini-batch

Scale and shift the
result using two
parameters per layer

* Tackles the exploding gradient problem

* Clip the gradient during backpropagation so that
they never exceed some threshold

Gradient
Clipping

* Mostly used in RNNs

* Nowadays, people prefer batch normalization
* gradient clipping not ideal because of loss of information

e Always try to find an existing neural network that
accomplishes a similar task to the one you are trying to
tackle

* Transfer Learning : reuse the lower layers of this network

Reusing * Output layer should usually be replaced
Pretrained

Layers
* Speeds up training and requires much fewer training data

i
:
000
00000
00000
ogo
000
000
]
e

Pre-training : training on cat images
Fine-tuning : update the weights for radiology

* Good initialization strategy for the connection
weights (Xavier)

Summary of * Good activation function (ReLU, ELU)
techniques to

speed up
training

e Batch Normalization

* Reusing parts of a pretrained network (transfer
learning)

 Faster optimizer (momentum, Adam)

Initialization

He initialization

Activation function

ELU

Normalization

Batch normalization

Regularization

Dropout

Optimizer

Gradient Descent

Learning rate schedule

None

 What can you try if :

* You can’t find a good learning rate ?

* Your training set is too small ?

* You need a lightning-fast model at runtime ?

PAPERS

HOW DOES DEEP LEARNING WORK?

er | was nm;)\‘o! this research projech am merely providing commentary on this work

©
<

Two-Minute Papers

Optimization

In terms of performance and time

1. Performance

Bias reduction techniques

Variance reduction techniques

* Bayes optimal error

* Human-level error
Avoidable bias

* Training error

* Dev error
Depending on where

you get the largest

* Test error - discrepancy, you will
use a different
technique to tackle
the problem

e Real world

" Medical image

Classification error (%)

classification Scenario A | Scenario B | Scenario C
1 1
Human (proxy for Bayes error) 0.7 0.7 0.5
0.5 0.5
Training error 5 1 0.
Development error 6 / 57 0.8

/

Bias reduction
technique

/

* Bayes optimal error

e Human-level error

* Training error

* Dev error

* Test error

e Real world

Bias reduction techniques :

- Hyperparameter tuning
- Model tuning

- Optimization algorithm
- decrease regularization

- bigger development test

- change development set
- change cost function

ER

Reducti

technic

on
ues

Hyperparameter tuning

Model tuning

Optimization algorithm

underfitting

35

* To go deeper helps generalization

96.5 T T T T T T T
96.0
95.5
95.0
94.5
94.0
93.5
93.0

Hyperparameters:
number of

hidden layers 92.5
92.0

Test accuracy (percent)

better to have

: many simple
layers than

) | | | | . few highly

3, convolutional [comp/EX onhes

96 |-

95 |

*—e
+—+ 3, fully connected
V—V 11, convolutional

94 -

93 |- — M -
-

92 | |

91 1 l]]]

0.0 0.2 0.4 0.6 0.8 1.0
Number of parameters X108

Test accuracy (percent)

* Input and output layer number of neurons is
determined by the type of input/output of the task

Hyperparameters:

number of * For hidden layers, common practice was
neurons In

hidden layers

historically to size them to form a funnel, with
fewer neurons at each layer

* Now, simply use the same size for all hidden layers
* Only one hyperparameter left

A generalisation of RelLU is
g(z,a) = max{0, z} + amin{0, z}

To avoid a null gradient the following are in use

Hyperparameters:
activation - .
£t 1. Absolute value rectification o= —1
2. Leaky RelLU a = 0.01
3. Parametric ReL,U o learnable
4. Maxout Units g(2); = max z;

JES;
L%E%::[l,.”,Tn]

S;NS; =@ i#j

3
@

R REPEEMEES: Grid Search Random Search Adaptive Selection
global search
Grid Layout Random Layout

Which one
is best ?

Unimportant parameter

Unimportant parameter

Important parameter Important parameter

Hyperparameters:
global search

DATA

Which dataset do
you want to use?

Ratio of training to
test data: 50%
—e

Noise: 0

Batch size: 10

—e

REGENERATE

Epoch

000,000

FEATURES

Which properties
do you want to
feed in?

XX

sin(X,)

S\H(X:)

Learning rate

0.03

+ -

4 neurons

A\ This is the output
from one neuron.

Hover to see it
larger.

Regularization

None

2 HIDDEN LAYERS

+ -

2 neurons

(

A The outputs are
mixed with varying
weights, shown
by the thickness
of the lines.

Regularization rate Problem type

0 Classification

OUTPUT

Test loss 0.517
Training loss 0.553

Colors shows
data, neuronand ! !
weight values. '

(] Showtestdata [] Discretize output

41

http://playground.tensorflow.org/

e chosen such that they have a non-flat region when
the answer is incorrect

* Exponential or logarithm functions help

Model:
loss function

e Other functions :
* Li(§,y) = Y|yt — 9| (L1 loss)
R : i 2
* L,(@,y) = Yy —9')" (L2 loss)

exp(z(1 —2y)) |

Z(l — 2y) 42

Model:
global
architecture

DARTS: [DIFFERENTIABLE ARCHITECTURE SEARCH

Hanxiao Liu* Karen Simonyan Yiming Yang

CMU DeepMind CMU

hanxiaol@cs.cmu.com simonyan@google.com yiming@cs.cmu.edu
ABSTRACT

This paper addresses the scalability challenge of architecture search by formulating
the task in a differentiable manner. Unlike conventional approaches of applying evo-
lution or reinforcement learning over a discrete and non-differentiable search space,
our method is based on the continuous relaxation of the architecture representation,
allowing efficient search of the architecture using gradient descent. Extensive
experiments on CIFAR-10, ImageNet, Penn Treebank and WikiText-2 show that
our algorithm excels in discovering high-performance convolutional architectures
for image classification and recurrent architectures for language modeling, while
being orders of magnitude faster than state-of-the-art non-differentiable techniques.
Our implementation has been made publicly available to facilitate further research
on efficient architecture search algorithms.

EE- Dataset — AutoML

M B Optimization — L{z} —_—
ailiing Metric

Automated Machine Learning
Machine Learning Model

- 3 :
7.} Constraints

» B\ (Time/cost)

43

Optimization Algorithm (

- MNIST Multilayer Neural Network + dropout ; sgd
- v d v
\ — AdaGrad 1
\ — RMSProp == momentum
—— SGDNesterov = nag .
AdaDelt
aoete — adagrad
adadelta |§
I
- —— rmsprop |
8 A
2 Q
<
107+
3 4 5

0 50 180 1;0 200
iterations over entire dataset
Comparison of Adam to Other Optimization Algorithms Training a
Multilayer Perceptron
Taken from Adam: A Method for Stochastic Optimization, 2015.

80 100 120

44
44

" THIS NEURAL NETWORK
OPTIMIZES ITSELF

o -

Two-Minute Papers

Variance
Reduction
techniques

Bigger training set

Regularization

overfitting

Regularization

* Different strategies :

1) Dataset (division, augmentation,...)
2) Model (dropout, L2 regularization,...)

3) Training (early stopping)

e Use cases : if few data or if model has more than
50 layers (CNN)

47

* Divide the data into a training, validation and test sets
* Training set to define the optimal predictor
 Validation set to choose the capacity
* Test set to evaluate the performance

1. Regularization
(dataset):
Division

48

1. Regularization
(dataset):
Augmentation

* Apply realistic transformations to data to create new
synthetic samples, with same label

affine elastic
distortion deformation

horizontal random hue shift
flip translation

* Process also called jittering

49

 Labels might be wrong (human annotation)

* Instead of asking the model to predict 1 for the
right class, we ask it to predict 1-€ for the correct

1. Regularization class and € for all the others
(dataset): Label

Smoothing

ce(J)
N

cross-entropy loss = (1 — €)ce(i) + € Z

* Apply it both in forward and backward propagations

* BUT use it only in the training phase !

2. Regularization
(model):
Dropout

Randomly
drop units

TWO MINUTE

ETEED

N TRAINING DEEP
\@' NEURAL NETWORKS
WITH DROPOUT

vas not part ol thes research progect,
I am merely proveding commentary on thes work

Two-Minute Papers

Regularization
(model):
W

* Modify the cost function (add soft constraint) :

Jregm’nr.‘:ed - —
m

Yo

It

J= _i Z {}_.[f} lﬂg[ﬂ[um) 4 (1 — }-'[”Ilﬂg[l _ a[“[”})
i=1

1 I

i=1

E (" lng{a[“[”} +(1=3»MNlog(l —a

N
CTOSS-entropy cost

L2 regularization cost

* A regulates the complexity/capacity of the predictors. It smoothens
the decision boundary =2 weights pushed to smaller values.

* Typical values : logarithmic scale between 0 and 0.1, such as 0.1,
0.001, 0.0001 (tuned using dev set)

* If Ais too large, it can “oversmooth”, resulting in a model with high bias:

4.0 . ; .
- \/alidation set
t - = Training set

3.0 -

2.5} .

3. Regularization
5 Best model

(training) : early
stopping

RMSE

* Stop training before the validation set error start growing

2. Time

How to improve time consumption when
critical to get results

Material Acceleration (GPUs)

END-TO-END PRODUCT FAMILY

<3
HPC / TRAINING NVIDIA INFERENCE

GPUCLID

FULLY INTEGRATED Al SYSTEMS DATA CENTER AUTOMOTIVE EMBEDDED
f) A |

DGX-1 DGX-2

VIRTUAL SERVER
¢ :
; 4
I N— Tesla T4 R
' el T - ‘ Drive AGX Pegasus Jetson AGX Xavier

TITAN/
GeForce

DGX Station | | Virtual GPU || Tesla V100/T4 Hlfé{}g Tesla V100

Material Acceleration : Example

TESLA PLATFORM ENABLES DRAMATIC
REDUCTION IN TIME TO TRAIN

Relative Time to Train Improvements
{ResNet-50)

At scale

2176x V100 | e
DGX-1
8% V100 I3,3 Hours

e 0Hous

14 V100

T asbas
1X P100

ResNet-50, 90 epochs to solution CPU Server: dual socket Intel Xeon Gold 6140
Sony 2176x V100 record on hitps:/ /nnabla. org! paper fimagenet_in_224sec.pdf

https://b.socrative.com/login/student/

Room : CONTI6128

https://b.socrative.com/login/student/

