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Discussion Session 
• Review of Notebook 5

○ Vanishing/exploding gradients

○ Xavier/He initializations

○ Leaky ReLU, ELU, SELU

○ Batch normalization

○ Gradient clipping

○ Reusing pretrained layers

○ Faster optimizers 

○ Learning rate scheduling 

○ Regularization 

○ Dropout 2
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Learning Objectives

• CNN components 

• Most important architectures 

• Object Detection 

• Face Detection 
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Convolutional 
Neural Networks
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- Convolutional layer

- Padding, stride

- Filters 

- Pooling layer



Introduction

• Convolutional Neural Networks (CNNs) emerged from 
the study for the brain’s visual cortex 

• Used in image recognition since the 1980s
• Milestone (1998) with LeNet-5 architecture (LeCun)

• Huge improvements in the last few years due to : 
• Increased computational power 
• Amount of available training data
• Tricks for training deep nets 

• Everywhere: image search services, self-driving cars, 
automatic video classification, voice recognition, 
natural language processing,… 



Visual Cortex 

• Nobel prize in physiology (1981) : many neurons in the visual 
cortex react only to visual stimuli located in a limited region of 
the visual field (local receptive field) 
• Receptive fields overlap and tile the whole visual field

• Some neurons (with same receptive field) react to different line 
orientations (horizontal lines, lines with angle,…)

• Some neurons have larger receptive fields and react to more 
complex patterns : idea that higher-level neurons are based on 
the outputs of neighboring lower-level neurons



CNN

• inspired by the organization of the animal visual cortex

• Convolutional and pooling cells introduced in LeNet-5
• used to process and simplify input data

• weight sharing between local regions



Use cases

• well suited for computer vision tasks 
• Image classification

• Object detection

• More generally, specialized Neural Network for data 
arranged on a grid 
• Images

• DNA sequences

• …



• Neurons in the 1st

convolutional layer are 
not connected to every 
single pixel in the input 
image, but only to pixels 
in their receptive fields 

• Neurons in the 2nd layer 
are connected only to 
neurons located within a 
small rectangle in the 
first layer 

• Low-level features in the 
first hidden layer, higher-
level features in the next 
hidden layer,… 

Convolutional 
Layer (CONV)



Padding

• Adds zeros around the border of an image

Use cases ? 



Stride

• By how much you move the filter

• Use cases : 
• Connect a large input layer to a much smaller layer by 

spacing out the receptive fields (reduce dimensionality)



Filters

• Also called convolutional kernels

• used to detect features 

• Examples : 
• Vertical filter : neurons using these weights will ignore 

everything in their receptive field except for the central 
vertical line 

• Idem for a horizontal filter  



Kernel 
Initialization

• With random weights 

• With hand-designed features

• With unsupervised learning algorithms (eg. apply K-
means clustering to patches, then use centroids as 
kernels) 



Feature Map

• A full layer of neurons using the same filter gives a 
feature map highlighting the areas in an image that 
are most similar to the filter 



Convolution

𝑛 × 𝑛 image          𝑓 × 𝑓 filter              out = 𝑛 − 𝑓 + 1



Stacking 
Multiple 

Feature Maps 

• Each convolutional 
layer composed of 
several feature 
maps of equal sizes

• Within one feature 
map, all neurons 
share the same 
parameters (weights 
and bias term)

• Parameters : (filter width * filter height * filter depth +1) * filter number



Exercise

• 300x300 RGB image, how many parameters does a 
hidden layer have (incl. bias) in the following cases:  

a) Hidden layer with 100 neurons, each fully 
connected to the input (no convolution) 

b) Hidden convolution layer with 100 filters that are 
each 5x5



Pooling Layer

• Goal is to subsample the input image 
• Reduce the computational load, memory usage, number of 

parameters (hence overfitting) 

• Neurons connected to the outputs of a limited number of 
neurons in the previous layer located within a small 
rectangular receptive field 

• Pooling neuron has no weights, it aggregates the inputs 
with an aggregation function (max, mean)



CNN 
Architectures

• Stack a few CONV layers (each one followed by ReLU), then a 
POOL layer, then few CONV layers (+ReLU), then POOL layer, …

• Image gets smaller and smaller, but also deeper and deeper 
(with more feature maps) due to the CONV layers

• At the top of the stack, a regular feedforward NN is added with a 
few fully connected layers (+ReLU)

• Final output is the prediction (softmax giving class probabilities)
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Look

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53


Two-Minute Papers

24



CNN Famous 
Architectures

25

1. LeNet-5

2. AlexNet

3. GoogLeNet

4. ResNet



1. LeNet-5 
(1998)

• Used for hand-written digit recognition (MNIST)
• Images (28x28) zero-padded to 32x32 and normalized 

• The rest of the network does not use padding, which is why 
the size keeps shrinking

• Activation functions : sigmoid/tanh

• 60K parameters



Exercise

• Fill the table with the parameters corresponding to 
the figure of the LeNet-5 architecture (previous slide) 

Type Feature Map Size Kernel size Stride Activation

Input image 1 32x32 - - -

Convolution

Average 
pooling

Convolution 

Average 
pooling 

FC

FC - - -

Output - - -



2. AlexNet
(2012)

• Quite similar to LeNet_5, only much larger and deeper 

• First one to stack CONV layers directly on top of each other 
instead of stacking a POOL layer on top of each CONV layer 

• Activation functions :                                                                 
ReLU

• 60mio parameters

• To reduce overtiftting : 
• 50% dropout in FC layers
• data augmentation

• Local Response Normalization used a normalization step

Type Feature 
Map

Size Kernel 
size

Stride Activation

Input 3 (RGB) 227x227 - - -

Convolution 96 55x55 11x11 4 ReLU

Max Pooling 96 27x27 3x3 2 -

Convolution 256 27x27 5x5 1 ReLU

Max Pooling 256 13x13 3x3 2 -

Convolution 384 13x13 3x3 1 ReLU

Convolution 384 13x13 3x3 1 ReLU

Convolution 256 13x13 3x3 1 ReLU

Max Pooling 256 6x6 3x3 2 -

Fully connected - 4096 - - ReLU

Fully connected - 4096 - - ReLU

Fully connected - 1000 - - Softmax



Local 
Response 

Normalization 
(LRN)

• Neurobiology : capacity of a neuron to reduce the activity of 
its neighbors (lateral inhibition)

• In DNNs : inhibition carries out local contrast enhancement so 
that locally maximum pixel values are used as excitation for 
the next layers 
• Neuron a3 that most strongly activates will inhibit neurons 

(a1,a2,a4,a5) at the same location but in neighboring feature maps

• This encourages different feature maps to specialize, pushing 
them apart and forcing them to explore a wider range of 
features



Exercise

• Draw the scheme corresponding to the AlexNet
architecture (previous slide) 



3. GoogLeNet
(2014)

• Much deeper than previous CNNs thanks to sub-
networks called inception modules 
• These use parameters much more efficiently : 6 mio of 

parameters instead of 60mio for AlexNet

• Architecture :
• 9 inception modules included 

• All CONV layers use ReLU



Inception 
Modules 

Why use CONV layers with 1x1 kernel ? 

• Input signal copied and fed to 4 layers
• Second set of CONV layers has different kernel sizes to 

capture patterns at different scales 

• Output : concatenate the four outputs (i.e. stack the 
feature maps) 



1x1 
convolutions

• These layers do not capture any features since they look at 
only one pixel at a time. 

• Reduces the depth, but keep the height and width of the 
feature map 

• Use cases : 
• Dimensionality reduction (GoogleNet)

• Build deeper networks (ResNet)



1x1 
convolutions : 
dimensionality 

reduction

• These layers do not capture any features since they look at 
only one pixel at a time. 



4. ResNet
(2015)

• Extremely deep CNN composed of 152 layers 

• Very deep NNs suffer from vanishing                gradients : 
skip connections

• Residual training : the signal feeding into a layer is also 
added to the output of a layer located a bit higher up the 
stack 
• Network forced to model : f(x) = h(x) – x rather than h(x)

• Architecture : stack of residual units, where each residual 
unit is a small NN with a skip connection

𝑎 𝑙+3 = 𝑔(𝑧 𝑙+3 + 𝑎 𝑙 )



Some reading

10 Architectures

https://towardsdatascience.com/illustrated-10-cnn-architectures-95d78ace614d#676b


Object Detection
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Object 
Detection



2. 
Classification 

with 
Localization

categories

categories

bounding 
box shape

is there any 
object ? 



3. Detection

• use closely cropped images for the training set 
(object of interest centered)

• Define a sliding window

• Convolutional implementation



Multi-Task 
Learning

• NN does simultaneously 
several tasks



YOLO 
algorithm

• YOu Look Only once algorithm (YOLO)

• define a grid in the image

• apply the training to each cell 



YOLO 
bounding 

boxes
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• Filter the boxes using : 

1) score thresholding

2) non-max suppression



1. Score 
Thresholding
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• Throw away boxes that have detected a class with a 
score less than the threshold (0.6 for example)

0.05

0.95



2. Non-max 
suppression

• ensures that an object is detected only once
• keep the largest pC output 

• discard any remaining box with intersection over union (IoU)>0.5 



Face Detection
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One-shot 
Learning

• Learn from one example to recognize the person 
again (very small training set) 

• Learn a similarity function d (degree of difference 
between images)



Siamese 
Network

ො𝑦

• Network used to learn the function d 



Triplet Loss 

• Loss function where a baseline input (anchor) is compared 
to a positive input and a negative input :

• Often used for learning similarity 

• Loss function is described using a Euclidean distance 
function

• Cost function : 



Security
Watch out with your algorithms ! 
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Quiz 

https://b.socrative.com/login/student/

Room : CONTI6128

https://b.socrative.com/login/student/

