
Convolutional
Neural Networks

Module 2 :

Deep Networks

1Géraldine Conti, CAS Advanced Machine LearningGéraldine Conti, August 2020

Discussion Session
• Review of Notebook 5

○ Vanishing/exploding gradients

○ Xavier/He initializations

○ Leaky ReLU, ELU, SELU

○ Batch normalization

○ Gradient clipping

○ Reusing pretrained layers

○ Faster optimizers

○ Learning rate scheduling

○ Regularization

○ Dropout 2

Bibliography

•Deep Learning book (Goodfellow, Bengio, Courville)

•Machine Learning @ Stanford (Prof Andrew Ng)

•Hands-On Machine Learning with Scikit-Learn & Tensorflow
(Aurélien Géron)

3

Bibliography

Learning Objectives

• CNN components

• Most important architectures

• Object Detection

• Face Detection

4

Convolutional
Neural Networks

5

- Convolutional layer

- Padding, stride

- Filters

- Pooling layer

Introduction

• Convolutional Neural Networks (CNNs) emerged from
the study for the brain’s visual cortex

• Used in image recognition since the 1980s
• Milestone (1998) with LeNet-5 architecture (LeCun)

• Huge improvements in the last few years due to :
• Increased computational power
• Amount of available training data
• Tricks for training deep nets

• Everywhere: image search services, self-driving cars,
automatic video classification, voice recognition,
natural language processing,…

Visual Cortex

• Nobel prize in physiology (1981) : many neurons in the visual
cortex react only to visual stimuli located in a limited region of
the visual field (local receptive field)
• Receptive fields overlap and tile the whole visual field

• Some neurons (with same receptive field) react to different line
orientations (horizontal lines, lines with angle,…)

• Some neurons have larger receptive fields and react to more
complex patterns : idea that higher-level neurons are based on
the outputs of neighboring lower-level neurons

CNN

• inspired by the organization of the animal visual cortex

• Convolutional and pooling cells introduced in LeNet-5
• used to process and simplify input data

• weight sharing between local regions

Use cases

• well suited for computer vision tasks
• Image classification

• Object detection

• More generally, specialized Neural Network for data
arranged on a grid
• Images

• DNA sequences

• …

• Neurons in the 1st

convolutional layer are
not connected to every
single pixel in the input
image, but only to pixels
in their receptive fields

• Neurons in the 2nd layer
are connected only to
neurons located within a
small rectangle in the
first layer

• Low-level features in the
first hidden layer, higher-
level features in the next
hidden layer,…

Convolutional
Layer (CONV)

Padding

• Adds zeros around the border of an image

Use cases ?

Stride

• By how much you move the filter

• Use cases :
• Connect a large input layer to a much smaller layer by

spacing out the receptive fields (reduce dimensionality)

Filters

• Also called convolutional kernels

• used to detect features

• Examples :
• Vertical filter : neurons using these weights will ignore

everything in their receptive field except for the central
vertical line

• Idem for a horizontal filter

Kernel
Initialization

• With random weights

• With hand-designed features

• With unsupervised learning algorithms (eg. apply K-
means clustering to patches, then use centroids as
kernels)

Feature Map

• A full layer of neurons using the same filter gives a
feature map highlighting the areas in an image that
are most similar to the filter

Convolution

𝑛 × 𝑛 image 𝑓 × 𝑓 filter out = 𝑛 − 𝑓 + 1

Stacking
Multiple

Feature Maps

• Each convolutional
layer composed of
several feature
maps of equal sizes

• Within one feature
map, all neurons
share the same
parameters (weights
and bias term)

• Parameters : (filter width * filter height * filter depth +1) * filter number

Exercise

• 300x300 RGB image, how many parameters does a
hidden layer have (incl. bias) in the following cases:

a) Hidden layer with 100 neurons, each fully
connected to the input (no convolution)

b) Hidden convolution layer with 100 filters that are
each 5x5

Pooling Layer

• Goal is to subsample the input image
• Reduce the computational load, memory usage, number of

parameters (hence overfitting)

• Neurons connected to the outputs of a limited number of
neurons in the previous layer located within a small
rectangular receptive field

• Pooling neuron has no weights, it aggregates the inputs
with an aggregation function (max, mean)

CNN
Architectures

• Stack a few CONV layers (each one followed by ReLU), then a
POOL layer, then few CONV layers (+ReLU), then POOL layer, …

• Image gets smaller and smaller, but also deeper and deeper
(with more feature maps) due to the CONV layers

• At the top of the stack, a regular feedforward NN is added with a
few fully connected layers (+ReLU)

• Final output is the prediction (softmax giving class probabilities)

23

Look

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

Two-Minute Papers

24

CNN Famous
Architectures

25

1. LeNet-5

2. AlexNet

3. GoogLeNet

4. ResNet

1. LeNet-5
(1998)

• Used for hand-written digit recognition (MNIST)
• Images (28x28) zero-padded to 32x32 and normalized

• The rest of the network does not use padding, which is why
the size keeps shrinking

• Activation functions : sigmoid/tanh

• 60K parameters

Exercise

• Fill the table with the parameters corresponding to
the figure of the LeNet-5 architecture (previous slide)

Type Feature Map Size Kernel size Stride Activation

Input image 1 32x32 - - -

Convolution

Average
pooling

Convolution

Average
pooling

FC

FC - - -

Output - - -

2. AlexNet
(2012)

• Quite similar to LeNet_5, only much larger and deeper

• First one to stack CONV layers directly on top of each other
instead of stacking a POOL layer on top of each CONV layer

• Activation functions :
ReLU

• 60mio parameters

• To reduce overtiftting :
• 50% dropout in FC layers
• data augmentation

• Local Response Normalization used a normalization step

Type Feature
Map

Size Kernel
size

Stride Activation

Input 3 (RGB) 227x227 - - -

Convolution 96 55x55 11x11 4 ReLU

Max Pooling 96 27x27 3x3 2 -

Convolution 256 27x27 5x5 1 ReLU

Max Pooling 256 13x13 3x3 2 -

Convolution 384 13x13 3x3 1 ReLU

Convolution 384 13x13 3x3 1 ReLU

Convolution 256 13x13 3x3 1 ReLU

Max Pooling 256 6x6 3x3 2 -

Fully connected - 4096 - - ReLU

Fully connected - 4096 - - ReLU

Fully connected - 1000 - - Softmax

Local
Response

Normalization
(LRN)

• Neurobiology : capacity of a neuron to reduce the activity of
its neighbors (lateral inhibition)

• In DNNs : inhibition carries out local contrast enhancement so
that locally maximum pixel values are used as excitation for
the next layers
• Neuron a3 that most strongly activates will inhibit neurons

(a1,a2,a4,a5) at the same location but in neighboring feature maps

• This encourages different feature maps to specialize, pushing
them apart and forcing them to explore a wider range of
features

Exercise

• Draw the scheme corresponding to the AlexNet
architecture (previous slide)

3. GoogLeNet
(2014)

• Much deeper than previous CNNs thanks to sub-
networks called inception modules
• These use parameters much more efficiently : 6 mio of

parameters instead of 60mio for AlexNet

• Architecture :
• 9 inception modules included

• All CONV layers use ReLU

Inception
Modules

Why use CONV layers with 1x1 kernel ?

• Input signal copied and fed to 4 layers
• Second set of CONV layers has different kernel sizes to

capture patterns at different scales

• Output : concatenate the four outputs (i.e. stack the
feature maps)

1x1
convolutions

• These layers do not capture any features since they look at
only one pixel at a time.

• Reduces the depth, but keep the height and width of the
feature map

• Use cases :
• Dimensionality reduction (GoogleNet)

• Build deeper networks (ResNet)

1x1
convolutions :
dimensionality

reduction

• These layers do not capture any features since they look at
only one pixel at a time.

4. ResNet
(2015)

• Extremely deep CNN composed of 152 layers

• Very deep NNs suffer from vanishing gradients :
skip connections

• Residual training : the signal feeding into a layer is also
added to the output of a layer located a bit higher up the
stack
• Network forced to model : f(x) = h(x) – x rather than h(x)

• Architecture : stack of residual units, where each residual
unit is a small NN with a skip connection

𝑎 𝑙+3 = 𝑔(𝑧 𝑙+3 + 𝑎 𝑙)

Some reading

10 Architectures

https://towardsdatascience.com/illustrated-10-cnn-architectures-95d78ace614d#676b

Object Detection

40

Object
Detection

2.
Classification

with
Localization

categories

categories

bounding
box shape

is there any
object ?

3. Detection

• use closely cropped images for the training set
(object of interest centered)

• Define a sliding window

• Convolutional implementation

Multi-Task
Learning

• NN does simultaneously
several tasks

YOLO
algorithm

• YOu Look Only once algorithm (YOLO)

• define a grid in the image

• apply the training to each cell

YOLO
bounding

boxes

46

• Filter the boxes using :

1) score thresholding

2) non-max suppression

1. Score
Thresholding

47

• Throw away boxes that have detected a class with a
score less than the threshold (0.6 for example)

0.05

0.95

2. Non-max
suppression

• ensures that an object is detected only once
• keep the largest pC output

• discard any remaining box with intersection over union (IoU)>0.5

Face Detection

50

One-shot
Learning

• Learn from one example to recognize the person
again (very small training set)

• Learn a similarity function d (degree of difference
between images)

Siamese
Network

ො𝑦

• Network used to learn the function d

Triplet Loss

• Loss function where a baseline input (anchor) is compared
to a positive input and a negative input :

• Often used for learning similarity

• Loss function is described using a Euclidean distance
function

• Cost function :

Security
Watch out with your algorithms !

Two-Minute Papers

55

Quiz

https://b.socrative.com/login/student/

Room : CONTI6128

https://b.socrative.com/login/student/

