Module 2 :

Deep Networks

Recurrent Neural Networks

Géraldine Conti, August 2020

Discussion Session

- Review of Notebooks 6.1 and 6.2:
 - Computer vision (6.1) :
 - Convolution, padding, pooling layer
 - Using pretrained model (Resnet-50)
 - Data augmentation (6.2) :
 - Flipping, grayscale, saturation, brightness, rotation, cropping
 - Augment dataset and train with it

Bibliography

- Deep Learning book (Goodfellow, Bengio, Courville)
- Machine Learning @ Stanford (Prof Andrew Ng)
- Hands-On Machine Learning with Scikit-Learn & Tensorflow (Aurélien Géron)

Learning Objectives

1. Recurrent Neural Networks components

2. Training RNNs

3. Optimization techniques

4. Examples

5. Natural Language Processing (NLP)

1. RNN components

- Recurrent Neurons
- Memory Cells
- Input/output sequences
- Examples

Introduction

- Class of nets that can predict the future
- Work on sequences or arbitrary lengths
- Inputs : sentences, documents, audio,...

• Use cases :

- Can analyze time series data
- Can anticipate car trajectories and help avoid accidents
- Text analysis (sequences where context is important)

connections between neurons include loops

- Recurrent cells (or memory cells) used
 - Weight sharing between *time-steps*

RNN

Recurrent Neural Network (RNN)

 At each time step t, the recurrent neuron receives the inputs x_(t) as well as its own output from the previous time steps y_(t-1)

Unrolling the network through time

Recurrent Neurons

 Output at time step t is a function of previous states and current input → memory

$$y_t = \varphi(x_t^T \cdot w_x + y_{t-1}^T \cdot w_y + b)$$

• Two sets of weights w_x and w_y

Memory Cells

 Memory cell : part of a NN that preserves some states across time steps

• Cell state at time step t is a function of some inputs at that time steps and its state at the previous time step: $h_t = f(h_{t-1}, x_t)$

Not necessarily equal to the output y_t

Input		Target		
Type	Elements	Type	Elements	Use Cases
		Trends	Many	Pattern generation
Scalar		Audio	Many	Music Generation
	One	Text	Many	Text Generation
		Image	Image Many Image generati	
			0	Stock Trading decisions
-		Scalar	One	Forecasting KPI for fixed duration
Trends	Many	12		DNA Sequence analysis
		Trends	wany	Time series forecasts
		5 a 1		Sentiment Classification
		Scalar	One	Topic Classification
				Answer Selection
		Text	Many	Text Summarization
				Machine translation
	Many			Chatbots
Text				Name Entity Recognition
				Subject Extraction
				Part of Speech Tagging
				Textual Entailment
				Relation Classification
		Trends	Many	Path Query Answering
		Audio Many		Speech Generation
		Scalar	0.50	Facial expression tagging
Image	Scalar One		Entity classification	
image	Wally	Text	Many	Image Captioning
		Image	Many	Image Modification
				Sentiment Classification
		Scalar	One	Number of speaker tagging
Accelta	10000			Topic Classification
Audio	wany	Text	Many	Speech Recognition
			wany	Conference Summarization
		Audio	Many	Speech Assistant
No.		Scalar	One	Activity Recognition
Video	Many	Text	Many	Subtitle generation

Examples

- End-to-End deep learning : simplification of a learning system into one NN
 - Large dataset of labeled data is required

	Target		Input	
Use Cases	Elements	Туре	Elements	Туре
Pattern generation	Many	Trends	One	
Music Generation	Many	Audio		Carlas
Text Generation	Many	Text		Scalar
Image generation	Many	Image		

In	put	Tar	get	line Course
Туре	Elements	Type	Elements	Ose Cases
		Scalar	One	Sentiment Classification
				Topic Classification
	1 L			Answer Selection
		Text	Many	Text Summarization
1				Machine translation
				Chatbots
Text	Many			Name Entity Recognition
				Subject Extraction
				Part of Speech Tagging
				Textual Entailment
				Relation Classification
		Trends	Many	Path Query Answering
		Audio	Many	Speech Generation
	-			

Sentiment	Tweets
Negative	@united is the worst. Nonrefundable First class tickets? Oh because when you select
	Global/FC their system auto selects economy w/upgrade.
	@united I will not be flying you again
Neutral	 @VirginAmerica my drivers license is expired by a little over a month. Can I fly Friday morning using my expired license? @VirginAmerica any plans to start flying
	direct from DAL to LAS?
Positive	@VirginAmerica done! Thank you for the quick response, apparently faster than sitting on hold ;)
	@united I appreciate your efforts getting me home!

Text → Scalar

I	Input		Target		line Course	
	Туре	Elements	Type Elements		Use Cases	
ſ			Scalar		Sentiment Classification	
I				One	Topic Classification	
I					Answer Selection	
I					Text Summarization	
I					Machine translation	
I					Chatbots	
I	Text	Many	Text	Many	Name Entity Recognition	
I					Subject Extraction	
I					Part of Speech Tagging	
I					Textual Entailment	
I					Relation Classification	
			Trends	Many	Path Query Answering	
I			Audio	Many	Speech Generation	
			Trends Audio	Many Many	Path Query Answering Speech Generation	

Machine Language Translation

Text \rightarrow Text

2. Training RNNs

- Input data :
 - Bucketing
 - Time series
- Training loop
- Bidirectional RNNs
- Deep RNNs
- LSTM/GRU Cells

Input Data : Bucketing

- Used in the case of variable-length sequences
 - Allows to reduce the number of time steps needed for a particular batch
- Recipe :
 - Sort the sequences by length
 - Group them in buckets
 - Pad them (add zeros) to the maximum token length for a particular bucket

Input Data : Time Series

• Training instance : randomly selected sequence of 20 consecutive values from the time series

• In principle, have several input features

• Target sequence : similar as the input sequence, except it is shifted by one time step into the future

Training Loop

- Trick is to unroll it through time and use regular backpropagation (backpropagation through time)
 - First forward pass through the unrolled network
 - output sequence evaluated using a cost function
 - Gradients of the cost function are propagated backward through the unrolled network
 - Model parameters are updated using computed gradients

• A RNN limitation is that it only uses information from earlier in the sequence and not after

• Solution : bidirectional RNN

Bidirectional RNN

• Stack multiple layers of cells

• Apply dropout to reduce overfitting

• Many time steps needed to train a RNN on long sequences

• Vanishing/exploding gradients

Training over many time steps

What tricks can you use ?

- One solution : truncated backpropagation through time : unroll the RNN only over a limited number of time steps during training
- Limits :
 - Missing part of crucial data in your training sample (specific events/dates,...)
 - Memory of the first inputs gradually fades away

• Long Short-Term Memory (LSTM) cell (1997)

LSTM Cell

• Converges faster and detects long-term dependencies in the data

- Cell state is split in two vectors h_t (short-term state) and c_t (long-term state)
- Network that can learn what to store in the long-term state, what to throw away, and what to read from it

- Gated Recurrent Unit (GRU) cell is a simplified version of the LSTM cell
- Both state vectors are merged into a single vector h_t

GRU Cell

• A single gate controller controls both the forget gate and the input gate

Natural Language Processing

- Word Embeddings
- Architectures for machine translation

- Vectors can be prohibitively large
- Assumption that there are no inherent relationships between any of the colours being embedded
 - Similarity between the vectors for "orange" and "red" will not be different to the similarity between the vectors for "orange" and "green"

 Vector able to represent any colour with only 3 values each time

Red = [1,0,0]
Green = [0,1,0]
Orange = [1,0.5,0]

Feature Vectors

• Similarly, create fixed-length vectors that represent items like words (usually between 50 and 300 values)

• Glove (2014) / Word2Vec (2014)

Verb tense

swam

Country-Capital

Poincaré

Male-Female

Figure 3: Illustration of an orthogonal projection on a hyperplane in a Poincaré disc \mathbb{B}^2_c (Left) and an Euclidean plane (Right). Those hyperplanes are *decision boundaries*.

• Do NOT take the context of the word into account

• Word2Vec will give the same vector for "bank" in both contexts

(*French*) Si mon tonton tond ton tonton, ton tonton sera tondu.

(*English*) If my uncle shaves your uncle, your uncle will be shaved.

Courtesy Prof. A. Popescu

Machine

Translation

Time

- Simple machine translation model (English \rightarrow French)
 - English sentences fed to the encoder
 - French translations output by the decoder
 - French translations also used as inputs to the decoder (shifted by one step)

Target: Je bois du lait <eos> Prediction: Je lait bois le <eos> **Encoder – Decoder** Softmax **Y'**₍₀₎ **Y'**₍₃₎ (2) (1) (2) (4) (1) **X'**₍₀₎ **X'**₍₂₎ $\mathbf{X}_{(0)}$ **X**₍₂₎ **X**₍₁₎ **X'**₍₁₎ **X'**₍₃₎ **X'**₍₄₎ Embedding lookup Embedding lookup 288 3335 72 51 2132 21 431 " <go> Je bois du lait milk drink I

RNN encoderdecoder (2014)

At each step, the decoder outputs a score for each word in the output vocabulary The word with highest probability (softmax layer) is output Target: Je bois lait du <eos> Prediction: Je lait bois Hidden state used for le <eos> Encoder – Decoder RNN the next input word Softmax encoder-**Y**'₍₀₎ **r**(1) (2) (3) (4) decoder Word embedding that is fed to the encoder **X**₍₂₎ **X'**(0) **X'**₍₄₎ **X' X'**₍₃₎ **X**₍₁₎ **X'**₍₂₎ **X**₍₀₎ Embedding lookup Embedding lookup 288 3335 72 51 2132 21 431 Each word is initially represented milk drink Í <go> Je bois du lait " by a simple integer identifier Why is the English

sentence reversed ?

At each step, the decoder outputs a score for each word in the output vocabulary The word with highest probability (softmax layer) is output

RNN encoderdecoder

Each word is initially represented by a simple integer identifier

Why is the English sentence reversed ? This ensures that the beginning of the English sentence will be fed last to the encoder, which is useful because it is the first thing that the decoder needs to translate.

• Let the decoder learn to focus over a specific range of the input sequence

 Each input word is assigned a weight by the attention mechanism, which is then used by the decoder to predict the next word in the sentence • Greedy search : always pick the *most probable word*

- Known to NOT give the optimal solution
- Beam search (more exploratory) : search in a probability tree
 - consider the top 10 most probable prefixes
 - Maximize the total probability

Beam Search

250,000 GPU hours on the standard WMT English to German translation task.

RNN encoderdecoder with attention

Hyperparameter	Value
embedding dim	512
rnn cell variant	LSTMCell
encoder depth	4
decoder depth	4
attention dim	512
attention type	Bahdanau
encoder	bidirectional
beam size	10
length penalty	1.0

Beam	newstest2013	Params
B1	$20.66 \pm 0.31 \ \text{(21.08)}$	66.32M
B3	21.55 ± 0.26 (21.94)	66.32M
B5	21.60 ± 0.28 (22.03)	66.32M
B10	$21.57 \pm 0.26 \ \text{(21.91)}$	66.32M
B25	$21.47 \pm 0.30~(21.77)$	66.32M
B100	21.10 ± 0.31 (21.39)	66.32M
B10-LP-0.5	21.71 ± 0.25 (22.04)	66.32M
B10-LP-1.0	21.80 ± 0.25 (22.16)	66.32M

Dim	newstest2013	Params
128	21.50 ± 0.16 (21.66)	36.13M
256	21.73 ± 0.09 (21.85)	46.20M
512	21.78 ± 0.05 (21.83)	66.32M
1024	21.36 ± 0.27 (21.67)	106.58M
2048	21.86 ± 0.17 (22.08)	187.09M

Cell	newstest2013	Params
LSTM	22.22 ± 0.08 (22.33)	68.95M
GRU	21.78 ± 0.05 (21.83)	66.32M
Vanilla-Dec	$15.38 \pm 0.28 \ \text{(15.73)}$	63.18M

Attention	newstest2013	Params
Mul-128	22.03 ± 0.08 (22.14)	65.73M
Mul-256	22.33 ± 0.28 (22.64)	65.93M
Mul-512	21.78 ± 0.05 (21.83)	66.32M
Mul-1024	18.22 ± 0.03 (18.26)	67.11M
Add-128	22.23 ± 0.11 (22.38)	65.73M
Add-256	22.33 ± 0.04 (22.39)	65.93M
Add-512	22.47 ± 0.27 (22.79)	66.33M
Add-1028	22.10 ± 0.18 (22.36)	67.11M
None-State	9.98 ± 0.28 (10.25)	64.23M
None-Input	$11.57 \pm 0.30 \ (11.85)$	64.49M

- Model used for machine translation and text summarization (learns contextual relations between words in a text)
 - Building block of most state-of-the-art architectures in NLP replacing gated RNNs (LSTM)
- Based on the attention mechanism without recurrent sequential processing
 - does NOT require that the sequence be processed in order (unlike RNNs) → Parallelization (unlike RNNs)
- All token processed at the same time and attention weights between them calculated
 - training on more data

The

Transformer

• a set of encoders chained together and a set of decoders chained together

Decoder : prediction for the task

- self-attention mechanism
- attention mechanism over the encodings
- feed-forward NN

 Pre-trained on the entire Wikipedia (2500 million words) and Book Corpus (800 million words)

Reading

• can be fine-tuned with just one additional output layer to create state-of-the-art models for a wide range of NLP tasks

word2vec (Google)

 O. Levy & Y. Goldberg, "Neural Word Embeddings as ImplicitMatrix Factorization", NIPS2014

• GloVe (Stanford)

• J. Pennington, R. Socher, C. D. Manning, "GloVe: Global Vectorsfor Word Representation", EMNLP2014

Pretrained Word Embeddings

- fastText (Facebook)
 - P. Bojanowski, E. Grave, A. Joulin, T. Mikolov, "EnrichingWord VectorswithSubwordInformation", *TACL*2017
- ELMo (AllenNLP)
 - M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, L. Zettlemoyer, "Deepcontextualizedwordrepresentations", NAACL2018

• BERT (Google)

 J. Devlin, M.W. Chang, K. Lee, K. Toutanova, "BERT: Pre-training of DeepBidirectionalTransformers for LanguageUnderstanding", Arxivoct. 2018

More examples

One-to-one : Text generation

One-to-many : Image to caption

• Given a character, or a sequence of characters, what is the most probable next character?

1. Text Generation From fairest creatures we desire increase, That thereby beauty's rose might never die, But as the riper should by time decease, His tender heir might bear his memory: But thou, contracted to thine own bright eyes, Feed'st thy light's flame with self-substantial fuel, Making a famine where abundance lies, Thyself thy foe, to thy sweet self too cruel: Thou that art now the world's fresh ornament, And only herald to the gaudy spring, Within thine own bud buriest thy content, And tender churl mak'st waste in niggarding: Pity the world, or else this glutton be, To eat the world's due, by the grave and thee.

The Sonnets, W. Shakespeare

- For each sequence, the corresponding target contain the same length of text, except shifted one character to the right
 - Input sequence : "Hell"
 - Target sequence : "ello"

tyntd-iafhatawiaoihrdemot lytdws e ,tfti, astai f ogoh eoase rrranbyne 'nhthnee e plia tklrgd t o idoe ns,smtt h ne etie h,hregtrs nigtike,aoaenns lng

train more

"Tmont thithey" fomesscerliund Keushey. Thom here sheulke, anmerenith ol sivh I lalterthend Bleipile shuwy fil on aseterlome coaniogennc Phe lism thond hon at. MeiDimorotion in ther thize."

train more

Aftair fall unsuch that the hall for Prince Velzonski's that me of her hearly, and behs to so arwage fiving were to it beloge, pavu say falling misfort how, and Gogition is so overelical and ofter.

train more

"Why do what that day," replied Natasha, and wishing to himself the fact the princess, Princess Mary was easier, fed in had oftened him. Pierre aking his soul came to the packs and drove up his father-in-law women.

Result

Two-Minute Papers

• Given an image, what is the most probable caption describing it ?

Microsoft-COCO dataset (>82000 images)

2. Image to Caption

The man at bat readies to swing at the pitch while the umpire looks on.

A large bus sitting next to a very tall building.

A horse carrying a large load of hay and two people sitting on it.

Bunk bed with a narrow shelf sitting underneath it.

• Idea is to use a CNN as encoder and a RNN as decoder

- CNN encoder produces a representation of the input image by embedding it to a fixed-length vector
 - Inception network
 - Attention mechanism to increase performance \rightarrow grid of vectors
- RNN decoder uses as input the last hidden layer of the CNN. It returns the predictions and the decoder hidden state.

Result

man in black shirt is playing guitar.

construction worker in orange safety vest is working on road.

Two-Minute Papers

https://b.socrative.com/login/student/

Room : CONTI6128