
Deeper Dive into Python
Please open this in your browser to follow along:

https://scits.math.unibe.ch/ddip/

Exercises: https://scits.math.unibe.ch/ddip/exercises.zip

Repoistory: https://github.com/scits-bern/ddip

v.1.1 (2020-06-11)

1 / 101

https://scits.math.unibe.ch/ddip/
https://scits.math.unibe.ch/ddip/exercises.zip
https://github.com/scits-bern/ddip

Agenda
1. What to expect?
2. Beyond notebooks
3. Objects and scope
4. Classes
5. Functional programming
6. Decorators
7. Modules and packages
8. Python environments
9. Extras?

2 / 101

What to expect?

3 / 101

What to expect?
This course is aimed at people who either:

1. Know programming coming from another language, and
want to see how less-basic language features work.

2. Only ever worked with basics of Python, and want to
expand their knowledge.

3. Have survived the "Introduction to Python" course
yesterday and understood it well enough.

4 / 101

What else to expect?
This course is new. The material is still "raw" and may run
out before the time is up.

Running this course online with Zoom and Live Share is
experimental.

I'm not a Python guru. I won't be able to answer all
questions about Python without searching the docs.

5 / 101

Beyond notebooks

6 / 101

Python (Jupyter) notebooks
If you come from any other Python course we provide, you're
likely familiar with Jupyter notebooks.

A notebook is a way to package together snippets ("cells") of
Python code, the results of their execution, and arbitrary
explanatory text.

It runs as a web application that you normally interact with in
a browser.

In case it runs remotely, you don't need to have Python
installed on your machine at all.

7 / 101

What are notebooks good at?
Teaching: minimal setup

Experimentation: modifying small pieces of code without
rerunning everything

Presentation: can incorporate graphics and explanatory
text

Publishing results: includes output from previous runs of
the code

8 / 101

What are notebooks bad at?
Running non-interactively

Code modularity and reuse

Notebooks have confusing semantics (order of execution)

Environment setup is external to notebooks

9 / 101

What is needed to run Python code?
To run a Python program, you need Python itself installed. If
it's installed, you normally can invoke it in a command line
interface with python.

If you need modules that are not part of the standard library,
you use a package manager to install the missing ones; pip is
the standard one, conda is one that comes with Anaconda.
More on modules and environments later.

Exercise:

Run python --version in a terminal to make sure that
Python is installed and ready.

Note:

On systems where multiple versions of python are installed,
python and pip for Python 3.x are sometimes called python3
and pip3

10 / 101

How to run python code?
Python scripts are named with a .py extension and can be run
with python code.py in a terminal.

This executes the whole script at once, unlike cell-by-cell
execution of a notebook.

Alternatively, use a code editor that has integrated
functionality to run Python code. In case of VSC, you should
have a green "run" symbol in the top right corner of the editor
when a Python script is open.

Exercise:

Run the sample code exercises/run_me.py to make sure your
setup works.

11 / 101

Setting up VSC Live Share

Follow live instructions

12 / 101

Objects and scope

13 / 101

Everything is objects
All data you're working with in Python is represented by
objects (or relations between objects).

Examples of objects:

None
A number, e.g. 1
A sequence of objects, e.g. [1, "two", 3.0, [4]]
A function, e.g. lambda x: x + 1

14 / 101

Everything is objects
All data you're working with in Python is represented by
objects (or relations between objects).

Examples of objects:

None
A number, e.g. 1
A sequence of objects, e.g. [1, "two", 3.0, [4]]
A function, e.g. lambda x: x + 1

Some objects are primitive values, some are collections of
other objects, some serve a technical purpose (like None), etc.

Each object has an identity, type and value.

14 / 101

Object identity
Whenever a new object is created, it is assigned an identity.

The identity is a unique integer that:

1. Stays the same within the lifetime of an object,
2. Is different to any other (currently existing) object's

identity.

15 / 101

Object identity
Whenever a new object is created, it is assigned an identity.

The identity is a unique integer that:

1. Stays the same within the lifetime of an object,
2. Is different to any other (currently existing) object's

identity.

a = [1, 2, 3]
b = [1, 2, 3]
c = b
Query the identity
id(a) # Returns something like 2041912700496
Compare identities
a is b # False, despite equal values; equivalent to "id(a) == id(b)"
b is c # True, different names for the same object

It is not guaranteed to have any specific meaning, but in
CPython implementation it returns the memory location of the
object.

15 / 101

The mystery of small integers
TODO Fix

Exercise:

We saw that assigning the "same" list literal to two variables
produces different objects:

 a = [1, 2, 3]
 b = [1, 2, 3]
 print(a is b) # Outputs False

Repeat this experiment with a large number (e.g. 10000)
and a small number (e.g. 5)

Can you guess why the result differs?

16 / 101

Object type
Every object has a type, assigned at creation time and
normally it cannot change.

An object's type is an indication of its structure and operations
that are applicable to it.

Built-in type examples:

type(None) # NoneType
type(1) # int
type([1, "two", 3.0, [4]]) # list
type(lambda x: x + 1) # function
import sys
type(sys) # module

User-created classes provide a way to create new types; we'll
get to them soon.

17 / 101

Object value
An object's "value" is somehow abstract and can differ from
type to type.

Informally, it's all the data attached to the object.

Object values may change throughout the lifetime of an object,
unlike identity and type.

18 / 101

Mutable vs immutable objects
An object is mutable if its value can change after creation.

Built-in primitive types, like numbers, are immutable: for
example, 4 + 1 does not change 4 or 1, but creates a new
object 5.

19 / 101

Mutable vs immutable objects
An object is mutable if its value can change after creation.

Built-in primitive types, like numbers, are immutable: for
example, 4 + 1 does not change 4 or 1, but creates a new
object 5.

Sometimes, objects carry references to other objects, for
example a list [1, "a"] is an object that references the object 1
and the object "a".

Some built-in data structures are immutable (e.g. tuples) while
other are not (e.g. lists).

If an object's references to other objects can't change, it is
considered immutable, even if overall data changes:

a = (1, 2, [3, 4])
a[2] = [3, 4, 5] # Produces an error, as tuples are immutable
a[2].append(5) # Works fine: it's still the same list

19 / 101

Accessing objects
We usually work with objects accessing them by some name
in the scope, e.g. variable names:

a = 100
b = a
Now "a" and "b" are both names for the same object 100

def increment(x):
 return x + 1
Now "increment" is a name for that function

Note that x doesn't mean anything outside that function. This
is because x is a local variable in the function.

20 / 101

Scope
Python has 4 type of scopes, in order in which they are
searched:

Local scope, that's created whenever a function is run.

Non-local scope, which contains names from enclosing
functions (the closest that matches is used).

Global scope that contains names from the top level of the
current module.

Builtin scope that contains Python's built-in names.

You can specify the scope of a variable before use using
keywords local, nonlocal, global.

21 / 101

Scope example
def scope_test():
 def do_local():
 spam = "local spam"

 def do_nonlocal():
 nonlocal spam
 spam = "nonlocal spam"

 def do_global():
 global spam
 spam = "global spam"

 spam = "test spam"
 do_local()
 print("After local assignment:", spam) # "test spam"
 do_nonlocal()
 print("After nonlocal assignment:", spam) # "nonlocal spam"
 do_global()
 print("After global assignment:", spam) # "nonlocal spam"

scope_test()
print("In global scope:", spam) # global spam

22 / 101

Scope gotchas
If you only read a variable in a function, it will be searched in
all scopes. You don't need to declare a variable global in a
function for it to read a global variable.

However, if at any point in a function a variable is assigned to,
it defaults to being local.

test = "Something"

def f1():
 print(test)

def f2():
 print(test)
 test = "Something else"

f1() # Outputs "Something"
f2() # Raises UnboundLocalError

23 / 101

What can you do with objects?
Objects can have attributes (or properties): references to other
objects accessible by their attribute name.

x = 3.0 + 4.0j
x.imag # 4.0 (a property of x)

An attribute that's a function is called a method:

x.conjugate() # 3.0 - 4.0j (a method on x)

24 / 101

What else can you do with objects?
There are standard functions and operations that apply to
various objects. For example:

x + y

len(x)

x[y]

if x:
 pass

for x in y:
 pass

25 / 101

What else can you do with objects?
There are standard functions and operations that apply to
various objects. For example:

x + y

len(x)

x[y]

if x:
 pass

for x in y:
 pass

All of those work differently based on the types of objects
involved, with some operations having no sense and thus not
supported.

Let's learn to make our own objects!

25 / 101

Classes

26 / 101

What are classes?
Classes are user-defined types of Python objects.

A Class is essentially a blueprint of what kind of data needs to
be grouped together, along with functions (methods) that
make sense for this kind of data.

An object of such type is called a class instance, and has its
own unique set of data (properties) associated with it.

Code using a class gets a user-defined interface to interact
with it, while internal details are not important.

27 / 101

Class syntax
The syntax for declaring a class looks like this:

class ClassName:
 # statement 1
 # ...
 # statement N

By convention, class names start with a capital letter.

Most of the time, the statements within the class block will be
functions for method definitons.

28 / 101

Simplest class
Let's look at the simplest class possible, one that does nothing:

class Thing:
 pass

Once that definition executes, we can already create instaces
of this class by calling the name of the class like a function:

something = Thing()
print(something) # Outputs <__main__.Thing object at 0x000001DB6B754760>
print(type(something)) # Outputs <class '__main__.Thing'>

29 / 101

Non-declared goods
We could assign and later access properties on a specific
instance, even though the class "blueprint" comes with none:

something.prop = "Whatever"
print(something.prop) # Outputs "Whatever"

print(something.prop2)
AttributeError: 'Thing' object has no attribute 'prop2'

In fact, most user-created classes store instance properties in a
dict structure (the __dict__ property), and it's possible to add
or modify that at runtime.

This can surprise people coming from other programming
languages; there are ways to enforce a specific set of
properties (with __slots__), but it's unusual for Python.

30 / 101

Adding a method
Let's add our first method to a class.

class Greeter:
 def hello(self, target="World"):
 print(f"Hello, {target}!")

g = Greeter()
g.hello() # Outputs "Hello, World!"
g.hello("everyone") # Outputs "Hello, everyone!"

You'll notice that the method seems to have one more
argument than is actually passed. More on that in a bit.

31 / 101

Aside: f-strings
Requires Python 3.6+

A modern, more readable way to have templated strings, an
alternative to .format() approach with less boilerplate.

The following code is equivalent:

print("The sum of {} + {} is {}".format(x, y, x + y))

print("The sum of {x} + {y} is {sum}".format(x=x, y=y, sum=(x + y)))

print(f"The sum of {x} + {y} is {x + y}")

Documentation: Language reference, PEP 498

32 / 101

https://docs.python.org/3/reference/lexical_analysis.html#f-strings
https://www.python.org/dev/peps/pep-0498/

Class methods
class Greeter:
 def hello(self, target="World"):
 print(f"Hello, {target}!")

g = Greeter()
g.hello("everyone") # Outputs "Hello, everyone!"

The first argument of any class method automatically receives
the reference to the instance itself.

Put another way, those two calls are equivalent:

g.hello("everyone")
Greeter.hello(g, "everyone")

In some programming languages it is called this and is often a
keyword; in Python, it's just a function argument, which is
called self by convention.

33 / 101

Using self to store data
We haven't yet used self in the code. Let's tell our name if it's
defined:

class Greeter:
 def hello(self, target="World"):
 print(f"Hello, {target}!")
 try:
 print(f"My name is {self.name}.")
 except AttributeError:
 print("I don't know my name yet.")

g = Greeter()

g.hello()
Hello, World!
I don't know my name yet.

g.name = "Fred"
g.hello("everyone")
Hello, everyone!
My name is Fred.

34 / 101

Checking for attributes
Instead of using a try..except block, we could more gracefully
test if an attribute exists.

hasattr(object, name) checks if the object object has an
attribute with a name stored in name:

s = "A string"
print(hasattr(s, "upper")) # True
print(s.upper()) # A STRING

Exercise:

Rewrite the Greeter example using hasattr instead of
relying on AttributeError.

Code is available at exercises/greeter_attributes.py

35 / 101

Always having data
This code is inconvenient if we always expect to know our
name, and uses a try..except block, which doesn't look very
clean.

Let's require a name to be provided when a Greeter is created.
For this, we need a special method called __init__.

This is analogous to constructor methods in other languages.

class Greeter:
 def __init__(self, name):
 self.name = name

 def hello(self, target="World"):
 print(f"Hello, {target}!")
 print(f"My name is {self.name}.") # .name should always be defined

36 / 101

A meaningful constructor
class Greeter:
 def __init__(self, name):
 self.name = name

When an object is created by calling Greeter(), it actually
invokes this function for the class, which defaults to doing
nothing.

By providing our own, we override this behavior, and require
an extra argument:

g = Greeter()
TypeError: __init__() missing 1 required positional argument: 'name'

g = Greeter("Bob")
g.hello()
Hello, World!
My name is Bob.

If we wished, we could provide a default name as well.

37 / 101

Aside: "dunder" or "magic" methods
You will often see things named like __something__ in Python.

__init__ is a good example - whenever a new object is
invoked, Python will run a method with this name.

Those are fixed names for objects interfacing with specific
language functions.

Such names are surrounded by double underscores, hence
"dunder", or simply "magic".

You should not create your own new names of this format,
because a later version of Python can add more meaningful
magic names. Only add (override) those you know the
function of.

38 / 101

Get (re)presentable
If we try to print out our new object, it's still looks ugly.

print(g) # <__main__.Greeter object at 0x000001DB6B754760>

What is output when an object is evaluated as a string is
determined by the __str__ method. It can be used to make a
readable representation.

Let's add a method:

 def __str__(self):
 return f"Greeter named {self.name}"

Now it will be used whenever we try to print the object:

g = Greeter("John")
print(f"g is a {g}") # Outputs "g is a Greeter named John"

39 / 101

Class variables
Instance properties such as name are unique to a specific
instance of the Greeter class.

It's also possible to make a property that's shared by all
instances of the class. Let's add a configurable default for
.greet():

class Greeter:
 default = "World"

 # ..rest of the code..

Now this is accessible both as Greeter.default and g.default
on a specific instance g. This includes the self instance.

Let's try to use it in the hello method.

40 / 101

Parameter defaults gotchas
First naive attempt at using our new variable:

class Greeter:
 default = "World"
 # ..rest of the code..
 def hello(self, target=Greeter.default):
 print(f"Hello, {target}!")
 print(f"My name is {self.name}.")

This will raise an exception if the Greeter class is just being
defined, because at the time of parsing it it's not yet defined,
and function parameter defaults are evaluated at parse time.

Even if it was possible, it's not a good idea to assign a value
that can change as a function default.

41 / 101

Parameter defaults gotchas
Another illustration of the same problem:

test = "Something"
def f(x=test):
 print(x)
f() # Prints "Something"
test = "Other"
f() # Still prints "Something"

A more devious example:

def f(l=[]):
 l.append("Test")
 return l

print(f()) # Outputs ["Test"]
print(f()) # Outputs ["Test", "Test"]

The common pattern for dealing with this problem is to assign
None as default and replaces it within the function.

42 / 101

Class variables gotchas
class Greeter:
 default = "World"
 # ..rest of the code..
 def hello(self, target=None):
 if target is None:
 target = self.default
 print(f"Hello, {target}!")
 print(f"My name is {self.name}.")

This should work.. Let's test it.

g1 = Greeter("John")
g2 = Greeter("Jane")
g1.hello() # Outputs "Hello, World! My name is John."
g1.default = "class"
g1.hello() # Outputs "Hello, class! My name is John."
g2.hello() # Outputs "Hello, World! My name is Jane." ???

Shouldn't our change affect all instances?

43 / 101

Modifying class variables
Greeter.default is a class variable, but when we try to modify
it on an instance, we actually create an instance variable that
overrides it.

This behavior can actually be useful, especially for providing
defaults, but that's not what we want here.

To properly modify an instance variable, we must access it
through the class object, i.e. use Greeter.default:

g1 = Greeter("John")
g2 = Greeter("Jane")
g1.hello() # Outputs "Hello, World! My name is John."
Greeter.default = "class"
g1.hello() # Outputs "Hello, class! My name is John."
g2.hello() # Outputs "Hello, class! My name is Jane."

44 / 101

Usage counters
Exercise:

Add a method .counts() to the Greeter class that prints out
how many times .hello() was called, both this specific
instance and all instances together.

To keep track, you'll need to add new instance and class
variables.

Base code is in exercises/greeter_counts.py

45 / 101

Example: inventory system
Let's make an inventory system for a computer game.

We have Item objects, which have a name, a price, and a
weight.

Item objects can be put in Containers (like a player inventory
or a chest), which have a name and a weight limit.

We already have an idea how to make an Item:

class Item:
 def __init__(self, name, price, weight):
 self.name = name
 self.price = price
 self.weight = weight

 def __str__(self):
 return f"{self.name} ({self.price} gold) [{self.weight} kg]"

potion = Item("Potion of healing", 100, 0.2)
print(potion)

46 / 101

Container class
We need to keep track of multiple Item objects inside a
Container. Let's use a set and start writing:

class Container:
 def __init__(self, name, weight_limit):
 self.name = name
 self.weight_limit = weight_limit
 self._items = set()

 def items_weight(self):
 return sum(item.weight for item in self._items)

 def items_price(self):
 return sum(item.price for item in self._items)

 def __str__(self):
 return f"{self.name} [{self.items_weight()}/{self.weight_limit} kg]"

inventory = Container("Player inventory", 50)
print(inventory) # "Player inventory [0/50 kg]"

47 / 101

https://docs.python.org/3/library/stdtypes.html#set-types-set-frozenset

Implementation details
We could already start populating the Container by directly
accessing ._items, but this has 2 problems:

1. This does not guarantee that weight limit is checked.

2. How items are stored in the class is an implementation
detail that's subject to change.

So the class should provide its own methods for adding /
removing items, and ._items should not directly be used.

48 / 101

Private attributes?
In many object-oriented languages, there is a concept of
private properties and methods - they are only accessible by
the methods of the class itself.

Python doesn't have such a concept: any attribute of a class is
accessible.

By convention, attributes with names starting with an
underscore (_) are considered private and should not be
accessed externally.

class Test:
 def __init__(self):
 self._private = "secret"
 self.__private = "top secret"

test = Test()
print(test._private)
print(test._Test__private) # Name is "mangled" but still accessible

49 / 101

Implementing the container
Let's add a method that adds an item.

class Container:
 # ...
 def can_add(self, item):
 if not isinstance(item, Item):
 raise ValueError("Containers can only contain Items")
 return self.items_weight() + item.weight <= self.weight_limit

 def add(self, item):
 if item in self._items:
 return # Do nothing
 if self.can_add(item):
 self._items.add(item)
 else:
 raise RuntimeError(
 f"Can't add {item} to {self}: over weight limit"
)

Note the use of isinstance(object, class) to check whether
we're trying to add an Item.

50 / 101

Implementing the container
Exercise:

Implement the remove(item) and clear() methods.

They should call the corresponding set methods, but also
return what was removed (list or another iterable of items
in case of clear())

Base code is in exercises/inventory1.py.

51 / 101

Implementing an iterator
We want to be able to iterate over items in a Container:

for item in container:
 print(item)

How to implement this functionality? The standard Python
answer is "magic methods".

Documentation: Special Method Names

We need a method __iter__ that returns an iterator object. We
can use the iterator of _item for that:

 def __iter__(self):
 return self._items.__iter__()

52 / 101

https://docs.python.org/3/reference/datamodel.html#special-method-names

Implementing other things
Exercise:

Continuing from inventory1.py, implement len(container)
and x in container operations.

This requires adding the __len__ and __contains__ methods.

Homework exercise:

Exercise:

Implement inventory.loot(container) method that takes
items from the container into the inventory container.

Note that the inventory may not be big enough to fit all
items; your algorithm should try to optimize which items
are taken to maximise total value.

Base code and a test case are provided in
exercises/inventory2.py

53 / 101

Class inheritance
One of the important tools in the object-oriented
programming toolbox is class inheritance: ability to reuse code
in one class by creating a subclass and expanding / changing
the base class functionality.

Let's make a subclass of Item, Weapon. It adds an extra
attribute, dps (damage per second).

Note that any Weapon will be both a Weapon and an Item.

We can reuse methods and properties coming from the base
class; in case we override a method in the subclass, we can use
super() to access the base class method.

54 / 101

https://docs.python.org/3/library/functions.html?highlight=super#super

Class inheritance
class Weapon(Item):
 def __init__(self, name, price, weight, dps):
 super().__init__(name, price, weight)
 # Equivalent code: Item.__init__(self, name, price, weight)
 self.dps = dps

 def __str__(self):
 return super().__str__() + f" {{{self.dps} DPS}}"

sword = Weapon("Broadsword", 50, 5, 10)
print(sword) # Outputs "Broadsword (50 gold) [5 kg] {10 DPS}"

inventory = Container("Player inventory", 50)
inventory.add(sword) # No error: a Weapon is an instance of Item

Exercise:

Implement a container method .best_weapon() that returns
the weapon with highest DPS, or None if there are no
weapons in the container.

Base code is in exercises/inventory3.py.

55 / 101

Multiple inheritance
A single class can inherit from multiple base classes.

In this case, the order of classes matters for resolving which
method to use:

class A:
 def x(self):
 print("x from A")

 def y(self):
 print("y from A")

class B:
 def x(self):
 print("x from B")

class C(B, A):
 pass

class D(A, B):
 pass

C().x() # Prints "x from B"
C().y() # Prints "y from A"
D().x() # Prints "x from A"

56 / 101

Aside: getters and setters
Sometimes you need an object property that is dynamically
computed or that needs processing when assigned.

A getter is a function returning a value as a property, while a
setter is a function that receives the value when a property is
written to. This can be achieved with a built-in property:

class Person:
 def __init__(self, first_name, last_name):
 self.first_name = first_name
 self.last_name = last_name

 @property
 def full_name(self):
 return f"{self.first_name} {self.last_name}"

p = Person("John", "Doe")
print(p.full_name)
p.full_name = "Test" # AttributeError: can't set attribute

This uses new syntax @something, which will be covered later.

57 / 101

https://docs.python.org/3/library/functions.html#property

Aside: getters and setters
Example with a setter:

class Person:
 def __init__(self, first_name, last_name):
 self.first_name = first_name
 self.last_name = last_name

 @property
 def full_name(self):
 return f"{self.first_name} {self.last_name}"

 @full_name.setter
 def full_name(self, name):
 components = name.split(" ")
 if len(components) == 2:
 self.first_name = components[0]
 self.last_name = components[1]
 else:
 raise ValueError("Can't determine first/last name")

p = Person("John", "Doe")
p.full_name = "Jane Doe"
p.full_name = "Superman" # ValueError

58 / 101

Multiple inheritance
Exercise:

Implement a class PortableContainer that is both an Item
and a Container.

Replace the weight and price properties with getters that
calculate total weight and value of the container and its
contents.

The constructor is already provided for you.

Base code and test case are in inventory4.py

59 / 101

Functional programming

60 / 101

What is functional programming?
Functional programming is a style of programming that
emphasizes use of "pure" functions:

Functions that do not depend on external or internal state
(only on input)

Functions that don't change anything in the external state
(no "side effects")

The advantages of such functions is ease of reasoning about
the program - there are fewer surprises.

Another big part of functional programming is the ability to
treat functions as values: so that a function can itself be a
parameter to another function.

61 / 101

Impurity example
def add_zero(l):
 l.append(0)

def increment_all(l):
 for i in range(len(l)):
 l[i] += 1

Those functions are impure, because they change the list l.

Their result depends on order of execution:

l = []
add_zero(l)
increment_all(l)
print(l) # Outputs [1]

l = []
increment_all(l)
add_zero(l)
print(l) # Outputs [0]

62 / 101

Impurity example
increment = 0
def increasing_increment(num):
 global increment
 increment += 1
 return num += increment

increasing_increment(0) # Returns 1
increasing_increment(0) # Returns 2

This function depends on global state. It can be very hard to
debug.

We have examples of this behavior in our Greeter class.

63 / 101

Functional programming and immutability
If we want functional programming purity, we can't have
operations that change something "in-place". We must return
a copy of the data that has the required modifications, leaving
the original data intact.

def increment_all(l):
 new_l = l.copy()
 for i in range(len(new_l)):
 new_l[i] += 1
 return new_l

l = [0, 1]
print(increment_all(l)) # Outputs [1, 2]
print(l) # Outputs [0, 1]

The best way to ensure immutability is using data structures
that are themselves immutable. It is often not easy to achieve
in Python, however.

64 / 101

Aside: shallow and deep copies
As mentioned before, objects in Python can contain references
to other objects that are, themselves, mutable.

Trying to copy objects can also run into this problem:

def append_zero_all(l):
 new_l = l.copy()
 for sublist in new_l:
 sublist.append(0)
 return new_l

l = [[1], []]
new_l = append_zero_all(l)
print(new_l) # Outputs [[1, 0], [0]]
print(l) # Outputs [[1, 0], [0]] ???

l.copy() performs a shallow copy of a list; a new list is created
with references to the same objects as the original. For
primitive values it's not a problem: they are immutable. But
for mutable objects, it is.

65 / 101

Aside: shallow and deep copies
To create a "proper" copy of an object with references to
potentially mutable objects, you need a recursive "deep" copy.
Thankfully, the standard library provides tools for this:

from copy import deepcopy
def append_zero_all(l):
 new_l = deepcopy(l)
 for sublist in new_l:
 sublist.append(0)
 return(new_l)

l = [[1], []]
new_l = append_zero_all(l)
print(new_l) # Outputs [[1, 0], [0]]
print(l) # Outputs [[1], []]

Exercise:

Modify the Container.add() method to be pure: instead of
changing the instance, return a modified new instance.

Base code is in exercises/inventory5.py

66 / 101

Higher-order functions
As mentioned, Python treats functions as values; so they can
be passed to other functions.

Functions that accept functions as parameters are called
higher-order functions.

def run_twice(f):
 f()
 f()

def test():
 print("Test")

run_twice(test) # Outputs "Test" twice

67 / 101

Functional programming tools
Python provides some standard primitives for functional
programming: some built-in, some in the functools module.

from functools import reduce
l = ["the", "quick", "brown", "fox", "jumps", "over", "the", "lazy", "dog"]

def f(acc, val):
 return f"{acc} {val}"

def g(word):
 return word.capitalize()

print(reduce(f, map(g, l))
Outputs "The Quick Brown Fox Jumps Over The Lazy Dog"

68 / 101

Generators and lazy evaluation
If you use map(), you may notice that it returns something
other than list

squares = map(lambda x: x**2, [1, 2, 3, 4])
squares[2] # TypeError: 'map' object is not subscriptable

This looks inconvenient, but map actually returns a generator:
an iterable which is evaluated one value at a time when
iterating. This is an example of lazy evaluation.

As a result, it can actually work on infinite iterables:

from itertools import count
all_numbers = count() # Iterable returning 0, 1, 2, 3, ...
all_squares = map(lambda x: x**2, count())
for num, squared in enumerate(all_squares):
 print(f"{num} squared is {squared}")
 if num == 10:
 break

69 / 101

Decorators

70 / 101

Higher-order functions, again
Functions can return functions as well:

def run_twice(f):
 def twice_f():
 f()
 f()
 return twice_f

def test():
 print("Test")

twice_test = run_twice(test)
twice_test() # Outputs "Test" twice

In this, f is called a wrapped function and twice_f is called a
wrapper.

This is a common enough pattern to have special syntax:
decorators.

71 / 101

Decorators
def run_twice(f):
 def twice_f():
 f()
 f()
 return twice_f

@run_twice
def test():
 print("Test")

test() # Outputs "Test" twice

This is equivalent to running test = run_twice(test)

72 / 101

Dealing with arguments and return values
You can pass through arguments to the wrapped function and
return a value out of the wrapper.

def run_twice(f):
 def twice_f(*args, **kwargs):
 f(*args, **kwargs)
 return f(*args, **kwargs)
 return twice_f

@run_twice
def hello(target):
 print(f"Hello, {target}!")
 return 42

print(hello("World")) # Outputs "Hello, World!" 2 times, then 42

73 / 101

Decorator parameters
You can have decorator with parameters if you make a
function that returns a decorator:

def run_multiple(num):
 def decorator_multiple(f):
 def wrapper_multiple(*args, **kwargs):
 for i in range(num):
 result = f(*args, **kwargs)
 return result
 return wrapper_multiple
 return decorator_multiple

@run_multiple(3)
def hello(target):
 print(f"Hello, {target}!")
 return 42

print(hello("World")) # Outputs "Hello, World!" 3 times, then 42

74 / 101

A practical example: debug information
Let's write a decorator that helps with tracing when a function
is called.

def debug(f):
 def debug_wrapper(*args, **kwargs):
 print(f"{f.__name__} called with arguments:", *args, **kwargs)
 return f(*args, **kwargs)
 return debug_wrapper

@debug
def hello(target):
 print(f"Hello, {target}!")
 return 42

print(hello("World"))
hello called with arguments: World
Hello, World!
42

75 / 101

Stacking decorators
We can apply two decorators at once:

@run_twice
@debug
def hello(target):
 print(f"Hello, {target}!")

hello("World")
hello called with arguments: World
Hello, World!
hello called with arguments: World
Hello, World!

The function is wrapped in the inverse order of decorators.

76 / 101

Decorators and function identity
Let's try the other way around:

@debug
@run_twice
def hello(target):
 print(f"Hello, {target}!")

hello("World")
twice_f called with arguments: World
Hello, World!
Hello, World!

Notice that the name of the function after being wrapped by
@run_twice changes. Sometimes it's not desirable; functools
has a solution.

77 / 101

Decorators and function identity
from functools import wraps

def run_twice(f):
 @wraps(f)
 def twice_f(*args, **kwargs):
 f(*args, **kwargs)
 return f(*args, **kwargs)
 return twice_f

@debug
@run_twice
def hello(target):
 print(f"Hello, {target}!")

hello("World")
hello called with arguments: World
Hello, World!
Hello, World!

78 / 101

Tracing recursive calls
A classic example of recursive computation are the Fibonnacci
numbers.

@debug
def fib(n):
 if n in [0, 1]:
 return 1
 else:
 return fib(n - 2) + fib(n - 1)

This naive implementation results in a lot of overhead,
because the recursive computation branches, multiple sub-
calls computing the same value, which we can observe with
@debug wrapper

79 / 101

Tracing recursive calls
print(fib(4))
fib called with arguments: 4
fib called with arguments: 2
fib called with arguments: 0
fib called with arguments: 1
fib called with arguments: 3
fib called with arguments: 1
fib called with arguments: 2
fib called with arguments: 0
fib called with arguments: 1
5

Our fib(n) function is pure: its return value only depends on
the argument n.

This can be used to optimize this code by caching intermediate
results, which is called memoization.

80 / 101

Memoization
Exercise:

Write a decorator @memoize that stores a dictionary of
already computed results of its single-argument function,
and uses it as cache.

Base code is in examples\fib.py

Note:

Similar functionality is provided by @functools.lru_cache
decorator from the standard library.

81 / 101

Modules and packages

82 / 101

What are modules and packages?
Modules are a mechanism for sharing code across multiple
Python source files. A module is a single .py file.

It helps logically organize longer code, as well as allow using
your code as a library for other code.

Packages are a way to organize multiple modules together in a
tree-like structure of submodules.

Python libraries that are built-in or installable are packages
that you import into your code.

83 / 101

Importing code
import foo
Everything in the global context of foo.py is now available under foo.*

from baz import quux, quuz
Global objects quux and quuz from baz.py are added in the current context

from monty import spam as ham
Global object spam from monty.py is now available under the name ham
import foo as bar

Besides those 3, there's a another mechanism called star-
import:

from junkyard import *
Import into current context
If the module defines a list __all__:
Import all global objects that are in that list
Else:
Import all global objects that don't start with "_" ("private")

Because it modifies the global namespace in an unpredictable
way, the use of star-imports is discouraged.

84 / 101

Module example
Suppose we have the following code in spam.py:

def spamalot():
 print("SPAM " * 100)

print("I will now spam a lot!")
spamalot()

We find this function very useful, and want to import it from
another script, imports.py, in the same folder.

import spam
from spam import spamalot

print("Trying imports...")
spamalot()
spam.spamalot()

Exercise:

Those files are under exercises; try running imports.py

85 / 101

What happens on import?
If we run imports.py, we see the following:

I will now spam a lot!
SPAM SPAM SPAM SPAM SPAM ...
Trying imports...
SPAM SPAM SPAM SPAM SPAM ...
SPAM SPAM SPAM SPAM SPAM ...

As expected, both our calls are executed, but why it is
executed once more before?

To be able to import code, Python needs to run the module
first, populating its global context. This can be used for
initialization, but in this case it also includes our test code.

Note that it happens only once: Python caches the result of
running the module for future imports during the current
execution.

86 / 101

What else happens on import?
You may notice something else: a folder called __pycache__
appeared.

When a module is imported, it is first parsed into an
optimized structure for execution. Python saves this
optimized version to skip this step next time the module has to
be imported.

If you change a module, Python will automatically detect that
the cache is out of date and will rebuild it.

87 / 101

How do we avoid too much spam?
Our test code only makes sense if we're running spam.py
directly. How to detect that?

At runtime, the magic variable __name__ contains the name of
the current module.

However, if a module is executed directly, __name__ will be set
to a special name "__main__".

if __name__ == "__main__":
 print("We're executed directly")
else:
 print(f"We're loaded as a module {__name__}")

Exercise:

Modify spam.py to only execute the test code if it is run
directly.

88 / 101

Where does Python search for modules?
The full list of locations is available as sys.path from the
standard module sys.

The list is populated as follows:

1. The directory containing the input script (or the current
directory when no file is specified).

2. PYTHONPATH environment variable (a list of directory names,
with the same syntax as the shell variable PATH).

3. The installation-dependent default.

It's possible to modify sys.path at runtime.

89 / 101

Packages
Packages are modules organized in subfolders.

When published, a package contains additional metadata
describing the package, listing its dependencies and install
instructions.

As an example, there's a package mypackage under exercises,
which consists of 4 files, and a script imports2.py that uses it.

Exercise:

Examine the files. Try running imports2.py.

Can you guess how __init__.py works?

90 / 101

Python environments

91 / 101

What's a Python environment?
A Python environment is, roughly speaking, a specific Python
version plus a collection of extra packages.

When creating a new Python environment for a specific
project, they are usually called virtual environments.

92 / 101

What problem do environments solve?
Imagine there exists an AwesomeLibrary. It's awesome, so it's
quite popular.

One of the projects you're working on requires it. However, it
requires AwesomeLibrary 1.x.x, since it hasn't been updated
yet to changes in AwesomeLibrary 2.x.x.

On the other hand, you're also working on another project,
that expects AwesomeLibrary 2.x.x. You'll note that the import
mechanism doesn't have anything to do with versions, so how
can you keep working on both?

The solution is virtual environments.

93 / 101

What's needed for a virtual environment?
Working with virtual environments require 2 pieces of
software:

A package manager to install packages in the
environment. The standard approach here would be pip

A virtual environment manager that sets up the
environment. Historically the most used is virtualenv,
while with Python 3.6+ there is a standard module venv.

Note:

Despite it being part of the standard library, on Linux
systems an extra installation is sometimes needed for venv

94 / 101

Virtual environment work�ow
1. Creating a virtual environment

2. Entering ("activating") virtual environment for the current
shell

3. Installing dependencies

4. Running code while the virtual environment is active

95 / 101

Virtual environment example
There's a script exercises/weather.py that requires non-
standard packages.

Let's make a virtual environment to run it.

python -m venv training-env

This creates a new folder training-env containing everything
needed for a virtual environment.

To activate it, we need to execute a script; depends on the OS:

source training-env/bin/activate

training-env\Scripts\activate

96 / 101

Virtual environment example
Once the environment is activated for the current shell,
running python and pip will use the environment's Python and
packages.

Exercise:

Try running exercises/weather.py with the environment.

Install missing packages until it runs:

 pip install [package_name]

To avoid guesswork next time we need to create the
environment, we can save the requirements:

pip freeze > requirements.txt
Later
pip install -r requirements.txt

97 / 101

Tricky parts of Python package management
Some packages rely on non-python code and libraries.

Those libraries may need to be installed separately.

Plugin code may need to be compiled, requiring installing
build tools and development versions of libraries.

pip supports a binary format called "wheels", but it doesn't
always help with the above problems.

98 / 101

What about (Ana)conda?
conda is a package / virtual environment manager that is part
of the Anaconda distribution.

Among other things, it can manage Python packages.

Differences:

Conda environments are saved in the user profile by
default

Conda has more support for binary packages (e.g.
installing libraries together with packages)

Conda doesn't support everything pip does, but can
interoperate with it.

99 / 101

End of material
Extras?

100 / 101

Thank you!
Questions?

101 / 101

