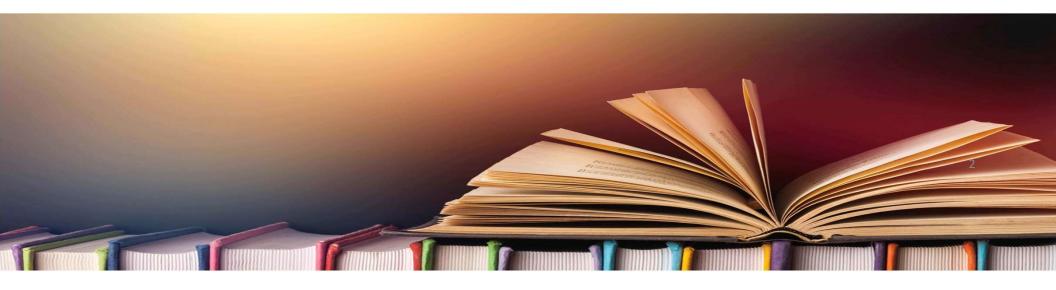
Module 1 : Machine Learning Review

Machine Learning Introduction

Géraldine Conti, August 2020

Bibliography

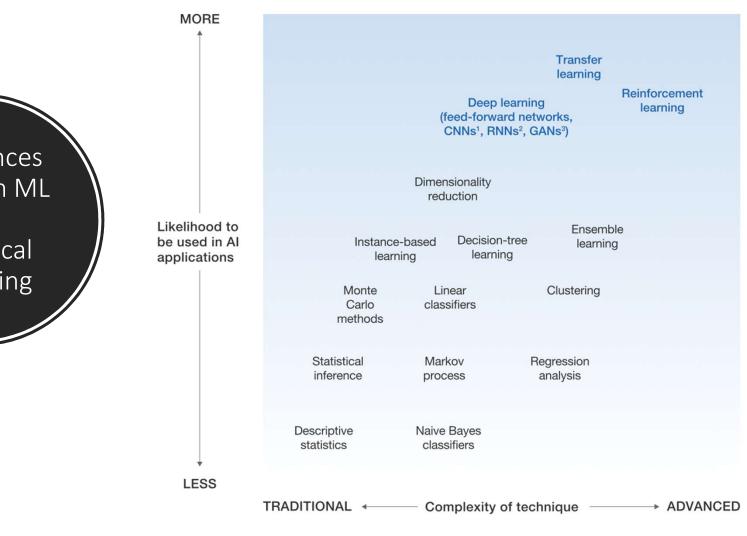
- Deep Learning book (Goodfellow, Bengio, Courville)
- Machine Learning @ Stanford (Prof Andrew Ng)
- Hands-On Machine Learning with Scikit-Learn & Tensorflow (Aurélien Géron)



Learning Objectives

- What is Machine Learning ?
- Types of ML systems
- Main Challenges
- Data Preparation
- Optimization
- How to choose an algorithm ?
- Technical Details

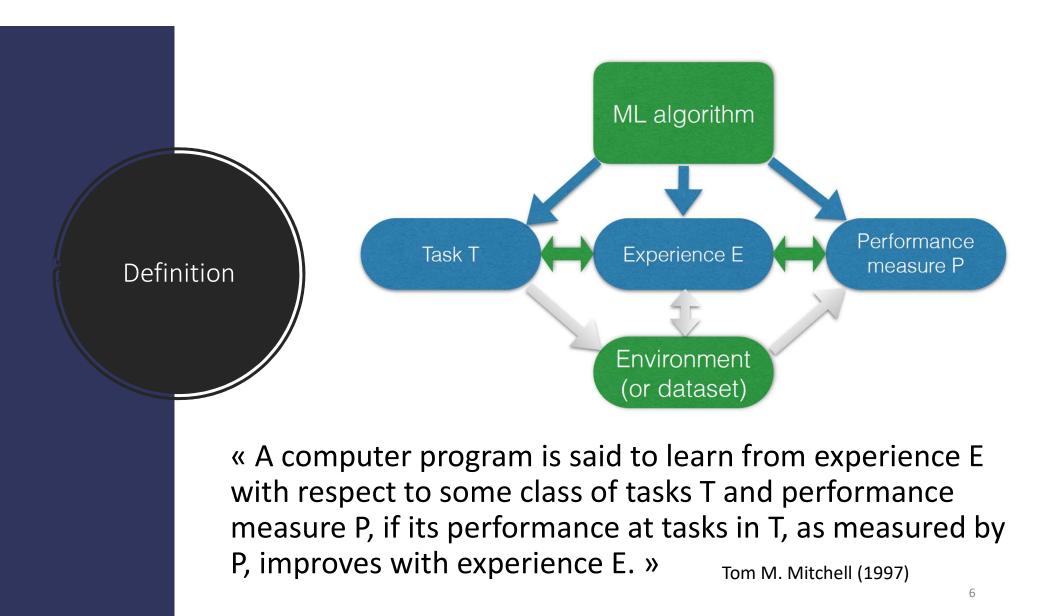
Differences between ML and Statistical Modeling



4

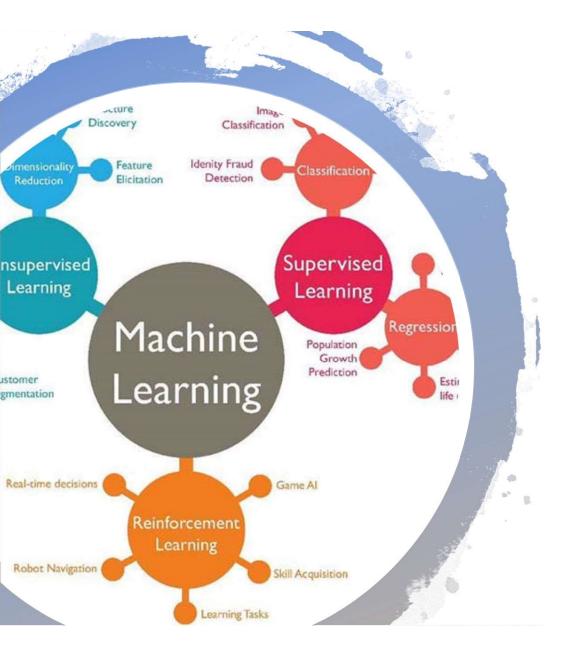
What is Machine Learning ?

"Can machines do what we (as thinking entities) can do?" A. Turing

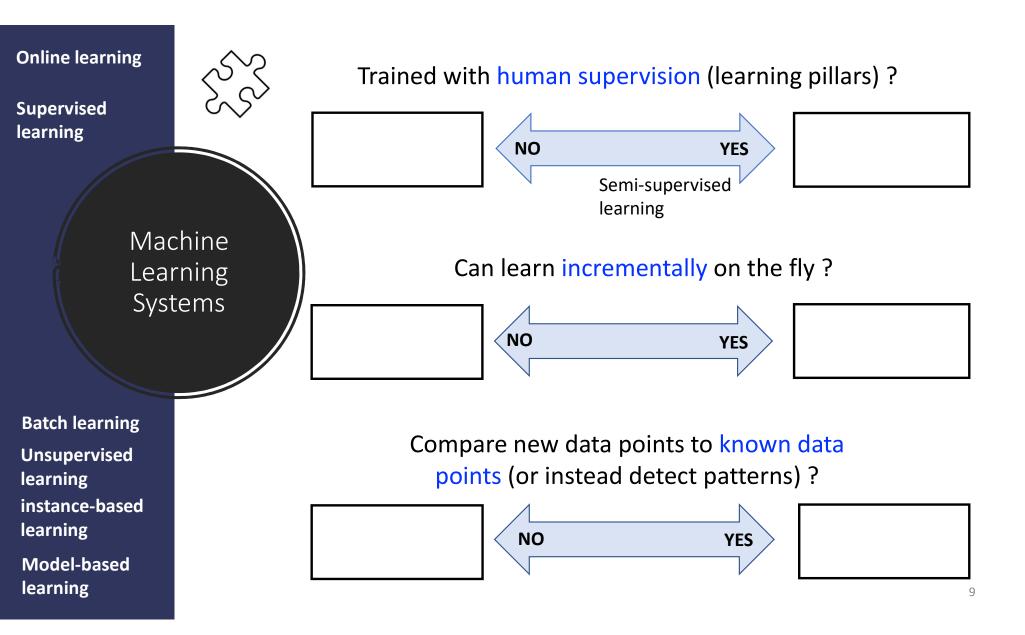


Machine Learning Use Cases

- Problems for which existing solutions require a lot of hand-tuning of long lists of rules
 - ML *simplifies* code and *performs better*
- Complex problems for which there is no good solution at all using a traditional approach
 - ML can *find a solution*
- Fluctuating environments
 - ML system can *adapt* to new data
- Getting insights about complex problems and large amounts of data

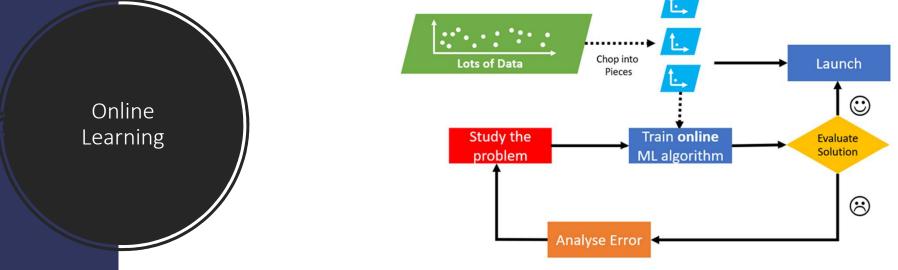


Types of Machine Learning Systems

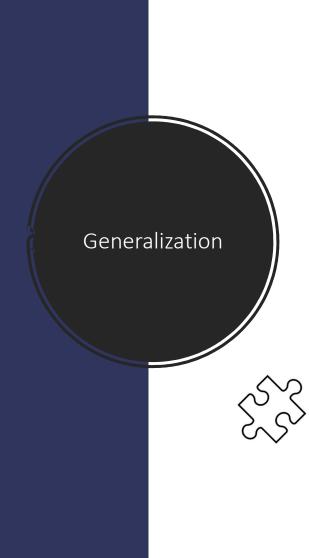


- Not capable of learning incrementally
- Must be trained using all the available data
- With new data (new types), need to train a new version of the system from scratch on the full dataset
- Advantage :
- Drawbacks:

- Train the system incrementally by feeding data instances sequentially, system can learn about new data on the fly
 - Individually or in small groups (mini-batches)



- Important parameter : learning rate
 - How fast the system should adapt to changing data
 - High learning rate = adapt quickly, but forgets quickly
 - Low learning rate = system with more inertia
- Challenge : bad data will gradually kill the performance
 - Monitor your data (anomaly detection algorithms) and performance



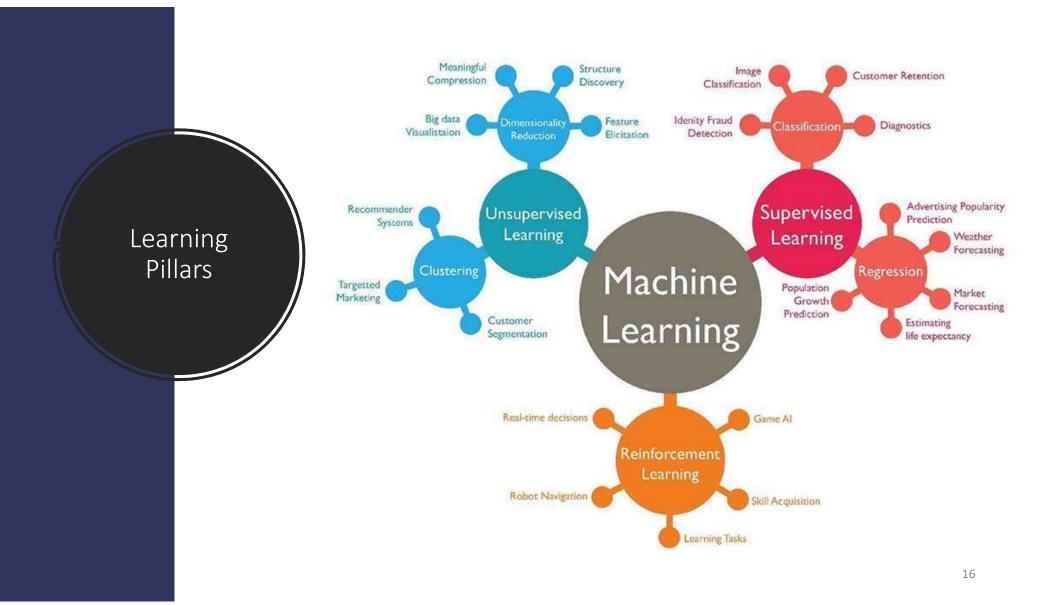
Instance-based Learning

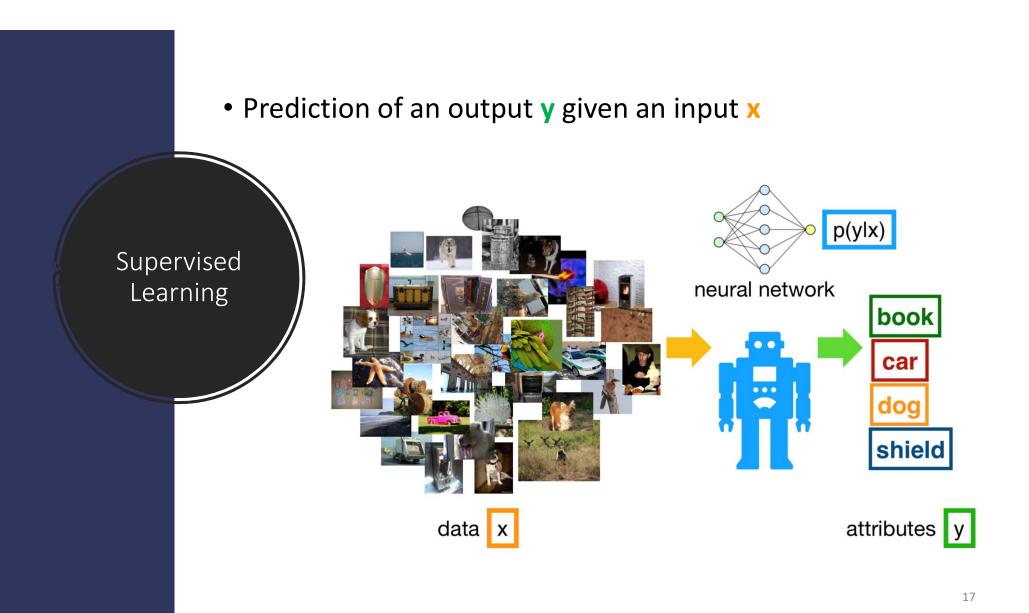
- System learns examples by heart
- Generalizes to new cases using a similarity measure
- Examples : k-nearest neighbors, decision trees

• Model-based learning

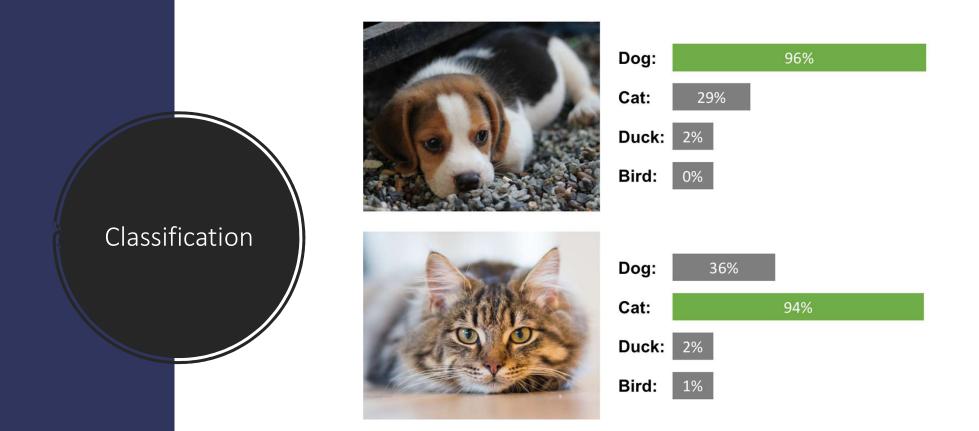
- Build a model of the examples
- Use the model to make predictions
- Examples : Neural Networks,..

How does the number of parameters vary with the size of the training data ?



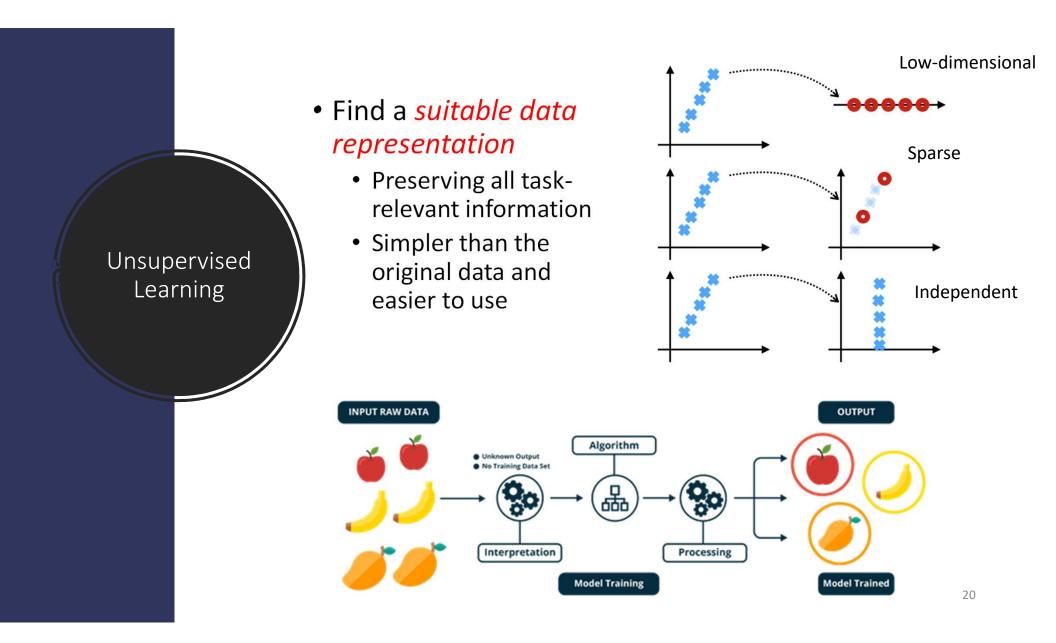


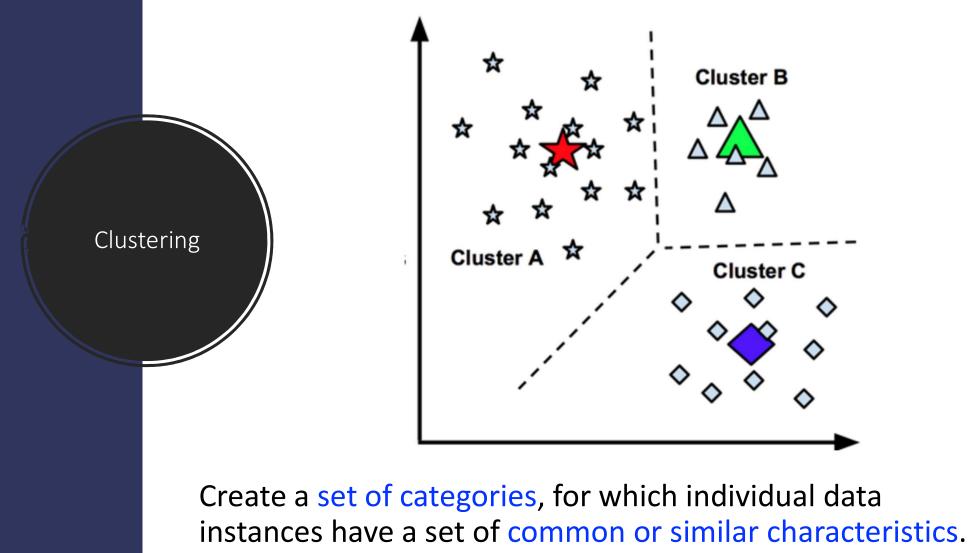
Predict results within *a continuous output*



categorize new inputs as belonging to one of a set of categories \rightarrow Predict results within *a discrete output (categories)*

19





102.4:1 compression 2 principal components

17.7:1 compression 14 principal components

6.3:1 compression 40 principal components

2.1:1 compression 120 principal components

1.7:1 compression 150 principal components

39.4:1 compression

6 principal components

12.5:1 compression

20 principal components

4.2:1 compression

60 principal components

Figure 10: The visual effect of retaining principal components

24.4:1 compression 10 principal components

8.4:1 compression 30 principal components

2.8:1 compression 90 principal components

1.4:1 compression 180 principal components

22

Representation Learning

Supervised Classification

Semi-supervised Learning

Transfer Learning

Self-taught Learning

More

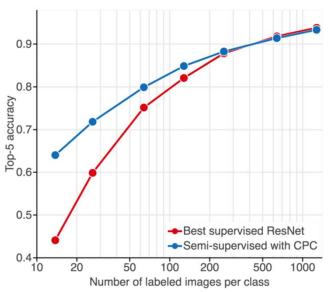
nuances...

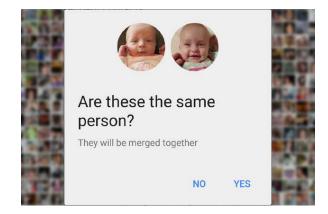
• Partially labelled training data

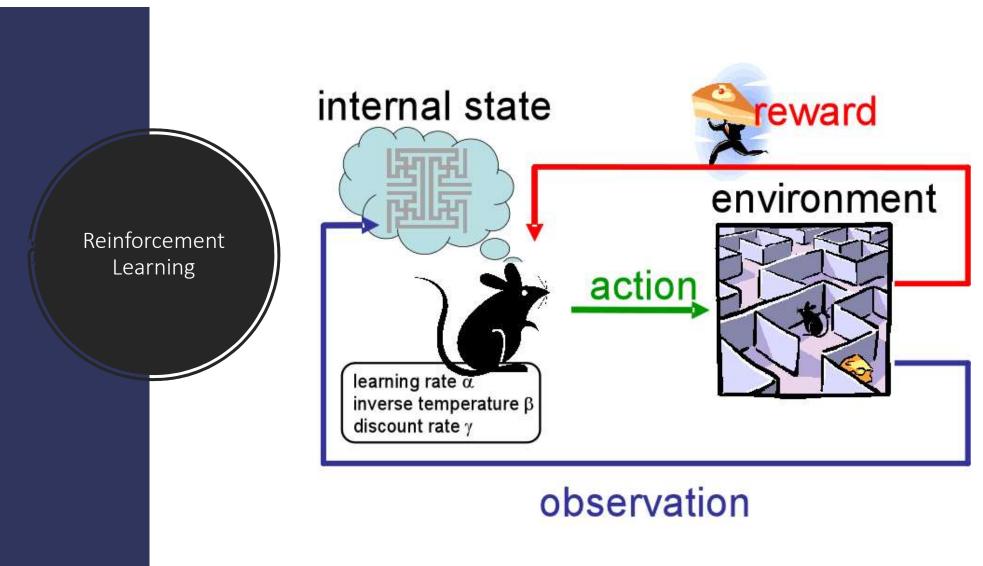
• Lots of unlabeled data and a little bit of labelled data

Semisupervised Learning

- Why bother ?
- Most semi-supervised learning algorithms are combinations of unsupervised and supervised algorithms
 - Example : Google Photos







Two-Minute Papers

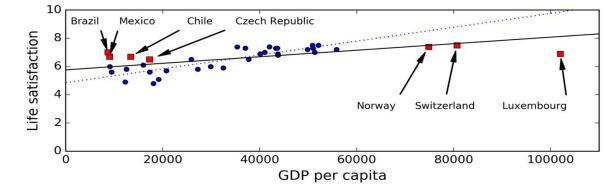
Main Challenges

- Bad data
- Bad model

• Insufficient training data

• Try to get more data, data augmentation,...

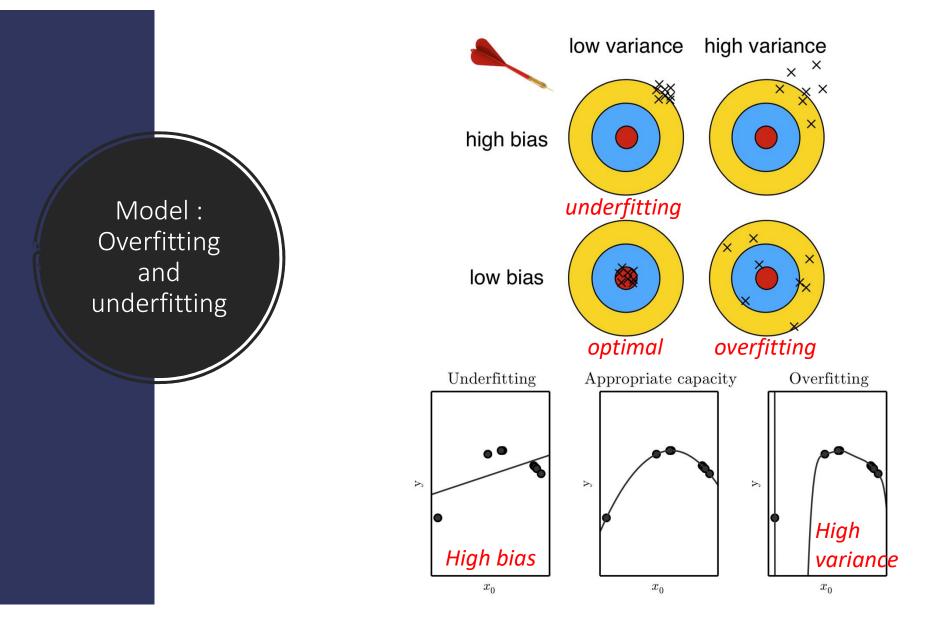
Non-representative training data

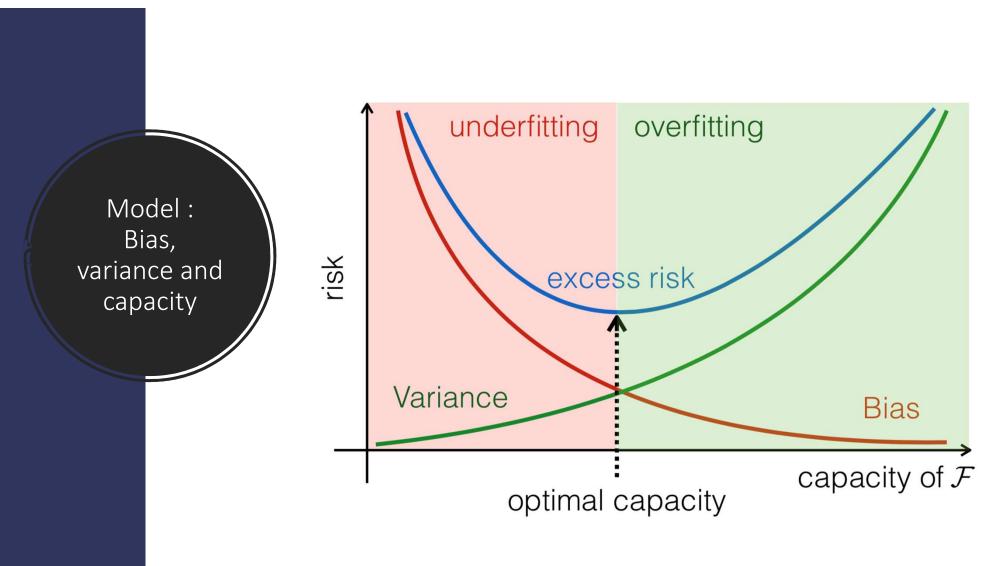


Poor quality data

Bad Data

- Data cleaning
- Irrelevant Features
 - Feature selection (select most useful features)
 - Feature extraction (combine features to produce a more useful one)



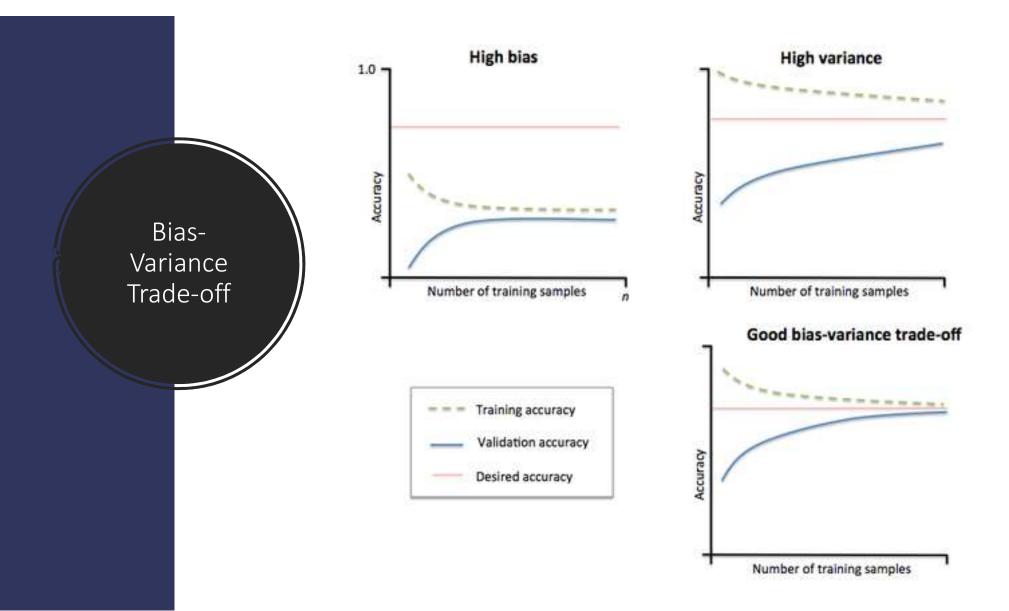


- Validation technique that assesses how the forecasts of a model generalize on unseen data
- A score can be computed on the forecasts across multiple test sets

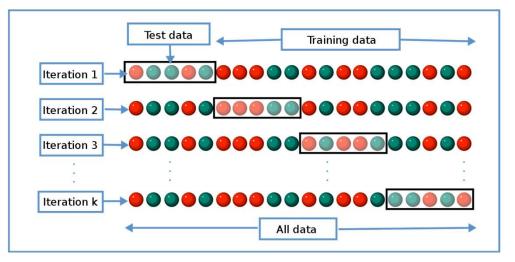
• Separate the data into 2 or 3 sets

Crossvalidation : Holdout

- Training set for training
- Validation set to find the best parameters
- (Test set to estimate the performance in case of competing models)
- Separation depends on size of the dataset



- To avoid "wasting" too much training data
- test on multiple splits so we can get a better idea on how the model will perform on unseen data



• In principle better than using the holdout method because the holdout method score is dependent on how the data is split into train and test sets

 $\sum_{i=1}^{n}$ With which type of input data shouldn't it be used ?

Crossvalidation : k-fold Summary of crossvalidation techniques

Name	Descrption
Leave-one-out	Use one observation as the test set, and the remaining observations as the train set. Out of N observations, there are N train-test splits.
Leave-p-out	Use p observations as the test set, and the remaining observations as the train set. Out of N observations, there are $\binom{N}{p}$ train-test splits.
Holdout	Randomly assign observations to the train and test sets. Caveat: There is a single run, and the result may not be representative.
K-fold	Split the Nobservations into Kregular folds and apply a leave-one-out CVon the folds. The data may or may not be shuffled prior to forming the folds.
Combinatorial K-fold	Split the <i>N</i> observations into <i>K</i> regular folds and apply a leave-p-out CVon the folds. The data may or may not be shuffled prior to forming the folds.
Monte Carlo	Train sets are generated from random subsampling of the rows of (X,y) (random sampling without replacement)

Data Preparation

- Data Cleaning : identify and fix errors in the data prior to modeling (outliers, missing values, ...)
- Feature Engineering : create new input variables from raw data
- Data Wrangling : more general or colloquial term for data preparation that might include some data cleaning and feature engineering.

Independent and Identically Distributed (IID)

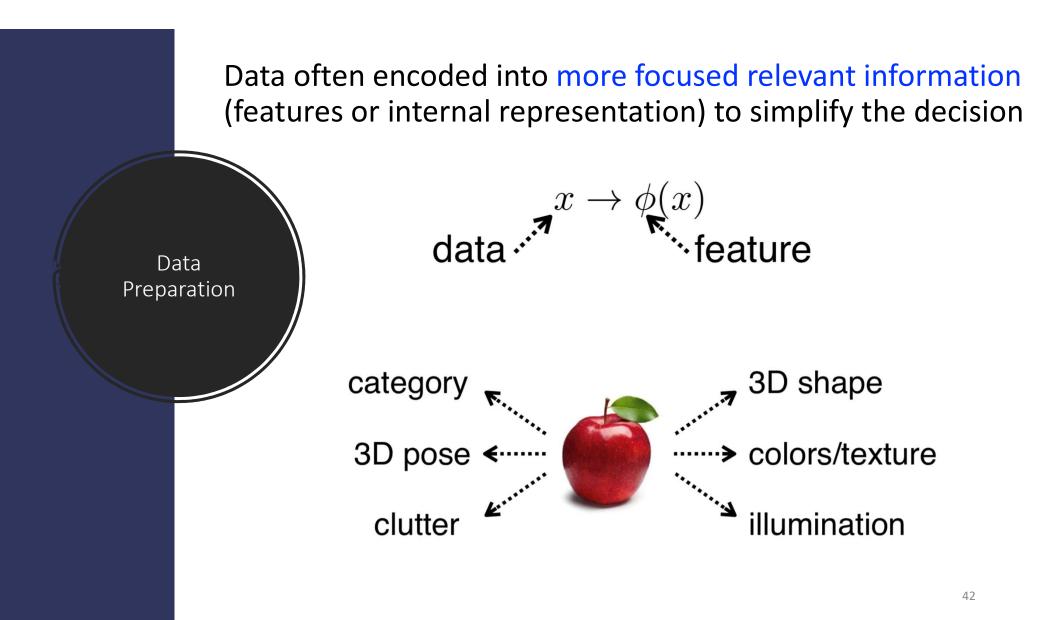
1) Come from the same distribution

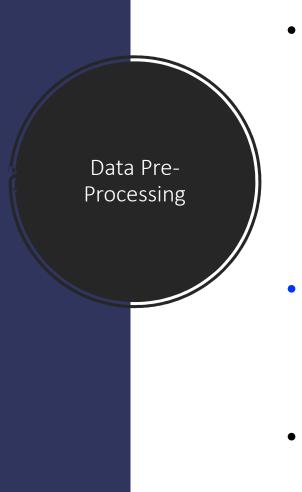
$$p_{x^{(i)}}(x) = p_{x^{(j)}}(x)$$

2) Are *independent*

$$p(x^{(1)}, \dots, x^{(m)}) = \prod_{i=1}^{m} p(x^{(i)})$$

41

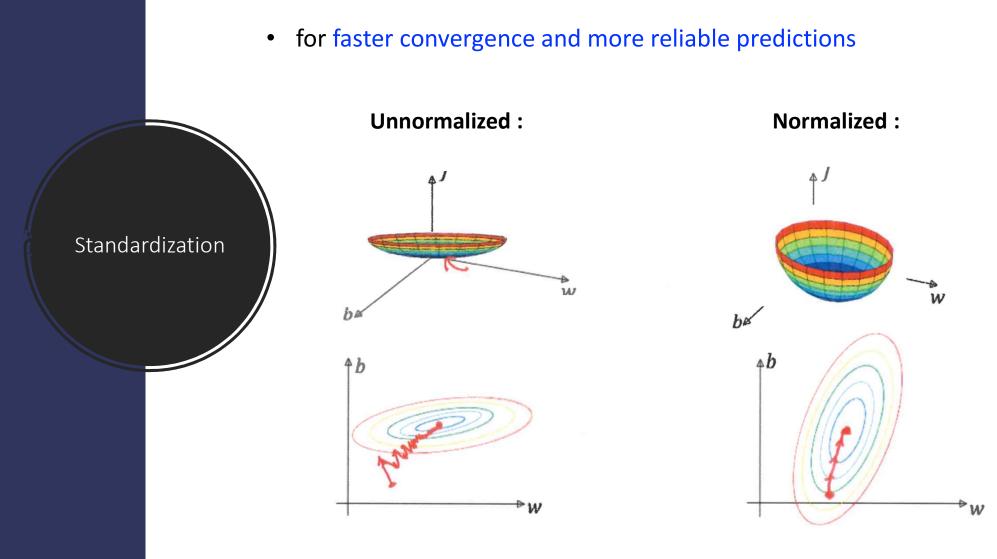


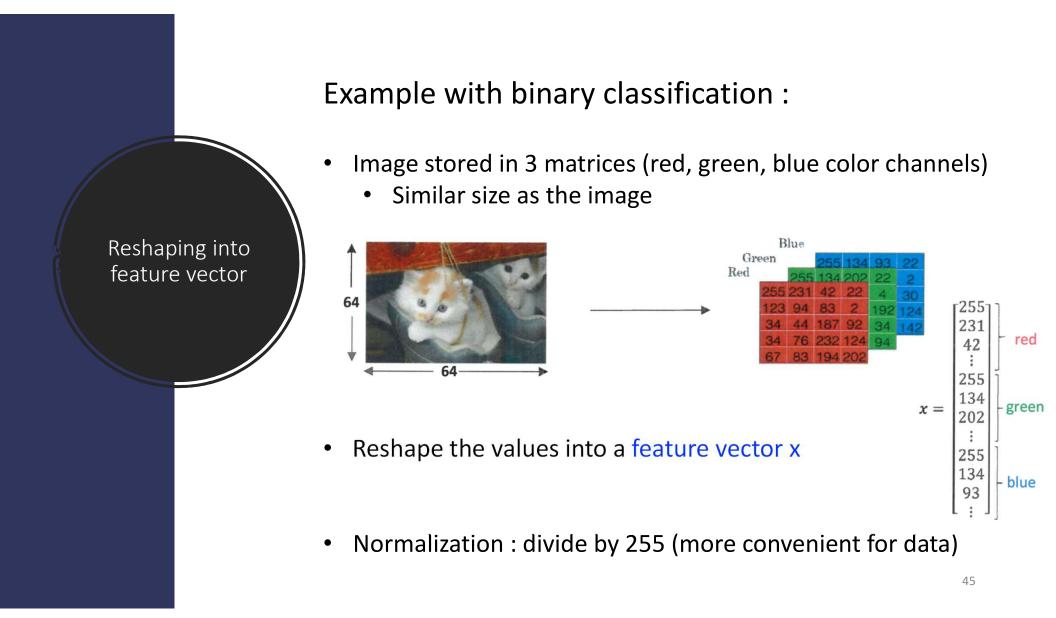


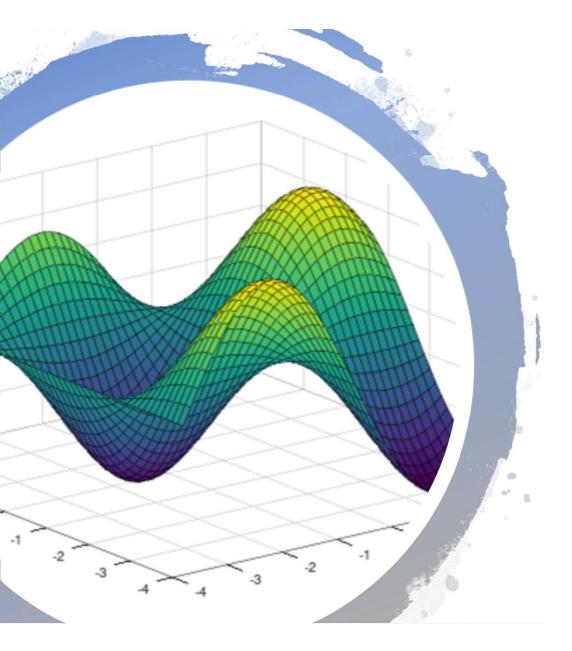
 Convert labels into one-hot encoded vectors to avoid biases

 $[1\ 2\ 3\ 0\ 2] \xrightarrow{} [0100\ 0010\ 0001\ 1000\ 0010]$

- Shuffling to ensure independent samples and an unbiased estimate
- Remove under-represented categories







Optimization

1) Simple linear regression

- use statistics (means, std, correlations and covariance)
- Need for all the data

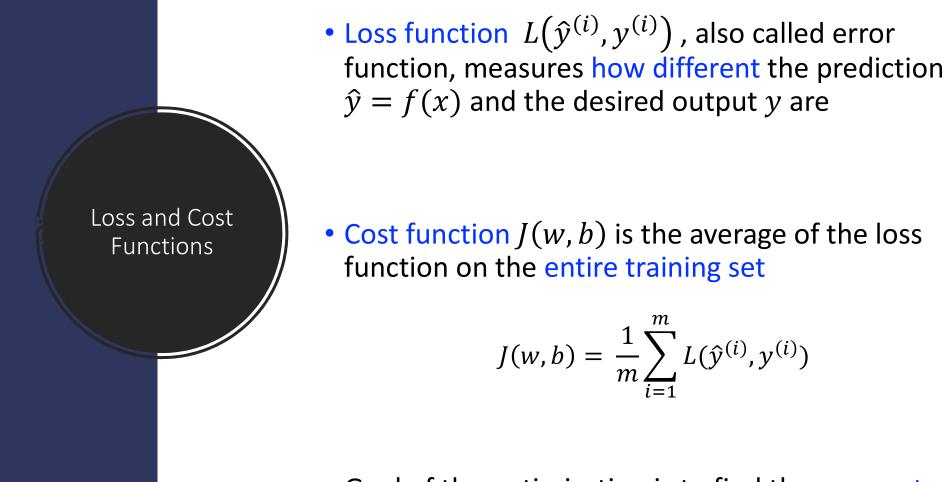
Methods to

learn the

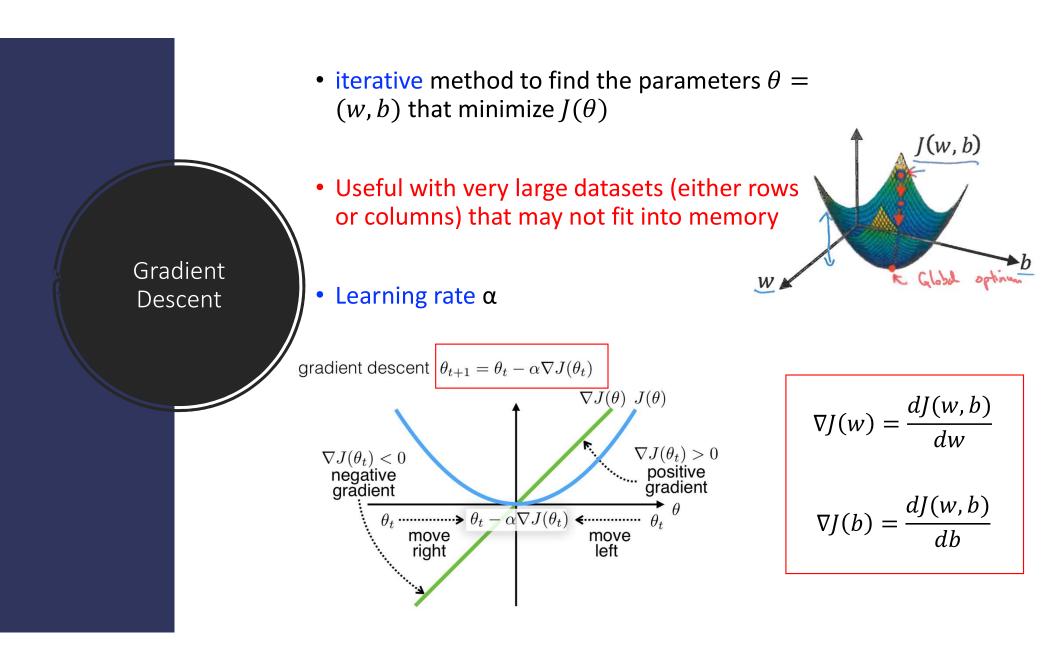
model

2) Ordinary Least Squares

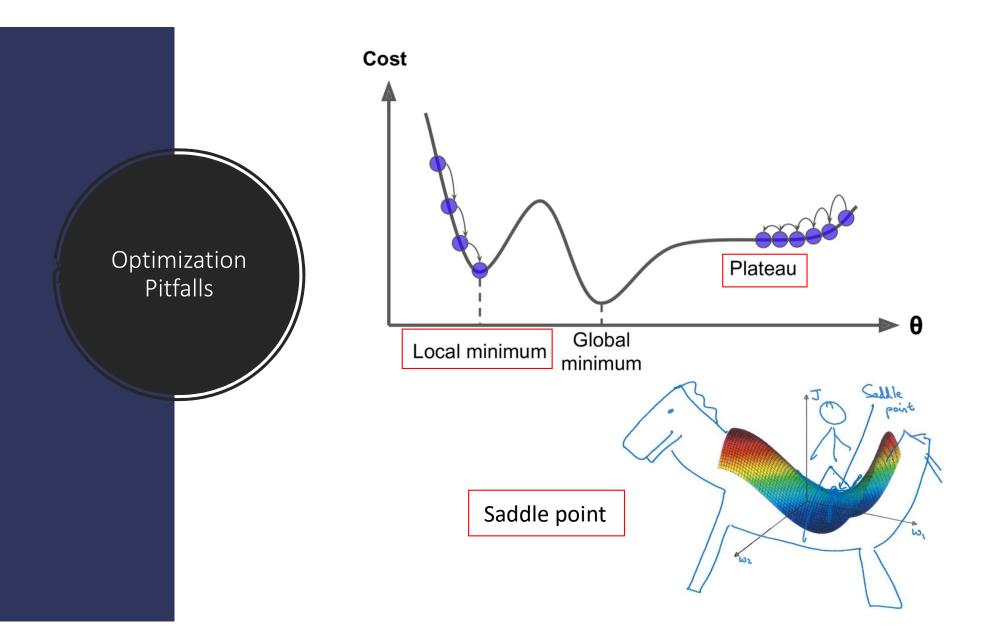
- Minimize the sum of the squared residuals
- Treats the data as a matrix and uses linear algebra to estimate the optimal values for the coefficients
- Need for all the data
- Need for enough memory



• Goal of the optimization is to find the parameters $\theta = (w, b)$ that minimize the cost function

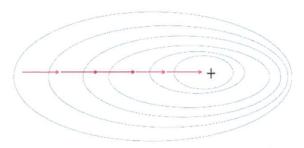


• Has a significant impact on the model performance, while being one of the most difficult parameters to set Too low Too high Just right learning rate $J(\theta)$ $J(\theta)$ $J(\theta)$ α θ θ θ A small learning rate The optimal learning Too large of a learning rate rate swiftly reaches the requires many updates causes drastic updates before reaching the minimum point which lead to divergent minimum point behaviors

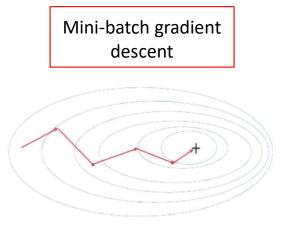


• At each iteration :

Gradient descent (GD)



the *whole* training set

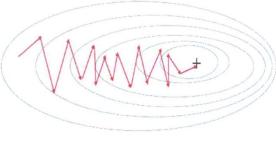


a *batch* of samples

Batch size choice *typically 32,64,128,256,512*

Mini-batch Gradient Descent and Stochastic Gradient Descent

Stochastic gradient descent (SGD)

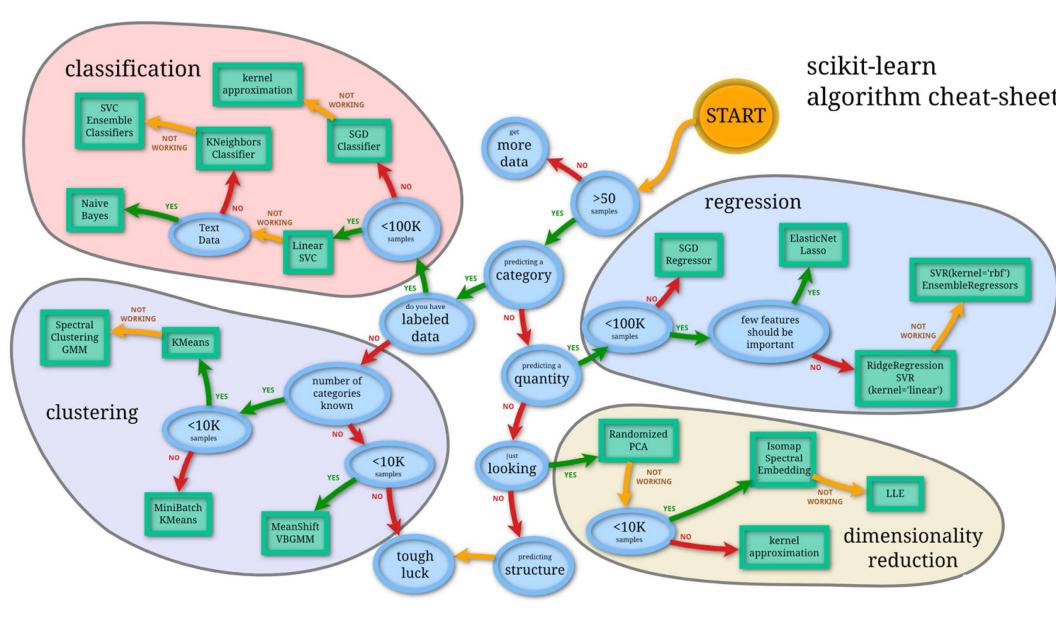


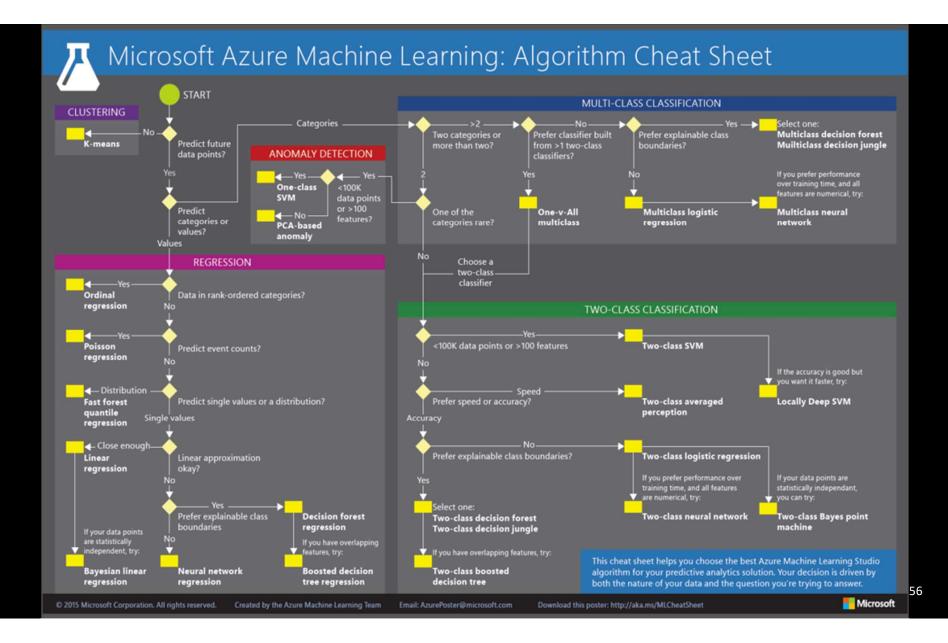
1 sample

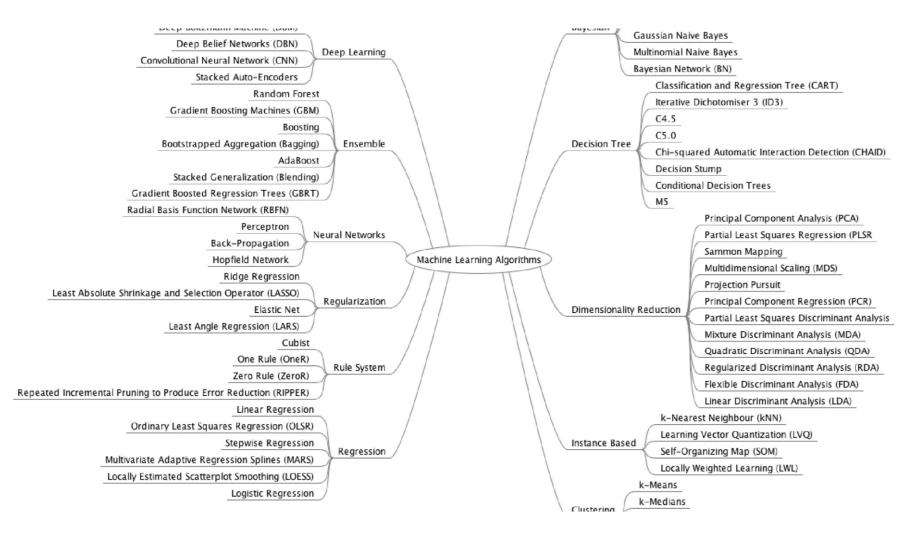
How to find its way in the algorithm jungle ?

No Free Lunch Theorem

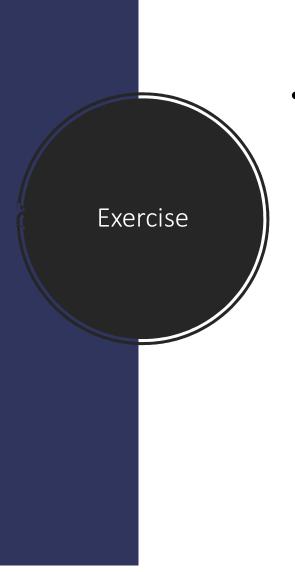
- If you make no assumption about the data, there is no reason to prefer one model over any other
- No model that is a priori guaranteed to work better
- In practice, impossible to test all the models, so make some reasonable assumptions about the data and evaluate only a few models







The lesson is always to fit a simple model first, and then only adopt a more complicated ML model if the extra predictive accuracy (value) it provides is worth it.

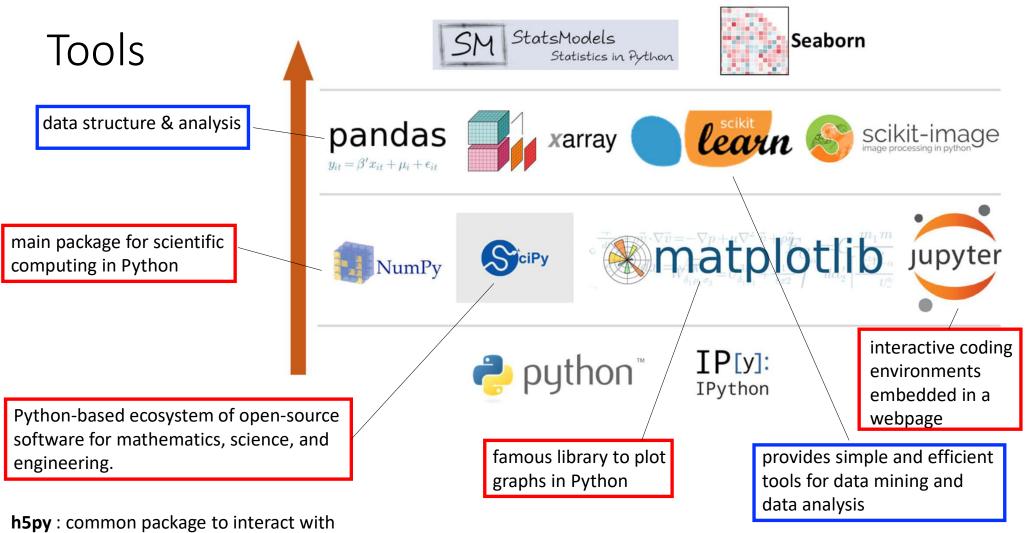


- Create your own summary (graph) for :
 - Regression
 - Classification

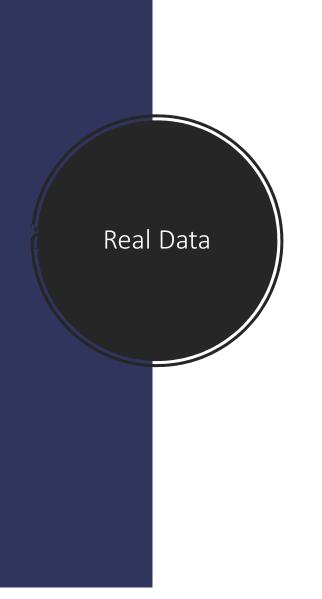
https://b.socrative.com/login/student/

Room : CONTI6128

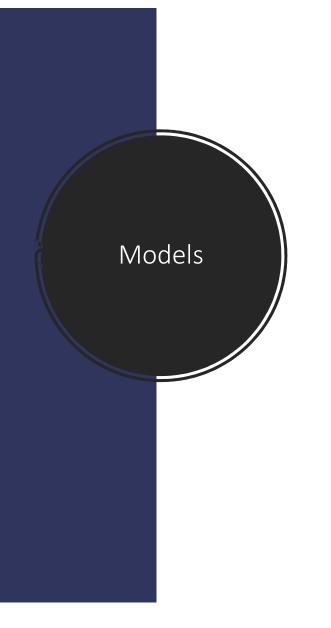
Technical Details



a dataset that is stored on an H5 file



- <u>http://archive.ics.uci.edu/lm/</u>
- <u>https://www.Kaggle.com/datasets</u>
- <u>http://aws.amazon.com/fr/dataset/</u>



https://github.com/tensorflow/models

Notebooks (1)

Use Anaconda Navigator

New environment with tensorflow v.2.1.0:

conda create -n tf tensorflow conda activate tf

Add pip v.20.1.1 :

conda install pip

Notebooks (2)

Add libraries :

conda install matplotlib

pip install sklearn

pip install seaborn

pip install ipywidgets

jupyter nbextension enable --py widgetsnbextension

Notebooks (3)

• Define git command :

- install git : <u>https://git-scm.com/download/win</u> (64-bit Git for Windows setup)
- Modifying PATH on Windows 10:
- In the Start Menu or taskbar search, search for "environment variable".
- Select "Edit the system environment variables".
- Click the "Environment Variables" button at the bottom.
- Double-click the "Path" entry under "System variables".
- With the "New" button in the PATH editor, add C:\Program Files\Git\bin\ and C:\Program Files\Git\cmd\ to the end of the list.
- Close and re-open your console.