Module 1:
Machine Learning Review

Supervised
Learning 4
Algorithms

&

Géraldine Conti, August 2020 1

Discussion Session

- Review of Notebook 1 (data preparation)

® B ase d on 02_end_to_end_machine_learning_project.ipynb (A. Geron)

- Visualize data

. Correlation matrix
- Prepare data

- Encoding

- Exercise (summary of algorithm jungle)

Bibliography

e Deep Learning book (Goodfellow, Bengio, Courville)
* Machine Learning @ Stanford (Prof Andrew Ng)

* Hands-On Machine Learning with Scikit-Learn & Tensorflow
(Aurélien Géron)

Regression

Learning Objectives « Linear, polynomial

* Ridge, LASSO, Elastic Net
* Performance evaluation

Classification
* Logistic regression
* Naive Bayes
* K-nearest neighbors
e Performance evaluation

Support Vector Machines (regression/classification)
e SVC, SVR

Ensemble methods (regression/classification)
* Decision trees, random forests
* Bagging, boosting .

Explainable class
boundaries ?

Regression

Linear
approximation
OK ?

YES

NOT
WORKING

Measurement
Variables

Type

Examples

Nominal

Ordinal

Interval

Ratio

Dichotomous

Introduction

* Both a statistical algorithm and a ML algorithm

* Find a linear relationship between :
 a target (dependent, endogenous)
* one or more predictors (independent, exogenous)

Regression Dependent variable | Independent variable
1 | Simple 1 (interval, ratio) 1 (interval, ratio, dichotomous)
2 | Multiple 1 (interval, ratio) 2+ (interval, ratio, dichotomous)
3 | Logistic 1 (dichotomous) 2+ (interval, ratio, dichotomous)
4 | Ordinal 1 (ordinal) 1+ (nominal, dichotomous)
5 | Multinomial | 1 (nominal) 1+ (interval, ratio, dichotomous)
6 | Discriminant | 1 (nominal) 1+ (interval, ratio)

* Part of these regression algorithms are actually used

for classification

10

Linear
Regression

* Regression equation (simplest form):y=b-x + ¢
* Complexity = number of coefficients used in the model

* Cost function

A 1 i i
MSE(X,9) = %ng;l(gr . x® — yO)2
5;=9T’X= 90+91x1+92x2+...+9nxn

* Can be solved using Gradient descent

11

Linear
Regression in
practice

>>> import numpy as np

>>> from sklearn.linear_model import LinearRegression
>>> X = np.array([[1, 1], [1, 2], [2, 2], [2, 3]])
> #y=1*x0+ 2 *x1+ 3

>>> y = np.dot(X, np.array([1, 2])) + 3

>>> reg = LinearRegression().fit(X, y)

>>> reg.score(X, y)

1.0

>>> reg.coef_

array([1., 2.])

>>> reg.intercept_

3.0000. ..

>>> reg.predict(np.array([[3, 5]]))

array([16.])

Polynomial
Regression

1000000

from sklearn.preprocessing import PolynomialFeatures mnoee

poly reg=PolynomialFeatures(degree=4) g
X_poly=poly reg.fit_ transform(X) P 0000
poly reg.fit(X poly,y) 200000

lin_reg2=LinearRegression()
0

lin reg2.fit(X poly,y)

* You can use a linear model to fit nonlinear data

y:BU+le+B2I?'+,83$3+---+Bng;" + €.

* Add powers of each feature as new features

e Use LinearRegression on this training data

Truth or bluff(Polynomial Regression)

* The classical linear regression does not work
well with :

Y * Multicollinearity : one or more in the independent
Limitations

it @] variables can be expressed as the linear
linear combination of the other independent variables.
regression

* Number of independent variables > number of
observations : the ordinary least square estimates
are not valid because there are infinite solutions ot
our estimators

° SO I utio n: regu |a rizatio N Regularized Loss = Loss Function + Constraint

14

* Regularized linear model

e Constraint = half the square of the L2 norm of
the weight vector

Ridge
Regression

1(8) = MSE(0)[+ 0.5 - a X, 6.2

* Keeps the model weights as small as possible

* a controls how much you want to regularize
the model

 a=0is a linear regression

15

* Regularized linear model
* Least Absolute Shrinkage and Selection Operator

LASSO e Constraint = L1 norm of the weight vector
Regression

J(6) = MSE(8)|+ a X116,

* Tends to completely eliminate the weights of the
least important features (i.e. set them to zero)

* Middle ground between Ridge Regression and
Lasso Regression

* Constraint = a mix of both Ridge and Lasso’s
regularization terms

JO)=MSE®)|+ (1 —7r)/2-a)i-,02+r-adXi,|0;]

e Use it (or Lasso) if you suspect that only a few
features are actually useful

17

y: random numbers

i - minor random trend picked up by LR and Ridge
= . = - LASSO, ElasticNet : L1 penalty term high enough
0s e to force the weight (slope) to zero when

— e e e .
o minimizing the loss function.
02 e e Small linear
- ! e component
0 2 ¢ % ¢ ¢ 10 added y: random numbers + 0.1x
1.8 == LinearRegression: m=0.15 . /,‘
. = Ridge: m=0.07 oL
16 —— Lasso:m=0. -7
CO m pa rlSO n 14 A= Il;lasticNet?r:jo.% L /:,”,(;‘
y: random numbers + 1.0x 1.2 .//4'% ______
== |inearRegression: m=1.05 > 10 __'——-'i"é‘ff —————
10 —— Ridge: m=0.48 - "'-:%’
== Lasso: m=0.93 s s
g — ElasticNet:m=0.93 - 06 y/”
P~ /"
e ——— . N
/ 0 2 4 6 8 10
4 — . X
e More linear
, // component - finough”for Lasso to not -fl:|||y
= added ignore” the slope coefficient
0 2 4 6 8 10 anymore.
- Lasso and Elastic Net almost fully
“accept” the significant trend
- L2 term (Ridge), leads to a lower slope
18

https://towardsdatascience.com/regularization-for-machine-learning-models-9173c2e90449

Performance
Evaluation

https://scikit-learn.org/stable/modules/model evaluation.html#regression-metrics

Make your own summary table

19

Classification

Explainable class
§ cat boundaries ?
Duck:

Bird:

NOT
WORKING

Duck: 723

Bird:

* Binary classification
e Distinction between two classes

* Multiclass classification
e Distinction between more than two classes

Types of
Classifications

 Multilabel classification
* Possible to have several classes selected

Multi-Class Multi-Label
C=3 Samples Samples
A (o
W | | o3 CLEINE

@ Labels (t) Labels (t)
O [001] [100] [010] [101] [010] [111]

22

e Generative :

* Probabilistic “model”
of each class

* Decision boundary is
where one model
becomes ore likely

e Can use unlabeled
data

e Discriminative :
* Focus on the decision
boundary

* Only supervised tasks

Discriminative Generative
+ ® @
Y @ @
L Y ‘ . .
o' @ = e)
" ° s ©®
&‘%‘;}@ “.. ® & ®e
= =
e ‘00 e, OO
N & @ y Yy o
& 09 a @ @
@ ¢ “ @ " @ @
L
1. Logistic 3. Naive Bayes
Regression

2. K-nearest
neighbors

23

* Mainly used in cases where the output is Boolean

* Data fit into linear regression model, which then be
acted upon by a logistic function predicting the
categorical target

1. Logistic A — T
=o(0"-x
Regression P ()

* Decision Boundary : can be linear or non-linear

. Bolynomial order increased to get complex decision
oundary

 Cost function (convex) : cross-entropy

1 — . . .
- Q) NQ) 5O a0
J(6) = igl[y log(p®?) + (1 —yO)log(1 —p)]—

Sigmoid (two-class classifier) : olr)=
(z) 14+ e
Logistic . | | |
Function —10 -5 0 5 10
exp(z;)
: .. . |softmax(z); =
Softmax (multi-class classifier) : > exp(2;)
1 m K
Cross-entropy cost function : J(6) = - EZ Z ¥ O log(,)
i=1k=1

25

Logistic
Regression in
practice

>>> from sklearn.datasets import load iris

>>> from sklearn.linear_model import LogisticRegression

>>> X, y = load_iris(return_X_y=True)

>>> clf = LogisticRegression(random_state=0).fit(X, y)

>»> clf.predict(X[:2, :])

array([e, @o])

>>> clf.predict_proba(X[:2, :])

array([[9.8...e-01, 1.8...e-02, 1.4...e-08],
[9.7...e-01, 2.8...e-02, ...e-08]])

>>> clf.score(X, y)

0.97...

26

 Algorithm (distance-based) :

* Take a data point and look at the k closest
labeled data points.

* The data point is assigned the label of the

2 K-Nearest- majority of the k closest points
Neighbors s .
(k_ N N) " I:f:'{%:;i;ple Class A Class A
* * I ! Class B) * * Class B
El * % *(g ***t .
;| .
e -t 22,
A A A A A
* Steps : —— o
1) Calculate dista nce Flndlng NThbars&Vatlng;:lrstTels
. . * Class
2) Find closest neighbors ; *JS ’
LA AA
3) Vote for labels o, A

X-Axis

>>> X = [[e], [1], [2], [3]]

3> y [6, 0, 1, 1]

>>> from sklearn.neighbors import KNeighborsClassifier
>>> neigh = KNeighborsClassifier(n_neighbors=3)

K-NN in >>> neigh.fit(X, y)

practice KNeighborsClassifier(...)
>>> print(neigh.predict([[1.1]]))
[0]

>>> print(neigh.predict_proba([[©0.9]]))
[[0.66666667 ©.33333333]]

Can also be used for multilabel classification

* LR is a parametric approach because it assumes a
linear functional form for f(X).

* K-NN is a non-parametric method

Linear
RegreSSlon Parametric Non-parametric
versus K-NN) .
Advantages Easy to fit (small number Do not assume an explicit
of coefficients) form for f(X)

Easy to interpret

Disadvantages | Strong assumptions about | More complex to interpret
the form of f(X)

* |If there is a small number of observations per
predictor, then parametric methods then to work
better

3. Naive Bayes

* Linear classifier using Bayes theorem and strong
independence condition among features

* “naive” because of the independence of the features
* Pixels in a digital image
* Word in a sentence @

likelihood : - @‘gé\

posterior
\ j choose a suitable
\ p(x|y l;) p(yk.) distribution depending

p(yk|x) — on the nature of the
p (X) / data, e.qg. Gaussian

density function

30

>>> from sklearn.datasets import load_iris
>>> from sklearn.model_selection import train_test_split

NENE BayeS N >>> from sklearn.naive bayes import GaussianNB
. >>> X, y = load_iris(return_X_y=True)
F)ra(:t|C63 >»> X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5, random_state=0)

>>> gnb = GaussianNB()

>>> y _pred = gnb.fit(X_train, y_train).predict(X_test)

>>> print("Number of mislabeled points out of a total %d points : %d"
0 % (X_test.shape[@], (y_test != y _pred).sum()))

Number of mislabeled points out of a total 75 points : 4

* Infinite training size : logistic regression performs
better than Naive Bayes

- Logistic * Naive Bayes reaches the asymptotic solution faster
eferfssjgon (O(logn) than logistic regression (O(n)) :
computational cost reduced

Naive Bayes

* Naive Bayes has a higher bias (because of its
assumption on features) but lower variance
compared to logistic regression

32

* To evaluate a ML algorithm, we need a way to
measure how well it performs on the task

* It is measured on a separate set (test set) from
what we use to build the function f (training set)

Performance
Evaluation

* Examples :
* Classification accuracy (portion of correct answers)
 Error rate (portion of incorrect answers)
* Regression accuracy (e.g. least squares errors)

Case Study

* You want to find cats in

images

* Classification error (portion
of wrong answers) used as
an evaluation metric

Algorithm | Classification error (%)
A 3%
B 5%

% Which one is best ?

* Precision (p)

Evaluation
Metrics Praeision ((y) _ True positive x 100 = True positive
? Number of predicted positive - (True positive+False positive)
2
—=X 100 = 66%
2 +|1
e Recall (r)
True positive True positive
o) = =
Recall (A) Number of predicted actually positive x 100 (True positive+False negative)
2

Ve

2H?2

100 = 50%

x 100

100

* F1-score is a harmonic mean combining p and r

.
F1-Score= +—
+
p r
/ Precasion ?ﬁpli f5can \
ﬂkaol —— 0-5 D4 0 444 \/
A(aoj, —y D3 D-1 6-11+5
00 10 D-0372

KA‘@DS —>

* To evaluate the performance of a classifier

e Count the number of times instances of class A
are classified as class B

COﬂfUSlon Confusion matrix, without normalization
Matrix =
setosa 0
10
8
o
o]
© i
p versicolor
=
'_
-4
virginica A 0 Lo
T T S O
setosa versicolor virginica

Predicted label 39

* Tool used with binary classifiers for accuracy

ROC (LR-binary, 14 features, N=2000k)

1.0}
0.8 R
o]
&
= 0.6 i
=
‘i
o
oo
é 0.4}]
| — AUC-fr= 098
0.2+ | AUC-en=0.88]
— AUC-ir=0.88
— AUC-sc= 091
— AUC-ab= 091
— AUC-rus= 0.97
— AUC-ch= 0.99
OO J | ! I
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

40

Support Vector
Machines (SVMs)

* SVM first developed in 1992 for classification (SVC),
then generalized to handle regression (SVR)

* Both linear and non-linear cases covered depending
on the choice of the kernel

Introduction » Convex optimization =2 unique minimum

* Suited for complex but small- or medium-sized
datasets

* Use cases: object identification, text recognition,
bioinformatics, speech recognition,...

gg\\sg Difference with NNs ?

* “Fit the widest possible street between classes”

 Large margin classification

X7 A . :
M \":
\\\ \:kl- + ++
A
0 |
oa\t \\+ +
0 a ! V%
0 0: v
Xq

Which hyperplane?

Margin
Support vectors
Xy A
Decision boundary
wix=0 + +
“negative” X + “positive”
hyperplane hyperplane
whesa \ > wix=1
X
SVM: !

Maximize the margin

e Strictly binary classifier

* Important to scale the input features

45

* Minimization problem:

. (1 . . (1
d = min (§|w||2) = min (ngw)

 Constraint :

Primal yn : Given answer € {—1,1}
Problem

- . ynl&n Z 1 = yn(WTX-n -+ b) Z 1
yn : Predicted answer € {—1,1}

e Optimization problem :

N
1
L(W b'-a) — §WTW - & 27) [yn(WTxn + b) o 1]

n=1

* Data points whose a > 0 are the support vectors and
influence the behavior of the separating hyperplane.

46

* Make the equation dependent on one parameter only

* Express part of it as a kernel function k : dual problem

Hard Margin N N N

Y Zan = = Z Z amanmenk(xm Xn)

n=1 m=1n=
N

subject to 0 < ay, Z Ontn =0

n=1

e Limitation :
* Only works if the data is linearly separable
e Quite sensitive to outliers

47

* Kernel : function capable of computing the dot
product @(a)’ - ¢ (b) based only on the original
vectors a and b without having to compute (or even
to know about) the transformation ¢

Kernel * Linear K(a,b) =a’-b
Examples

* Polynomial K(a,b) =y(a’-b+71)
* Gaussian RBF K(a,b) = exp(—vy|la — b||?)

* Disadvantages :
e Cost of training high with large datasets
* Generic kernels struggle to generalize well 48

e
* Define a tolerance variable € to 0o © U
violate the margins to be minimized ® g
© 06: (4]
e=0 © ©

p— 09
&,
&,

Soft Margin _
SVM * New variable C

 Large C = small margin
* Small C - large margin

N N N

Zan Y Z Z amanymynk(xrn xn)

n=1 m—l n=1

N
subject to 0 < a-n Z anyn = 0

n—= 49

SVCin
practice

e sklearn.svm.SVC : fit time scales at least quadratically with the
number of samples and may be impractical beyond 10000 samples

>>> import numpy as np

>>> X = np.array([[-1, -1], [-2, -1], [1, 11, [2, 1]11) Kernel function = ‘linear’, ‘poly’,
>»> y = np.array([1, 1, 2, 2])

>>> from sklearn.svm import SVC ‘rbf’, ‘sigmoid’, ... only with the
FEEcLE U EaTilaE SUtoR) SVC class, not the LinearSVC !
>»> clf.fit(X, y)

SVC(gamma="auto")

>>> print(clf.predict([[-©.8, -1]]1)) C=1 (default vaIue)

[1]

 sklearn.svm.LinearSVC : can be used with larger datasets
(up to 100000 samples)

>>> from sklearn.svm import LinearsSVcC
>>> from sklearn.datasets import make_classification

>»> X, y = make_classification(n_features=4, random_state=08) LinearSVC much faster than
>»>> clf = LinearSVC(random_state=0, tol=le-5)

>>> clf.Fit(X, y) SVC(kernel=‘linear’), as based on
LinearSVC(random_state=0, tol=1e-05) the libli lib
>>> print(clf.coef_) € lidlinear library

[[@.085... ©.394... 0.498... 0.375...]]
>>> print(clf.intercept_)

[0.284...]
>»> print(clf.predict([[@, @, @, @]]))
[1]

50

* Add polynomial features
* Example : 2"9-degree polynomial mapping

Transformed vector is
3dim instead of 2dim !

Non-linear * Kernel trick : ap;})]Iy the s?me n”éapping, then compute the
e transformed vectors

SVC dot product of t

s@7-gb) | =|

* Apply it to solve the dual problem : replace the dot product by its
square

SVC versus
Logistic
Regression

SVC works well with unstructured and semi-
structured data like test and images. Logistic
regression works with already identified
independent variables.

SVC is based on geometrical properties of the
data while logistic regression is based on
statistical approaches

The risk of overfitting is less in SVC

General rule : try out logistic regression first

52

n = number of features,

m = number of training examples

1. If nis large (1-10,000) and m is small (10-1000) : use logistic regression

SVC versus or SVM with a linear kernel.
Logistic

Regression 2. If nis small (1-10 00) and m is intermediate (10-10,000) : use SVM with

(Gaussian, polynomial etc) kernel

3.Ifnissmall (1-10 00), m is large (50,000-1,000,000+): first, manually
add more features and then use logistic regression or SVM with a linear
kernel

https://medium.com/axum-labs/logistic-regression-vs-support-vector-machines-svm-c335610a3d16#:~:text=SVM%20tries%20t0%20finds%20the,are%20near%20the%200ptimal%20point.

53

* Trickis to reverse the objective: try to fit as many

instances as possible on the street while limiting
margin violations

 Hyperparameter € to control the width of the street
called error margin

n
MIN Z(yi — w;x;)*

R

ly; —wix;| < €

: 5 3
R

1 2
MIN E||w||

54

* For any value that falls outside of €, we can denote its
deviation from the margin as €.

n
1
MIN §|Iw||2 +Cz I&;] lyi —wixi| < e+ (]
i=1

* Hyperparameter C:

* If Cincreases: tolerance for points outside of € increases.
 If Capproaches 0: tolerance 2 0

Two levels of tolerance to errors :
- acceptable error margin €
- tuning the tolerance ¢ of falling outside that acceptable error rate

55

e sklearn.svm.SRV :
* free parameters : C and epsilon
* fit time : scales at least quadratically with the number of
samples and may be impractical beyond 10000 samples

>>> from sklearn.svm import SVR
>>> import numpy as np

>>> n_samples, n_features = 10, 5
>>> rng = np.random.RandomState(@)

SVR . >>»> y = rng.randn(n_samples)

N >»> X = rng.randn(n_samples, n_features)
c >»> clf = SVR(C=1.0, epsilon=0.2)

practice >>> clf.Fit(X, y)

SVR(epsilon=0.2)

e sklearn.svm.LinearSVR :
* Similar to SVR with kernel=‘linear’, but use of another library
* Scale better to large number of samples (up to 100000)

»>>> from sklearn.svm import LinearSVR

>>> from sklearn.datasets import make_regression

>>> X, y = make_regression(n_features=4, random_state=0)
»>>> regr = LinearSVR(random_state=8, tol=1e-5)

>>> regr.fit(X, y)

LinearSVR(random_state=0, tol=1e-85)

»>>> print(regr.coef_)

[16.35... 26.91... 42.30... 60.47...]

>>> print(regr.intercept_)

[-4.29...]]

>>> print(regr.predict([[6, 0, 0, 8]]))

[-4.29...] 56

Ensemble Methods

* Fundamental components of Random Forests

ops . petal length (cm) <= 2.45
Classification gini = 0.6667 Root node
samples = 150

example : value = [50, 50, 50]
class = setosa

\?tlse

petal width (cm) <= 1.75
gini=0.5
samples = 100
value = [0, 50, 50]
class = versicolor

Decision Trees

Leaf node Child node

What would T R /
change for a TR
regression EARles = ot
value =[0, 49, 5]
example ? class = versicolor

* Regularization : maximum depth of the tree

59

* Decision Trees are very sensitive to small variations in the
training data.

* Wisdom of the crowd : aggregate predictions of a group
of predictors 2 Ensemble methods

Ensemble

Methods Ensemble’s prediction
(e.g., majority vote)

Predictions

Diverse
predictors

Types of
Ensemble
Techniques

* Simple ensemble techniques
* Mode, average, weighted average

* Advanced ensemble techniques
* Bagging (Bootstrap AGGregatING)
* Boosting

62

£ 35 1
gso Person Professional Weight Rating
] !

* A Y 0.3 3
= 5 B Y 0.3 2
£ 20 C Y 0.3 2
2 15 D N 0.15 4
10 + l E N 0.15 3
4 5 -+ - =
Simple | |
Ensem b | e 2 2 - e »

App Ratings

Techniques

1) Take the mode of the results
MODE=3, as majority people voted this

2) Take the average of the results (rounded to the nearest integer)
AVERAGE= (1*5)+(2*13)+(3*45)+(4*7)+(5%2)/72 = 2.833 = 3

3) Take the weighted average of the results

V\éEIGHTgI)ED AVERAGE= (0.3*3)+(0.3*2)+(0.3*2)+(0.15*4)+(0.15*3)
=3.15 =

63

* Use the same training algorithm for every predictor
(e.g. classification tree)

* Train them on different random subsets of the training
set (sampling with replacement)

* Combine using average or majority voting

Dataset l
Random subset 1 Random subset 2) Random subset n

TREE 1 E TREEZ | TREE m
] (|

:J#l’_—J .)

> Results Aggregation

64

 can be thought of as Bagging, with a slight tweak:

All Data * Similar to bagging, bootstrapped
subsamples are pulled from a
subset W subset larger dataset.

tree tree
A) ¢ The difference is that it searches
/ "\ ./\ for the best feature among a
7\ random subset of features
me

* Greater tree diversity, which trades a higher bias for a
lower variance

65

Feature
Importance

* Relative importance of each feature, sum=1

e Useful for feature selection

Random Forest Feature Importances (MDI)

random_num
fare

age
sex_female
sex_male
pclass_3.0
sibsp

parch
pclass_1.0
embarked_C
random_cat_0
random_cat_2
random_cat_1
embarked_S
pclass_2.0
embarked_Q

0.000

0.025 0.050 0.075 0.100 0.125 0.150

0.175

66

* Combine several weak learners into a strong learner : each model
boots the performance of the ensemble

* weak learners : each of them might not be good for the entire data set but is
good for some part of the data set.

DATASET ERRORS ERRORS
*® PraLL. o e MODEL YA MODEL
se S, 3
Boostln 00 g%y TRAN ST @ Og®g TRAN TEST | @ o TRAIN
®o_o0 0 ® oo e Ue%
@ o ® (&) ® @ ® ® Py
‘ I | L N

=]

PREDICTION

 Train predictors sequentially, each trying to correct the predecessor

e Examples of methods : AdaBoost and Gradient Boosting

67

Comparison

%/\6\\53 Which one is which ?

e Uses voting

Similarities | | Combines models of the same type
Individual models | Each new model is
are built separately | influenced by the

performance of those

Differences built previously
Equal weight is Weights a model’s
given to all contribution by its
models performance

:Lr:::i‘;:rror Variance Bias
Overfitting Prevented, as each model

only sees part of the data
(helps decreasing the
variance error)

Tends to overfit the
training data (parameter
tuning is crucial)

* Pros :

* More accurate prediction results

* better performance on unseen data as compared to the individual
models in most of the cases

e Stable and more robust

» aggregate result of multiple models is always less noisy than the
individual models

* Used to capture the linear/non-linear relationships in data

Ensemble
Methods
Pros and Cons

e Cons:

e Computation and design time is high
* not good for real time applications

* Selection of models for creating an ensemble is an Art !

Averaging methods in practice

Classification

Regression

Bagging

>>> from sklearn.ensemble import BaggingClassifier
>>> from sklearn.neighbors import KNeighborsClassifier
>>> bagging = BaggingClassifier(KNeighborsClassifier(),

max_samples=0.5, max_features=0.5)

>>> from sklearn.svm import SVR

>>> from sklearn.ensemble import BaggingRegressor

>>> from sklearn.datasets import make_regression

»>>> X, y = make_regression(n_samples=100, n_features=4,
n_informative=2, n_targets=1,

e random_state=0, shuffle=False)

>>> regr = BaggingRegressor(base_estimator=SVR(),

s n_estimators=18, random_state=08).fit(X, y)

>>> regr.predict([[e, @, @, @]])

array([-2.8720...])

RandomForest

>>>
>>>
>>>
>>>
>>>

from sklearn.ensemble import RandomForestClassifier
X = [[o, 0], [1, 1]]

Y = [0, 1]

clf = RandomForestClassifier(n_estimators=10)

clf' = elf.fit(X, Y)

>>> from sklearn.ensemble import RandomForestRegressor
>>> from sklearn.datasets import make_regression

»>>> X, y = make_regression(n_features=4, n_informative=2,

Srers random_state=0, shuffle=False)

>>> regr = RandomForestRegressor(max_depth=2, random_state=0)
>>> regr.fit(X, y)

RandomForestRegressor(max_depth=2, random_state=0)

>>> print(regr.feature_importances_)

[0.18146984 ©.81473937 ©.00145312 ©.00233767]

>>> print(regr.predict([[0, @, ©, ©]]))

[-8.32987858]

BOOSting methods in pra ctice * For >10000 samples : HistGradientBoosting is faster

Classification Regression

AdaBoost

>>> from sklearn.ensemble import AdaBoostRegressor

>>> from sklearn.datasets import make_regression

>>> X, y = make_regression(n_features=4, n_informative=2,

e random_state=0, shuffle=False)

>>> regr = AdaBoostRegressor(random_state=0, n_estimators=100)
>>> regr.fit(X, y)

AdaBoostRegressor(n_estimators=100, random_state=0)

>>> from sklearn.model_selection import cross_val_score
>>> from sklearn.datasets import load_iris
>>> from sklearn.ensemble import AdaBoostClassifier

>>> X, y = load_iris(return_X_y=True) >>> regr.feature_importances_
>>> clf = AdaBoostClassifier(n_estimators=100) array([0.2788..., 0.7109..., 0.0065..., 0.0036...])
>>> scores = cross_val_score(clf, X, y, cv=5) >>> regr.predict([[e, 0, 0, ©]])
>>> scores.mean() array([4.7972...])
Q.95 o >>> regr.score(X, y)
Q.9 77h. ..

GradientBoosting™*

>>> import numpy as np

>>> from sklearn.metrics import mean_squared_error

>>> from sklearn.datasets import make friedmanl

>>> from sklearn.ensemble import GradientBoostingRegressor

>>> from sklearn.datasets import make_hastie 10 2
>>> from sklearn.ensemble import GradientBoostingClassifier

>>> X, y = make_hastie_10 2(random_state=0)
>>> X_train, X_test = X[:2000], X[2000:]

>»> y_train, y_test = y[:2000], y[2000:] >>> X, y = make_friedmanl(n_samples=1200, random_state=8, noise=1.80)
B B >>> X_train, X_test = X[:200], X[200:]
»>»> clf = GradientBoostingClassifier(n_estimators=100, learning rate=1.0, >>> y_train, y_test = y[:200], y[200:]
iisre max_depth=1, random_state=0).fit(X_train, y_train) >>> est = GradientBoostingRegressor(n_estimators=100, learning_rate=0.1,
>>> clf.score(X_test, y_test) s max_depth=1, random_state=0, loss='ls'). flt(X train, y_train)
0.913... >>> mean_squared_ error(y test, est. predlct(x test))
5.00.

72

74

LRl e WE T TR AT

DECISION TREES
AND BOOSTIN

[A L - R T R R AR T e aH
| Ay e | | mang ecemimaniary an s sk

Two-Minute Papers

https://b.socrative.com/login/student/

Room : CONTI6128

