Module 1:
Machine Learning Review

Build a ML
algorithm

Géraldine Conti, August 2020 1

Discussion Session

« Review of Notebooks 3.1 and 3.2 :

- Dimensionality reduction : PCA,
MINST compression example, Elbow
method, Kernel PCA, grid search
optimization, LLE, MDS, Isomap, t-SNE

- Clustering : k-means, inertia, K-
means++, silhouette score, Gaussian
mixtures, covariance comparison, BIC
and AIC

Bibliography

* Deep Learning book (Goodfellow, Bengio, Courville)

* Machine Learning @ Stanford (Prof Andrew Ng)

* Hands-On Machine Learning with Scikit-Learn & Tensorflow
(Aurélien Géron)

Learning Objectives

e Neural Networks

Training the NN

Activation functions

e Loss functions

Faster optimizers

Neural Network as alternative

Neural Networks

Neural
Network

(NN)

p. <= Synapse

Dendrites

/

Axon

=== Cell body 6

Nucleus

|rIDL'|

M‘i
NPULY —- L0 0; -f;(w.') pr—— O

¢ o
— - 7ﬁ

input,. d-{ Wi
et

\ : y
Vanable

weights

Learning algorithm inspired by how the brain works

* The first single-neuron network called perceptron
was proposed already in 1958 by Al pioneer Frank
Rosenblatt

I
) output
Ir3

* Combining many layers of perceptrons is known as
multilayer perceptrons (or FNN)

Nowadays

A mostly complete chart of

0w NeUral Networks
- Deep Feed Forward (DFF) Deep Convolutional Network (DCN) Deconvolutional Network (DN) Deep Convolutional Inverse Graphics Network (DCIGN)

_: Input Cell ©2076 Fjodor van Veen - asimovinstitute.org _— -
o W = B, S
é Noisy Input Cell Perceptron (P) Feed Forward (FF) Radial Basis Network (RBF) r~>_<, e \\'I/ \‘ O/Q\/ - »\>_< > /Q\
@ Hidden cell - - - ‘-’><‘ b A\'IA\"/ " e \O/ - >< ’\6/
i | - - 2 N ROIRK O, NP a \a
. Probablistic Hidden Cell . . v>_<\ Ny . f::.:"‘.?“‘(\ = /Q\G/ ! v>_< ,\6/
@ spiking Hidden Cell e b @l -8 @
piing Recurrent Neural Network (RNN) Long / Short Term Memory (LSTM) Gated Recurrent Unit (GRU) O, S, Q\/ a O, S,
. - - . - - . - [
. Output Cell . . ’ . —~></ \/Q Q\, - A>< -~ /Q
RN AN > _
. Match Input Output Cell » { }{ }‘{ . ‘{, '}.{' ’}‘€
SRR Generative Adversarial Network (GAN) Liquid State Machine (LSM) Extreme Learning Machine (ELM) Echo State Network (ESN)

. Recurrent Cell

© werory et Auto Encoder (AE) Variational AE (VAE) Denoising AE (DAE) Sparse AE (SAE)
. Different Memaory Cell . - \

" Kernel

__6 Convolution or Pool

Markov Chain (MC) Hopfield Netwark (HN) Boltzmann Machine (BM) Restricted BM (REM) Deep Belief Netwark (DBN) Deep Residual Network (DRN) Kohonen Network (KN) Support Vector Machine (svm) Neural Turing Machine (NTM)

051 905 97

* Naming : Feed Forward (FF)
e Deep feedforward networks (DFNN)

* multilayer perceptrons(MLPs) >< :.

* Goal : approximate some function f

Feedforward
Neural

Networks feedforward = information flows

from to output layer without

Deep Feed Forward (DFF)
K/ NN\ X

(A Q
R

feedback loops

Can you name a NN type with
feedback loops ?

* Deep for “more than 1 hidden layer”

Deploying a
Neural
Network

" training set optimization

Given a task (in terms of I/O mappings), we need :

3) Optimization 11

sequential processing

A
@)
D=
Network = 0
\VileYel=) © $
S c O
oo
| -
o

v

unit (neuron,
activation function)

12

= f4(q17QQ7q3)

Activation 21 = fa1(h1, ho) q1 = f3,1(21, 22, 23)

hi =
Functions hy — ﬁ;(é)) 2= faalhi,ha) g2 = faa(21,2,2)

z3 = fas(h1, ha) q3 = f3.3(21, 22, 23)

Hierarchical representation
y = fa(f3,1(f21(f1,1(2), f12(x)),...),...)

Weights w and bias b
parameters to optimize

Fully
connected

fa2(h1,ha) = wih1 + wahg +b,,

* Non-linear activation functions used in hidden layers

* Help model to generalize or adapt with variety of data .

Parameters that cannot be learnt directly from training data

Hey you goin’
to sleep?

Hyperparameters

7
‘-/_// / S 7

what if you try 0.01
as alearnin

* A long list...
* Number of hidden layers
* Number of hidden units

[]
o0 14

Training the NN

Maximum Likelihood

Training

Backpropagation
Activation function

- Saturating
- Non-saturating

Loss functions

Faster optimizers

15

* Loss function L()A/(i),y(")) , also called error
function, measures how different the prediction
¥ = f(x) and the desired output y are

reminder

T v * Cost function J(w, b) is the average of the loss
Cost function on the entire training set

m
functions 1 N
Jw,b) = — 3 LD, y®)
=1

* Goal of the optimization is to find the parameters
0 = (w, b) that minimize the cost function

* Choice of loss function determined by the output
representation (regression, classification)

16

hidden layers output
layer

cost function

e Given a task we define @:

: loss (,;?i’];v(m“G))
i ’ ‘ ;"l etwo K model e
° Tra|n|ng data {:C 9 y }%:1,...,’(}1 ',1{ NEIWOTK MOGB! e
‘%"‘:'f-': training set optimizationf
Optimization * Network f(x;0)

Cost function J(Q) = Z loss (yi: f(l'%a 9))
i=1

e Parameter initialization (weights, biases)

* Next, we optimize the network parameters 0 (training)

* In addition, we have to set values for hyperparameters

17

* Given IID input/output samples :

e Conditional Maximum Likelihood estimate (between
model pdf and data pdf):

Maximum
Likelihood Onr = arg ma,

e Mathematical tricks :

Ex’ymf)data log Proder (y]z;)]

Maximize the likelihood == Minimize the negative log-likelihood

18

Learning curve

Learning rate =0.005

* [terative process

Forward propagation Z= w'x+b i

Make a prediction

N

Parameter update
(gradient descent)

Cost function
A J(w,b) = J(6)

Define the error function

epochs

Tweaks the connection
weights to reduce the error

learning rate o /

PR Measure the error
t+1 = Ot t Backward propagation .ntripytion from

(dJ/dw, dJ/db) each connection

e Efficient implementation of the chain-rule to compute
derivatives with respect to network weights

Backpropagation

[aLl 0L Ohy g

Ohy — Ohs Ohy

OL 9L Ohs
Ohy Ohs Ohs

S

Activation
Functions

Sigmoid
Function

* Looks like a S-shape in the [0,1] range

0.0

1.0} |
1 .
¢(z) = 1T ez saturat/ng
<05]

-8 -6 -4 -2 0 2 Rl 6

8

Softmax function used for
multiclass classification

exp(z;)

Zj exp(z;)

softmax(z); =

* Used for models where we have to predict the probability

as an output

e Differentiable, monotonic but not its derivative 23\\153

Is this problematic ?

22

e S-shape in the [-1,1] range

—Sigmoid
0.5 [Tanh | What are the advantages
/ over sigmoid ?
N
-0.57

 Used for classification between two classes

e Differentiable, monotonic but not its derivative

24

 Rectified Linear Unit (ReLU) in the [0, infinity) range

ReLU
Not

saturating

What are the
limitations ?

R(z) =max(0, 2)
8

RelLU
Function

* Most used activation function right now
* Faster to compute than other activation functions

 Function and its derivative are both monotonic

10 |
softplus

* Softplus : Smooth approximation . |

vy

((x) = log(1 + exp())

* Attempt to solve the dying RelLU problem in the (-
infinity,infinity) range

ot

Leaky RelLU
Function f0)=0 y

e The leak a = 0.2 seems to lead to better
performance than a=0.01

e Alternative is to use randomized RelLU

 Function and its derivative are both monotonic 28

ELL activation function (o 1)

] ——r_ L]

-3
- -2 a . 4

* Takes on negative values when z<0 (solves vanishing
gradients problem)

* Non-zero gradient for z<0 (avoids the dying units issue)

* Smooth everywhere, including around z=0 (speed up
Gradient Descent)

* Main drawback : slower to compute than RELU
* During training : compensated by faster convergence rate
e During testing : slower 29

Activation
Functions
Summary

Hame

Identity

Binary step

Logistic (a.k.a
Soft step)

TarH

ArcTan

Rectified
Linear Unit
(ReLU)

Parameteric
Rectified
Linear Unit
(PReLD) (%)

Exponential
Linear Unit
(ELy) (3

SoftPlus

Plot

Equation
f(z)=z
o={1 o 150
f@) = =
f(x) = tanh(z) = - +i-21 _
f(z) = tan"'(z)
f@={; f 250

x for x>0

f(z) = { ar for <0

f(l‘)Z{ ale* —1) for <0

x for x>0

f(z) =log.(1+ €)

Derivative

f@)=

F@={1 o 250
r@={ 250
r@={79 50
f@)=

30

Activation

Functions:

In practice
(Keras)

activation='linear’
activation='sigmoid’
activation="tanh’

activation='softmax’

31

Loss functions

32

 Mean Squared Error Loss (MSE), L2 Loss

e Distribution of target variable is a standard Gaussian

* Average of the squared differences between predicted

. and true values
Regression

Loss
Functions G=W'"'h+b

p(y1y) = N(y; ¥)

m
~ ~ . N2
L®y) = —logp(19) =) (¥ -9
=0

 Mean Squared Logarithmic Error Loss (MSLE)
* If target value has a spread of values, and when predicting
a large value one does NOT want to punish the model as
heavily as MSE
* First calculate the natural log of each predicted values,
then MSE

Regression
Loss
Functions

* Mean Absolute Error Loss (MAE)
e Target variable may be mostly Gaussian, but with outliers

* Binary Cross-Entropy Loss

e Score that summarizes the average difference between the actual
and predicted probability distributions for predicting class 1

Binary
Classification
Loss . T
Functions g=o(w h+b)

p(ly) =91 —HUY

L(@,y) = —log p(y|9) = —(y log(®) + (1 — y)log(1 — 7))

35

* Hinge Loss
* Primarily developed for use with SVM models
* Binary classification where the target values are in the set {-1, 1}

* Assign more error when there is a difference in the sign between

. the actual and predicted class values
Binary

Classification
1 0SS * Squared Hinge Loss : calculates the square of the score hinge

Functions loss to smoothen the surface of the error function

36

* Multi-Class Cross-Entropy Loss
e Target set {0,1,2,...,,n} : need for one-hot encoding
* Generalization of binary cross-entropy loss to n classes

e Sparse Multiclass Cross-Entropy Loss

* No need to have the target variable be one-hot encoded
* Tackles the problem of one-hot encoding when too many categories

Multi-Class
Classification
Loss
Functions

e Kullback Leibler Divergence Loss (KL)

* Measure of how one probability distribution differs from a
baseline distribution

* Mainly used when using models that learn to approximate a
more complex function that multi-class classification

e Autoencoders

* Regression :
* loss='mean_squared_error’ or loss=mse’
* loss='mean_squared_logarithmic_error’
* loss='mean_absolute_error’

oSS
Functions :

, * Binary classification :

In Practice * loss='binary_crossentropy’
(Keras) * loss='hinge’

e loss='squared_hinge’

* Multi-Class classification:
* loss= 'categorical_crossentropy’
* loss='sparse_categorical crossentropy’
 loss="kullback_leibler_divergence’

Ingredient
Summary

Regression Binary Multi-class
classification classification
Hidden layer
activation
Geometry of

output layer

Activation of
output layer

Loss function

39

Faster Optimizers than
Gradient Descent

- Momentum optimization
- RMSprop

- Adaptative Moment (Adam)

41

* Momentum optimization takes past gradients into account

* Hyperparameter momentum [accelerates search in
direction of minima (update rule) :

Momentum my;q < fm; — aVgJ (Qt)
Optimization Ori1 < 0 +myyq

* The larger [, the smoother the update because the more
we take past gradients into account

* B =0.9isagood choice (between 0.8 and 0.999)

without momentum with momentum 42

RMSProp
Algorithm

computed

e impedes search in direction of oscillations (vertical
direction) . aIIows to increase «

\

l@>

,,,,, /L& low
i —w -
<« Last

Vaw = B+ Vaw + (1 — B) - dw
Vip = B+ Vaw + (1 — B) - db
W =W —a- v

sp+p 0 =b— - va

7\ AMArs

* Similar to SGD+p, difference in how the gradients are

Vaw = B - Vaw + (1 — B) - dw’

’Udb=,3-’vdw+(l—ﬂ)-db2

dw
W=W-a v/ Vdw + €
db
b=b—a-
RMSProp V'V + €

43

 Combine ideas from RMSProp (a increase) and
Momentum (acceleration), with parameters :
* Momentum decay : 51 for dw (usually 0.9)
e Scaling decay : 8, for dw? (usually 0.99)
* Smoothing term : € (usually 1-19)

Adam
Algorithm m,=p, mt—1+(1—ﬂl)gt

vt:/))ZVt—1+(1—ﬁZ)gt2

9=
t— A
1—/3“2 _ ~om,
rﬁ B mt Wi=W, 4 77\/th+6
[1_/;1

Comparison

- MNIST Multilayer Neural Network + dropout ; sgd
- v d v
\ — AdaGrad 1
\ — RMSProp == momentum
—— SGDNesterov = nag .
AdaDelt
aoete — adagrad
adadelta |§
I
- —— rmsprop |
8 A
2 Q
<
107+
3 4 5

0 50 180 1;0 200
iterations over entire dataset
Comparison of Adam to Other Optimization Algorithms Training a
Multilayer Perceptron
Taken from Adam: A Method for Stochastic Optimization, 2015.

80 100 120

45
45

Optimizer:
In practice
(Keras)

optimizer=‘SGD’
optimizer=‘RMSprop’

optimizer="Adam’

46

Learning
Rate
Scheduling

Start with high learning rate and reduce it once it
stops making fast progress

Good solution reached faster than with the optimal
constant learning rate

Learning schedules examples:

e Performance scheduling

* Measure the validation error every N steps and reduce
the learning rate when the error stops dropping

* Exponential scheduling

* Set the learning rate to a function of the iteration
number t

RMSProp and Adam optimization algorithms .
automatically reduce the learning rate during training

Neural Networks as
an alternative to
other ML algorithms

48

model = keras.Sequential ([keras.layers.Flatten (input shape (28,28)),
keras.layers.Dense (128, activation = tf.nn.sigmoid),
keras.layers.Dense (10,activation = tf.nn.softmax)])

model.compile (optimizer =

'adam', loss="'sparse categorical crossentropy',metrics =['accuracy'])

§i\;@ What do these codes do ?

NN_model = Sequential()

The Input Layer :

NN_model.add(Dense(128, kernel_initializer='normal’',input_dim = train.shape[1], activation='relu'))

The Hidden Layers :
NN_model.add(Dense(256, kernel_initializer='normal',activation='relu'))
NN_model.add(Dense(256, kernel_initializer='normal',activation='relu'))

NN_model.add(Dense(256, kernel initializer='normal',activation='relu'))

The Output Layer :

NN _model.add(Dense(1l, kernel initializer='normal',activation='linear'))

Compile the network :
NN_model.compile(loss="mean_absolute_error', optimizer="adam', metrics=["'mean_absolute_error']) 49

NN_model.summary()

Autoencoders
(AE)

* Network that replicates the input

* Internally, it builds a representation of the input
* Network before the internal representation : encoder
* Network following the representation : decoder

representation
encoder ; ¢ decoder

Input output

What tasks can autoencoders perform as
an alternative to other ML algorithms ?

51

h=f(x)=W'x+b is the latent variable representation
of the input in a low dimensional space (linear
activation function)

AE as an f g Loss function : L(x,g(f(x)))

alternative
to other ML r=g(h)=g(f(x)) is the reconstruction of the

algorithms input from the latent representation

* The network is an unbiased estimator that is minimizing the variance
between two distributions

What should be changed
for the non-linear case ?

53

AE versus
PCA

PCA Autoencoders
Transformation of data Linear (non)-linear
Speed Fast Slower (gradient descent)

Transformed data

Orthogonal dimensions

Not guaranteed

Complexity Simple transformation can model complex
relationships

Data size Small datasets Larger datasets

Hyperparameter k (humber of dimensions) Architecture of the NN

* AE with single layer and linear activation has similar
performance as PCA.

e AE with multiple layers and non-linear activation
functions prone to overfitting (need for regularization)

55

\)

TWO MINUTE

WITHKAROLY ZSOLINAL FEHER (KXZF)

WHAT IS AN AUTOENCODER?

DEclaimes | was not part of thig reaearch profact, | any Ioetely providhng commentary an this work

Two-Minute Papers

https://b.socrative.com/login/student/

Room : CONTI6128

https://b.socrative.com/login/student/

