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Discussion Session 

• Review of Notebooks 3.1 and 3.2 : 

• Dimensionality reduction : PCA, 
MINST compression example, Elbow 
method, Kernel PCA, grid search 
optimization, LLE, MDS, Isomap, t-SNE

• Clustering : k-means, inertia, K-
means++, silhouette score, Gaussian 
mixtures, covariance comparison, BIC 
and AIC
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•Deep Learning book (Goodfellow, Bengio, Courville)

•Machine Learning @ Stanford (Prof Andrew Ng)

•Hands-On Machine Learning with Scikit-Learn & Tensorflow
(Aurélien Géron) 
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Learning Objectives

• Neural Networks

• Training the NN

• Activation functions

• Loss functions 

• Faster optimizers

• Neural Network as alternative  
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Neural Networks
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Neural 
Network 

(NN)

Learning algorithm inspired by how the brain works



History

• The first single-neuron network called perceptron
was proposed already in 1958 by AI pioneer Frank 
Rosenblatt

• Combining many layers of perceptrons is known as 
multilayer perceptrons (or FNN)



Nowadays
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Feedforward 
Neural 

Networks

• Naming : 
• Deep feedforward networks (DFNN)

• multilayer perceptrons(MLPs)

• Goal : approximate some function f

• feedforward = information flows 
from input to output layer without 
feedback loops

• Deep for “more than 1 hidden layer”

Can you name a NN type with 
feedback loops ? 



Deploying a 
Neural 

Network
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Given a task (in terms of I/O mappings), we need : 

1) Network model 

2) Cost function 

3) Optimization



Network 
Model 
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Activation 
Functions
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Hierarchical representation

Fully 
connected
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Weights w and bias b 
parameters to optimize  

+ b2,2

• Non-linear activation functions used in hidden layers 
• Help model to generalize or adapt with variety of data



Hyperparameters
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Parameters that cannot be learnt directly from training data 

• A long list… 
• Number of hidden layers
• Number of hidden units
• …



Training the NN
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- Maximum Likelihood

- Training

- Backpropagation
Activation function 

- Saturating

- Non-saturating

- Loss functions 

- Faster optimizers



Loss and 
Cost 

functions

161616

• Loss function 𝐿 ො𝑦 𝑖 , 𝑦 𝑖 , also called error 
function, measures how different the prediction 
ො𝑦 = 𝑓(𝑥) and the desired output 𝑦 are

• Cost function 𝐽 𝑤, 𝑏 is the average of the loss 
function on the entire training set

• Goal of the optimization is to find the parameters 
θ = (w, b) that minimize the cost function 

• Choice of loss function determined by the output 
representation (regression, classification)

𝐽 𝑤, 𝑏 =
1

𝑚


𝑖=1

𝑚

𝐿( ො𝑦 𝑖 , 𝑦 𝑖 )

reminder



Optimization
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• Given a task we define

• Training data 

• Network 

• Cost function 

• Parameter initialization (weights, biases)

• Next, we optimize the network parameters 𝛉 (training)

• In addition, we have to set values for hyperparameters



Maximum 
Likelihood
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• Given IID input/output samples : 

• Conditional Maximum Likelihood estimate (between 
model pdf and data pdf):

• Mathematical tricks : 

Maximize the likelihood == Minimize the negative log-likelihood 



Training

• Iterative process

Forward propagation 𝑍 = 𝑤𝑇𝑥 + 𝑏

𝐴 = 𝜎(𝑍)

Cost function 

𝐽 𝑤, 𝑏 = 𝐽(𝜃)

Backward propagation 
(dJ/dw, dJ/db)

Parameter update
(gradient descent)

learning rate 𝛼

epochs

Learning curve 

Make a prediction 

Define the error function

Measure the error 
contribution from 
each connection

Tweaks the connection 
weights to reduce the error



Backpropagation

• Efficient implementation of the chain-rule to compute 
derivatives with respect to network weights 



Activation 
Functions
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Sigmoid 
Function

222222

• Looks like a S-shape in the [0,1] range

• Used for models where we have to predict the probability 
as an output 

• Differentiable, monotonic but not its derivative 

Softmax function used for 
multiclass classification

Is this problematic ? 

saturating

saturating



Tanh 
Function
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• S-shape in the [-1,1] range

• Used for classification between two classes

• Differentiable, monotonic but not its derivative 

What are the advantages 
over sigmoid ? 



ReLU
Function
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• Rectified Linear Unit (ReLU) in the [0, infinity) range

• Most used activation function right now 
• Faster to compute than other activation functions 

• Function and its derivative are both monotonic 

• Softplus : Smooth approximation of ReLU

What are the 
limitations ? 

Not 
saturating



Leaky ReLU
Function
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• Attempt to solve the dying ReLU problem in the (-
infinity,infinity) range

• The leak α = 0.2 seems to lead to better 
performance than α=0.01

• Alternative is to  use randomized ReLU

• Function and its derivative are both monotonic 



ELU
Function
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• Takes on negative values when z<0 (solves vanishing 
gradients problem) 

• Non-zero gradient for z<0 (avoids the dying units issue)

• Smooth everywhere, including around z=0 (speed up 
Gradient Descent) 

• Main drawback : slower to compute than RELU
• During training : compensated by faster convergence rate

• During testing : slower  



Activation 
Functions 
Summary
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Activation 
Functions:
In practice 

(Keras)
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• activation='linear’

• activation='sigmoid’

• activation='tanh’

• activation='softmax’



Loss functions
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Regression 
Loss 

Functions

• Mean Squared Error Loss (MSE), L2 Loss 
• Distribution of target variable is a standard Gaussian

• Average of the squared differences between predicted 
and true values

𝑝 𝑦 ො𝑦 = Ν(𝑦; ො𝑦)

𝐿2 ො𝑦, 𝑦 = − log 𝑝 𝑦 ො𝑦 = 

𝑖=0

𝑚

𝑦𝑖 − ො𝑦𝑖
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Regression 
Loss 

Functions

• Mean Squared Logarithmic Error Loss (MSLE)
• If target value has a spread of values, and when predicting 

a large value one does NOT want to punish the model as 
heavily as MSE

• First calculate the natural log of each predicted values, 
then MSE

• Mean Absolute Error Loss (MAE)
• Target variable may be mostly Gaussian, but with outliers



Binary 
Classification 

Loss 
Functions

35

• Binary Cross-Entropy Loss 

• Score that summarizes the average difference between the actual 
and predicted probability distributions for predicting class 1

𝑝 𝑦 ො𝑦 = ො𝑦𝑦 1 − ො𝑦 (1−𝑦)

𝐿 ො𝑦, 𝑦 = −log 𝑝 𝑦 ො𝑦 = − 𝑦 log ො𝑦 + 1 − 𝑦 log 1 − ො𝑦



Binary 
Classification 

Loss 
Functions
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• Hinge Loss 
• Primarily developed for use with SVM models 

• Binary classification where the target values are in the set {-1, 1}

• Assign more error when there is a difference in the sign between 
the actual and predicted class values

• Squared Hinge Loss : calculates the square of the score hinge 
loss to smoothen the surface of the error function 



Multi-Class 
Classification 

Loss 
Functions

• Multi-Class Cross-Entropy Loss 
• Target set {0,1,2,…,n} : need for one-hot encoding

• Generalization of binary cross-entropy loss to n classes 

• Sparse Multiclass Cross-Entropy Loss 
• No need to have the target variable be one-hot encoded

• Tackles the problem of one-hot encoding when too many categories

• Kullback Leibler Divergence Loss (KL)
• Measure of how one probability distribution differs from a 

baseline distribution

• Mainly used when using models that learn to approximate a 
more complex function that multi-class classification
• Autoencoders



Loss 
Functions : 
In Practice

(Keras) 

• Regression : 
• loss='mean_squared_error’ or loss=mse’
• loss='mean_squared_logarithmic_error’
• loss='mean_absolute_error’

• Binary classification : 
• loss='binary_crossentropy’
• loss='hinge’
• loss='squared_hinge’

• Multi-Class classification: 
• loss= 'categorical_crossentropy’
• loss= 'sparse_categorical_crossentropy’
• loss= 'kullback_leibler_divergence’



Ingredient 
Summary
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Regression Binary 
classification

Multi-class 
classification

Hidden layer 
activation

Geometry of 
output layer

Activation of 
output layer 

Loss function



Faster Optimizers than 
Gradient Descent
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- Momentum optimization 

- RMSprop

- Adaptative Moment (Adam) 



Momentum 
Optimization
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• Momentum optimization takes past gradients into account 

• Hyperparameter momentum 𝛽 accelerates search in 
direction of minima (update rule) : 

• The larger 𝛽, the smoother the update because the more 
we take past gradients into account 
• 𝛽 = 0.9 is a good choice (between 0.8 and 0.999)



RMSProp
Algorithm
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• Similar to SGD+𝛽, difference in how the gradients are 
computed

• impedes search in direction of oscillations (vertical 
direction) : allows to increase 𝛼

SGD+𝜷 RMSProp



Adam 
Algorithm

• Combine ideas from RMSProp (𝛼 increase) and 
Momentum (acceleration), with parameters : 
• Momentum decay : 𝛽1 for 𝑑𝑤 (usually 0.9)

• Scaling decay : 𝛽2 for 𝑑𝑤2 (usually 0.99) 

• Smoothing term : 𝜀 (usually 1-10)
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Comparison
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Optimizer:
In practice 

(Keras)

464646

• optimizer=‘SGD’

• optimizer=‘RMSprop’

• optimizer=‘Adam’

• …



Learning 
Rate 

Scheduling
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• Start with high learning rate and reduce it once it 
stops making fast progress 

• Good solution reached faster than with the optimal 
constant learning rate

• Learning schedules examples: 
• Performance scheduling 

• Measure the validation error every N steps and reduce 
the learning rate when the error stops dropping

• Exponential scheduling 
• Set the learning rate to a function of the iteration 

number t 

• RMSProp and Adam optimization algorithms 
automatically reduce the learning rate during training



Neural Networks as 
an alternative to 
other ML algorithms
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Exercise
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What do these codes do ? 

1

2



Autoencoders 
(AE)
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• Network that replicates the input 
• Internally, it builds a representation of the input

• Network before the internal representation : encoder

• Network following the representation : decoder

What tasks can autoencoders perform as 
an alternative to other ML algorithms ? 



AE as an 
alternative 
to other ML 
algorithms

• The network is an unbiased estimator that is minimizing the variance 
between two distributions 
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What should be changed 
for the non-linear case ? 

Loss function : L(x,g(f(x)))

h=f(x)=WTx+b is the latent variable representation
of the input in a low dimensional space (linear
activation function)

r=g(h)=g(f(x)) is the reconstruction of the 
input from the latent representation



AE versus 
PCA 
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PCA Autoencoders

Transformation of data Linear (non)-linear

Speed Fast Slower (gradient descent)

Transformed data Orthogonal dimensions Not guaranteed 

Complexity Simple transformation can model complex 
relationships

Data size Small datasets Larger datasets 

Hyperparameter k (number of dimensions) Architecture of the NN 

• AE with single layer and linear activation has similar 
performance as PCA. 

• AE with multiple layers and non-linear activation 
functions prone to overfitting (need for regularization)



Two-Minute Papers
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Quiz 

https://b.socrative.com/login/student/

Room : CONTI6128

https://b.socrative.com/login/student/

