
Build a ML
algorithm

Module 1 :

Machine Learning Review

1Géraldine Conti, CAS Advanced Machine LearningGéraldine Conti, August 2020

Discussion Session

• Review of Notebooks 3.1 and 3.2 :

• Dimensionality reduction : PCA,
MINST compression example, Elbow
method, Kernel PCA, grid search
optimization, LLE, MDS, Isomap, t-SNE

• Clustering : k-means, inertia, K-
means++, silhouette score, Gaussian
mixtures, covariance comparison, BIC
and AIC

2

Bibliography

•Deep Learning book (Goodfellow, Bengio, Courville)

•Machine Learning @ Stanford (Prof Andrew Ng)

•Hands-On Machine Learning with Scikit-Learn & Tensorflow
(Aurélien Géron)

3

Bibliography

Learning Objectives

• Neural Networks

• Training the NN

• Activation functions

• Loss functions

• Faster optimizers

• Neural Network as alternative
4

Neural Networks

5

Neural
Network

(NN)

Learning algorithm inspired by how the brain works

History

• The first single-neuron network called perceptron
was proposed already in 1958 by AI pioneer Frank
Rosenblatt

• Combining many layers of perceptrons is known as
multilayer perceptrons (or FNN)

Nowadays

8

Feedforward
Neural

Networks

• Naming :
• Deep feedforward networks (DFNN)

• multilayer perceptrons(MLPs)

• Goal : approximate some function f

• feedforward = information flows
from input to output layer without
feedback loops

• Deep for “more than 1 hidden layer”

Can you name a NN type with
feedback loops ?

Deploying a
Neural

Network

1111

Given a task (in terms of I/O mappings), we need :

1) Network model

2) Cost function

3) Optimization

Network
Model

1212

Activation
Functions

13131313

Hierarchical representation

Fully
connected

13

Weights w and bias b
parameters to optimize

+ b2,2

• Non-linear activation functions used in hidden layers
• Help model to generalize or adapt with variety of data

Hyperparameters

141414141414

Parameters that cannot be learnt directly from training data

• A long list…
• Number of hidden layers
• Number of hidden units
• …

Training the NN

15

- Maximum Likelihood

- Training

- Backpropagation
Activation function

- Saturating

- Non-saturating

- Loss functions

- Faster optimizers

Loss and
Cost

functions

161616

• Loss function 𝐿 ො𝑦 𝑖 , 𝑦 𝑖 , also called error
function, measures how different the prediction
ො𝑦 = 𝑓(𝑥) and the desired output 𝑦 are

• Cost function 𝐽 𝑤, 𝑏 is the average of the loss
function on the entire training set

• Goal of the optimization is to find the parameters
θ = (w, b) that minimize the cost function

• Choice of loss function determined by the output
representation (regression, classification)

𝐽 𝑤, 𝑏 =
1

𝑚

𝑖=1

𝑚

𝐿(ො𝑦 𝑖 , 𝑦 𝑖)

reminder

Optimization

171717

• Given a task we define

• Training data

• Network

• Cost function

• Parameter initialization (weights, biases)

• Next, we optimize the network parameters 𝛉 (training)

• In addition, we have to set values for hyperparameters

Maximum
Likelihood

18

• Given IID input/output samples :

• Conditional Maximum Likelihood estimate (between
model pdf and data pdf):

• Mathematical tricks :

Maximize the likelihood == Minimize the negative log-likelihood

Training

• Iterative process

Forward propagation 𝑍 = 𝑤𝑇𝑥 + 𝑏

𝐴 = 𝜎(𝑍)

Cost function

𝐽 𝑤, 𝑏 = 𝐽(𝜃)

Backward propagation
(dJ/dw, dJ/db)

Parameter update
(gradient descent)

learning rate 𝛼

epochs

Learning curve

Make a prediction

Define the error function

Measure the error
contribution from
each connection

Tweaks the connection
weights to reduce the error

Backpropagation

• Efficient implementation of the chain-rule to compute
derivatives with respect to network weights

Activation
Functions

2121

Sigmoid
Function

222222

• Looks like a S-shape in the [0,1] range

• Used for models where we have to predict the probability
as an output

• Differentiable, monotonic but not its derivative

Softmax function used for
multiclass classification

Is this problematic ?

saturating

saturating

Tanh
Function

242424

• S-shape in the [-1,1] range

• Used for classification between two classes

• Differentiable, monotonic but not its derivative

What are the advantages
over sigmoid ?

ReLU
Function

262626

• Rectified Linear Unit (ReLU) in the [0, infinity) range

• Most used activation function right now
• Faster to compute than other activation functions

• Function and its derivative are both monotonic

• Softplus : Smooth approximation of ReLU

What are the
limitations ?

Not
saturating

Leaky ReLU
Function

282828

• Attempt to solve the dying ReLU problem in the (-
infinity,infinity) range

• The leak α = 0.2 seems to lead to better
performance than α=0.01

• Alternative is to use randomized ReLU

• Function and its derivative are both monotonic

ELU
Function

292929

• Takes on negative values when z<0 (solves vanishing
gradients problem)

• Non-zero gradient for z<0 (avoids the dying units issue)

• Smooth everywhere, including around z=0 (speed up
Gradient Descent)

• Main drawback : slower to compute than RELU
• During training : compensated by faster convergence rate

• During testing : slower

Activation
Functions
Summary

303030

=

Activation
Functions:
In practice

(Keras)

313131

• activation='linear’

• activation='sigmoid’

• activation='tanh’

• activation='softmax’

Loss functions

32

Regression
Loss

Functions

• Mean Squared Error Loss (MSE), L2 Loss
• Distribution of target variable is a standard Gaussian

• Average of the squared differences between predicted
and true values

𝑝 𝑦 ො𝑦 = Ν(𝑦; ො𝑦)

𝐿2 ො𝑦, 𝑦 = − log 𝑝 𝑦 ො𝑦 =

𝑖=0

𝑚

𝑦𝑖 − ො𝑦𝑖
2

Regression
Loss

Functions

• Mean Squared Logarithmic Error Loss (MSLE)
• If target value has a spread of values, and when predicting

a large value one does NOT want to punish the model as
heavily as MSE

• First calculate the natural log of each predicted values,
then MSE

• Mean Absolute Error Loss (MAE)
• Target variable may be mostly Gaussian, but with outliers

Binary
Classification

Loss
Functions

35

• Binary Cross-Entropy Loss

• Score that summarizes the average difference between the actual
and predicted probability distributions for predicting class 1

𝑝 𝑦 ො𝑦 = ො𝑦𝑦 1 − ො𝑦 (1−𝑦)

𝐿 ො𝑦, 𝑦 = −log 𝑝 𝑦 ො𝑦 = − 𝑦 log ො𝑦 + 1 − 𝑦 log 1 − ො𝑦

Binary
Classification

Loss
Functions

36

• Hinge Loss
• Primarily developed for use with SVM models

• Binary classification where the target values are in the set {-1, 1}

• Assign more error when there is a difference in the sign between
the actual and predicted class values

• Squared Hinge Loss : calculates the square of the score hinge
loss to smoothen the surface of the error function

Multi-Class
Classification

Loss
Functions

• Multi-Class Cross-Entropy Loss
• Target set {0,1,2,…,n} : need for one-hot encoding

• Generalization of binary cross-entropy loss to n classes

• Sparse Multiclass Cross-Entropy Loss
• No need to have the target variable be one-hot encoded

• Tackles the problem of one-hot encoding when too many categories

• Kullback Leibler Divergence Loss (KL)
• Measure of how one probability distribution differs from a

baseline distribution

• Mainly used when using models that learn to approximate a
more complex function that multi-class classification
• Autoencoders

Loss
Functions :
In Practice

(Keras)

• Regression :
• loss='mean_squared_error’ or loss=mse’
• loss='mean_squared_logarithmic_error’
• loss='mean_absolute_error’

• Binary classification :
• loss='binary_crossentropy’
• loss='hinge’
• loss='squared_hinge’

• Multi-Class classification:
• loss= 'categorical_crossentropy’
• loss= 'sparse_categorical_crossentropy’
• loss= 'kullback_leibler_divergence’

Ingredient
Summary

39

Regression Binary
classification

Multi-class
classification

Hidden layer
activation

Geometry of
output layer

Activation of
output layer

Loss function

Faster Optimizers than
Gradient Descent

41

- Momentum optimization

- RMSprop

- Adaptative Moment (Adam)

Momentum
Optimization

42

• Momentum optimization takes past gradients into account

• Hyperparameter momentum 𝛽 accelerates search in
direction of minima (update rule) :

• The larger 𝛽, the smoother the update because the more
we take past gradients into account
• 𝛽 = 0.9 is a good choice (between 0.8 and 0.999)

RMSProp
Algorithm

43

• Similar to SGD+𝛽, difference in how the gradients are
computed

• impedes search in direction of oscillations (vertical
direction) : allows to increase 𝛼

SGD+𝜷 RMSProp

Adam
Algorithm

• Combine ideas from RMSProp (𝛼 increase) and
Momentum (acceleration), with parameters :
• Momentum decay : 𝛽1 for 𝑑𝑤 (usually 0.9)

• Scaling decay : 𝛽2 for 𝑑𝑤2 (usually 0.99)

• Smoothing term : 𝜀 (usually 1-10)

44

Comparison

45
4545

Optimizer:
In practice

(Keras)

464646

• optimizer=‘SGD’

• optimizer=‘RMSprop’

• optimizer=‘Adam’

• …

Learning
Rate

Scheduling

4747

• Start with high learning rate and reduce it once it
stops making fast progress

• Good solution reached faster than with the optimal
constant learning rate

• Learning schedules examples:
• Performance scheduling

• Measure the validation error every N steps and reduce
the learning rate when the error stops dropping

• Exponential scheduling
• Set the learning rate to a function of the iteration

number t

• RMSProp and Adam optimization algorithms
automatically reduce the learning rate during training

Neural Networks as
an alternative to
other ML algorithms

48

Exercise

49

What do these codes do ?

1

2

Autoencoders
(AE)

51

• Network that replicates the input
• Internally, it builds a representation of the input

• Network before the internal representation : encoder

• Network following the representation : decoder

What tasks can autoencoders perform as
an alternative to other ML algorithms ?

AE as an
alternative
to other ML
algorithms

• The network is an unbiased estimator that is minimizing the variance
between two distributions

53

What should be changed
for the non-linear case ?

Loss function : L(x,g(f(x)))

h=f(x)=WTx+b is the latent variable representation
of the input in a low dimensional space (linear
activation function)

r=g(h)=g(f(x)) is the reconstruction of the
input from the latent representation

AE versus
PCA

55

PCA Autoencoders

Transformation of data Linear (non)-linear

Speed Fast Slower (gradient descent)

Transformed data Orthogonal dimensions Not guaranteed

Complexity Simple transformation can model complex
relationships

Data size Small datasets Larger datasets

Hyperparameter k (number of dimensions) Architecture of the NN

• AE with single layer and linear activation has similar
performance as PCA.

• AE with multiple layers and non-linear activation
functions prone to overfitting (need for regularization)

Two-Minute Papers

56

Quiz

https://b.socrative.com/login/student/

Room : CONTI6128

https://b.socrative.com/login/student/

