
launch binder

(https://mybinder.org/v2/gh/KingaS03/Introduction-to-Python-2020-June/master)

Open in Colab

(https://colab.research.google.com/github/KingaS03/Introduction-to-Python-2020-June)

Calculus file:///home/marie/Documents/CAS/Mathematics...

1 of 14 9/9/20, 4:38 PM

3. Calculus

Agenda

differentiation of univariate functions

rules of differentiation

differentiation of multivariate functions (the Jacobian, the Hessian)

chain rule for univariate and multivariate functions

the Taylor approximation

the Newton-Raphson method

gradient descent method

backpropagation

3.1. Motivation

Find the optimal value of the model parameters of a neuronal network.

3.2. Functions

A function f :A → B associates to each element of the set A an element of the set B.

For our future context A = Rn and B = Rm for some natural numbers n and m.

3.2.1. Differentiation of a function (univariate case)

For a function f : R → R we would like characterise its local linear behavior. Therefore we take two

points x and x + Δx and their corresponding values f(x) and f(x + Δx). We are going to connect

these points by a line and we will calculate the gradient of this line

m =
Δf

Δx
=
f(x + Δx) − f(x)

(x + Δx) − x
=
f(x + Δx) − f(x)

Δx

Now we are going to take smaller and smaller values for the increment Δx. We define the

derivative of f in point x as the value of the above quotient when Δx is getting infinitesimally small.

The mathematically exact formula for the derivative is

f ′ (x) = lim
Δx→0

f(x + Δx) − f(x)

Δx

Calculus file:///home/marie/Documents/CAS/Mathematics...

2 of 14 9/9/20, 4:38 PM

In [16]: from IPython.display import IFrame

IFrame("https://www.geogebra.org/classic/enyhcvgw", 1100, 9
00)

Calculus file:///home/marie/Documents/CAS/Mathematics...

3 of 14 9/9/20, 4:38 PM

Out[16]:

Input…

Calculus file:///home/marie/Documents/CAS/Mathematics...

4 of 14 9/9/20, 4:38 PM

3.2.2. Differentiation rules

3.2.3. Differentiation of a function (multivariate case)

When the function f : Rn → R depends on more variables x1, x2, …, xn and it is nice enough, we

can calculate its partial derivatives w.r.t. each variable. The partial derivative of the function f in a

point x∗ = (x∗
1
, x2 ∗ , …, x∗

n
) w.r.t. the variable x1 can be calculated by fixing the values of the

other parameters to be equal to x∗
2
, …, x∗

n
 and derivating the so resulting function by its only

parameter x1.

To describe the formula in a mathematical exact way let us consider the function g : R → R defined

by the formula

g(x1) = f(x1, x
∗
2
, …, x∗

n
)

Then the partial derivative of f w.r.t. x1 is denoted by
∂f

∂x1
 and is equal to the derivative of g in the

point x1 ∗ , that is

∂f

∂x1
(x∗
1
, , x∗

2
, …, x∗

n
) = g ′ (x1)

Alternatively we can use for this partial derivative also other notations like the shorter

∂f

∂x1
(x∗) or ∂x1

f(x ∗)

When it clear that we are performing our calculations in the point x∗ and there is no source for

confusion, we can omit x∗ also and work just with

∂f

∂x1
or ∂x1

f

Calculus file:///home/marie/Documents/CAS/Mathematics...

5 of 14 9/9/20, 4:38 PM

We can proceed similarly in the case of the other variables to calculate all partial derivatives

∂f

∂x2
(x∗),

∂f

∂x3
(x∗), … ,

∂f

∂xn
(x∗)

The row vector of all partial derivatives is called the gradient of the function or the Jacobian of it,

that is

∇f =
∂f

∂x1
,
∂f

∂x2
, …

∂f

∂xn

The gradient or Jacobian of the function f has the following two properties, which are crutial for our

forthcoming applications:

in a fixed point x ∗ = (x∗
1
, x2 ∗ , …, xn ∗) the gradient/ Jacobian ∇f points up the hill along

the steepest direction

its length is proportional to the steepness.

Further generalisation

For a function f : Rn → Rm having also a multivariate output, we can take each output and calculate

its partial derivatives w.r.t. each input variable x1, x2, …, xn. For the first output we will have n partial

derivatives,i.e.

∂f1

∂x1
(x∗),

∂f1

∂x1
(x∗), … ,

∂f1

∂xn
(x∗)

And for each output the same will happen. We will organise these partial derivatives in a matrix in

such a way that in the ith row the derivatives of fi will be enlisted, and at the intersection of ith row

and jth column the derivative

∂fi

∂xj

will be stored.

This way we obtain the matrix

()

Calculus file:///home/marie/Documents/CAS/Mathematics...

6 of 14 9/9/20, 4:38 PM

∂f1

∂

∂f1

∂
⋯

∂f1

∂()
Calculus file:///home/marie/Documents/CAS/Mathematics...

7 of 14 9/9/20, 4:38 PM

For a function f : R → R we can calculate its derivative in each point, this means that the derivative

f ′ of the function is again a function mapping each point x ∈ R to the derivative f ′ (x).

Now we could differentiate again each the first order derivative f ′ and as such we get to the

second order derivative, i.e.

f ″ (x) = lim
Δx→0

f ′ (x + Δx) − f ′ (x)

Δx

The second order derivative can be again derivated and this way we obtain the 3rd order

derivative of a function.

Multivariate case

We extend the notion of second order derivative to a function f : Rn → R.

Consider as starting point the Jacobian of the function (which corresponds to the derivative from

the univariate case). Let us calculate all partial derivatives of the first order partial derivatives from

∇f =
∂f

∂x1
,
∂f

∂x2
, …

∂f

∂xn
,

and organize them in the following way in a matrix

∇2f =

∂2f

∂x1∂x1

∂2f

∂x1∂x2
⋯

∂2f

∂x1∂xn

∂2f

∂x2∂x1

∂2f

∂x2∂x2
⋯

∂2f

∂x2∂xn

⋮ ⋮ ⋱ ⋮

∂2f

∂xn∂x1

∂2f

∂xn∂x2
⋯

∂2f

∂xn∂xn

then the resulting matrix is called the Hessian matrix.

The value of the Hessian matrix can be used

to derive better local approximation for a function than the linear one,

to find out whether a critical point is a minimum or maximim point or saddle point (exacly as

the second order derivative helps us determine whether a critical point is an extreme point of

the function).

()

()

Calculus file:///home/marie/Documents/CAS/Mathematics...

8 of 14 9/9/20, 4:38 PM

3.3. Applications of the differentials

3.3.1. The Taylor series approximation

Calculus file:///home/marie/Documents/CAS/Mathematics...

9 of 14 9/9/20, 4:38 PM

In [6]: IFrame("https://www.geogebra.org/classic/kc2umqak", 1000, 8
00)

Out[6]:

Input…

Calculus file:///home/marie/Documents/CAS/Mathematics...

10 of 14 9/9/20, 4:38 PM

Taylor polynomial of order n

The Taylor polynomial of order n of a smooth enough function f : R → R around the point x = x0 is

given by the following formula

p(x) =
f(x0)

0!
+
f ′ (x0)

1!
(x − x0) +

f ″ (x0)

2!
+ ⋅ +

f (n) (x0)

n !
(x − x0)

n

Where 0! = 0 by convention.

If the function is nice enough, then the approximation error:

f(x) − p(x) is of magnitude (x − x0)
n.

Remark

The above polinomial has the property that the function value and the first n derivatives of the

original function f and the polynomial p are exactly the same in the point x = x0. This polynomial is

uniquely defined.

The Taylor approximation of a multivariate function For a function f : Rn → R the Taylor

approximation of order 1 is

l(x) =
f(x0)

0!
+

∇f(x0)

1!
⋅ (x − x0),

where ∇f(x0) denotes the Jacobian of the function in point x0 and this row vector is multiplied by

the column vector x − x0 in the above formula.

For a function f : Rn → R the Taylor approximation of order 2 is

q(x) =
f(x0)

0!
+
1

1!
∇f(x0) ⋅ (x − x0) +

1

2
(x − x0)

T ⋅ ∇2f(x0) ⋅ (x − x0),

where ∇2f(x0) denotes the Hessian of the function in point x0 and this matrix is multiplied from left

by the row vector (x − x0)
T nd from the right by the column vector x − x0 in the above formula.

Calculus file:///home/marie/Documents/CAS/Mathematics...

11 of 14 9/9/20, 4:38 PM

3.3.2. The Newton-Raphson method

The Newton-Raphson method is used to find the approximate a root of a function.

Observe how does it work and identify the steps of the method.

In [8]: IFrame("https://www.geogebra.org/classic/mm9xvyxr", 800, 60
0)

Out[8]:

Input…

Calculus file:///home/marie/Documents/CAS/Mathematics...

12 of 14 9/9/20, 4:38 PM

The Newton-Raphson method is an iterative method.

We cosider a function f : R → R

The purpose of this method is to approximate roots of the function, i.e. such x values for which

f(x) = 0.

Let us assume that we know the value of the function in a point x0, i.e we know f(x0). We

approximate the behaviour of the function by the tangent line

f(x) ≃ l(x) = f(x0) + f
′ (x0) ⋅ (x − x0)

and we solve the equation

l(x) = 0

The solution of this will be denoted by x1 and by solving the above linear equation we obtain that

x1 = x0 −
f(x0)

f ′ (x0)

x1 is our second approximation for a root of f.

If we continue the process now by constructing the tangent line in x1 and defining the next point as

an intersection of the tangent with the x-axis, then

x2 = x1 −
f(x0)

f ′ (x0)

will be our third approximation for the root.

If the function is nice enough, then this method converges to a root of the function.

3.3.3. Gradient descent method

The gradient descent method is similar to the Newton-Raphson one in the sense that we perform

an iterative step in the steepest direction. The difference is that the goal of this process is to

minimise a cost function C : R → R (or C : R → R in the multivariate case). We update the gradient

in every iterative step and we move along the steepest gradient downwards, i.e.

xn+1 = xn − λ∇f(xn).

Calculus file:///home/marie/Documents/CAS/Mathematics...

13 of 14 9/9/20, 4:38 PM

In [17]: IFrame("https://www.geogebra.org/classic/xfa7y3wc", 800, 60
0)

3.3.4. Backpropagation

See the blackboard

Out[17]:

Calculus file:///home/marie/Documents/CAS/Mathematics...

14 of 14 9/9/20, 4:38 PM

