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3. Calculus

Agenda

« differentiation of univariate functions

« rules of differentiation

« differentiation of multivariate functions (the Jacobian, the Hessian)
« chain rule for univariate and multivariate functions

« the Taylor approximation

» the Newton-Raphson method

« gradient descent method

» backpropagation

3.1. Motivation

Find the optimal value of the model parameters of a neuronal network.

3.2. Functions

A function /: 4 — B associates to each element of the set 4 an element of the set B.

For our future context 4 = R” and B = R™ for some natural numbers » and m.

3.2.1. Differentiation of a function (univariate case)

For a function /:R — R we would like characterise its local linear behavior. Therefore we take two
points x and x + Ax and their corresponding values f{(x) and f{x + Ax). We are going to connect
these points by a line and we will calculate the gradient of this line

N A AN fx A - AW
A (x+Ax)—x - Ax

m

Now we are going to take smaller and smaller values for the increment Ax. We define the
derivative of fin point x as the value of the above quotient when Ax is getting infinitesimally small.

The mathematically exact formula for the derivative is

, o flet Ax) — flx)
=1 . 7
f ) 1mO
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In [16]: from IPython.display import IFrame

IFrame("https://www.geogebra.org/classic/enyhcvgw", 1100, 9
00)
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Out[16]:

Type in a function.
Comparg the gradient of the
f(x) =0.1x2 + 1

Xo = 4.1
o

Input...
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3.2.2. Differentiation rules
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Faktor (kf(x)) kf'(z) fuir k e R
Summenregel (f(z) + g(x)) f(x) + g'(z)
Produktregel (@) -g@) = F'(@) 9@)+ () (@)
Quotientenregel (%)' ACHOR/CRID
Kettenregel (f(9(@)) = flg9(z)) ¢ (z)
Potenzregel (z") = rz"t firreR
Exponentialfunktionen (e*)Y = e*
(@) = In(a)-a”® fira >0

Logarithmusfunktionen In'(z) = 1

logl(z) = #@t) fira >0

3.2.3. Differentiation of a function (multivariate case)

When the function /:R” — R depends on more variables x,, x,, ..., x,, and it is nice enough, we
can calculate its partial derivatives w.r.t. each variable. The partial derivative of the function fin a

pointx * = (x,",x; * , ...,xn* ) w.r.t. the variable x, can be calculated by fixing the values of the
other parameters to be equal tox,” , ...,x * and derivating the so resulting function by its only
parameter x,.

To describe the formula in a mathematical exact way let us consider the function g: R — R defined
by the formula

g('x]) :f(xlaxz* s ”"x}’l* )

)
Then the partial derivative of fw.r.t. x, is denoted by é and is equal to the derivative of g in the
1

pointx, = ,thatis

af * * * '
gl(xl 7ax2 "“’xl’l ):g(xl)

Alternatively we can use for this partial derivative also other notations like the shorter
o
gl(x ) or 8xlf(x * )

When it clear that we are performing our calculations in the point x * and there is no source for
confusion, we can omit x * also and work just with

o

51 or Gfo
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We can proceed similarly in the case of the other variables to calculate all partial derivatives

o o o . KA
20 AT )

The row vector of all partial derivatives is called the gradient of the function or the Jacobian of it,
that is

ox,  ox,” T ox

n

W:(z ke 1)

The gradient or Jacobian of the function f'has the following two properties, which are crutial for our
forthcoming applications:

e in a fixed pointx = = (xl* ,Xy *+ ,...,x, * )the gradient/ Jacobian V/ points up the hill along
the steepest direction
« its length is proportional to the steepness.

Further generalisation

For a function /:R” — R™ having also a multivariate output, we can take each output and calculate
its partial derivatives w.r.t. each input variable x|, x,, ..., x,. For the first output we will have = partial
derivatives,i.e.

on o o,
ST ), ax

)

And for each output the same will happen. We will organise these partial derivatives in a matrix in
such a way that in the ith row the derivatives of f; will be enlisted, and at the intersection of ith row
and jth column the derivative

o

6xj
will be stored.

This way we obtain the matrix
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For a function f: R — R we can calculate its derivative in each point, this means that the derivative
/" of the function is again a function mapping each point x € R to the derivative /' (x).

Now we could differentiate again each the first order derivative /* and as such we get to the
second order derivative, i.e.

£+ Ax) = £ (x)
Ax

/()= lim

Ax—0

The second order derivative can be again derivated and this way we obtain the 3rd order
derivative of a function.

Multivariate case

We extend the notion of second order derivative to a function /:R” — R.

Consider as starting point the Jacobian of the function (which corresponds to the derivative from
the univariate case). Let us calculate all partial derivatives of the first order partial derivatives from

oz z)

ox,” ox,” ox,

and organize them in the following way in a matrix

o o of

0x,0x | 0x0x axlaxn
o o o

V2f= 0x,0x;  Ox,0x, 0x,0x,,
o o o’

oxox,  oxox,  oxox,

then the resulting matrix is called the Hessian matrix.
The value of the Hessian matrix can be used

« to derive better local approximation for a function than the linear one,

« to find out whether a critical point is a minimum or maximim point or saddle point (exacly as
the second order derivative helps us determine whether a critical point is an extreme point of
the function).
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3.3. Applications of the differentials

3.3.1. The Taylor series approximation
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In [6]: IFrame("https://www.geogebra.org/classic/kc2umgak", 1000, 8

00)
Out[6]: .A /)(D. @ O & xABCifE
x‘=0

=
L
ot

The original function
f(x) = sin(x)

The Taylor approximation of f of order 1 in the proxi
pP(X) = X

/P
Input...
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Taylor polynomial of order »

The Taylor polynomial of order » of a smooth enough function /:R — R around the point x = x is
given by the following formula

fxg) S (xo) S M) ,
E T T A T TR

px) =
Where 0! = 0 by convention.
If the function is nice enough, then the approximation error:

fix) — p(x) is of magnitude (x — x;)".

Remark

The above polinomial has the property that the function value and the first » derivatives of the
original function f'and the polynomial p are exactly the same in the point x = x,,. This polynomial is
uniquely defined.

The Taylor approximation of a multivariate function For a function /: R” — R the Taylor
approximation of order 1 is

where Vf(x,) denotes the Jacobian of the function in point x, and this row vector is multiplied by
the column vector x — x,, in the above formula.

For a function f/:R"” — R the Taylor approximation of order 2 is

Sxg) 1 1 oo
q(x) = EYRRET fxg) - (x = xg) + S(x = xq)" + VIfAxg) - (x ~ xp),

where sz(xo) denotes the Hessian of the function in point x, and this matrix is multiplied from left
by the row vector (x — xO)T nd from the right by the column vector x — x, in the above formula.
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3.3.2. The Newton-Raphson method
The Newton-Raphson method is used to find the approximate a root of a function.

Observe how does it work and identify the steps of the method.

In [8]: IFrame("https://www.geogebra.org/classic/mm9xvyxr", 800, 60
0)

0ut[8]:.A/)(b.@@,§'xABcii
—— |

fix) =1/2x*+x-4

Numerische Iterationen
Graphische Iterationen
Punkte des Graphen
Tangente

Verticale Hilfsgeraden

13.4401451028
2.5973351912
2.0049317319
1.6495222526
1.514079758
1.4962357618
1.4959535757
1.4959535062
1.4959535062
1.4959535062
1.4959535062

CRIAKL
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The Newton-Raphson method is an iterative method.
We cosider a function f:R — R

The purpose of this method is to approximate roots of the function, i.e. such x values for which
fix) =0.

Let us assume that we know the value of the function in a point x,,, i.e we know f{x,). We
approximate the behaviour of the function by the tangent line

fw) = 1) = flxg) +f (xg) * (x = x0)
and we solve the equation
I(x) =0
The solution of this will be denoted by x, and by solving the above linear equation we obtain that

B Sfix 0)
1 (x)

x, is our second approximation for a root of f.

If we continue the process now by constructing the tangent line in x; and defining the next point as
an intersection of the tangent with the x-axis, then

B Sfx o)
1 (x)

will be our third approximation for the root.

If the function is nice enough, then this method converges to a root of the function.

3.3.3. Gradient descent method

The gradient descent method is similar to the Newton-Raphson one in the sense that we perform
an iterative step in the steepest direction. The difference is that the goal of this process is to
minimise a cost function C:R — R (or C:R — R in the multivariate case). We update the gradient
in every iterative step and we move along the steepest gradient downwards, i.e.

X, =X, = AVfix,).
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In [17]: IFrame("https://www.geogebra.org/classic/xfa7y3wc", 800, 60
0)

K] A @O LN e

Out[17]:

3.3.4. Backpropagation

See the blackboard
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