1. Creating Numpy arrays

Numpy has many different types of data "containers": lists, dictionaries, tuples etc. However none of them allows for efficient numerical calculation, in particular not in multi-dimensional cases (think e.g. of operations on images). Numpy has been developed exactly to fill this gap. It provides a new data structure, the **numpy array**, and a large library of operations that allow to:

- generate such arrays
- combine arrays in different ways (concatenation, stacking etc.)
- modify such arrays (projection, extraction of sub-arrays etc.)
- · apply mathematical operations on them

Numpy is the base of almost the entire Python scientific programming stack. Many libraries build on top of Numpy, either by providing specialized functions to operate on them (e.g. scikit-image for image processing) or by creating more complex data containers on top of it. The data science library Pandas that will also be presented in this course is a good example of this with its dataframe structures.

```
In [ ]: import numpy as np
from svg import numpy_to_svg
```

1.1 What is an array?

Let us create the simplest example of an array by transforming a regular Python list into an array (we will see more advanced ways of creating arrays in the next chapters):

```
In []: mylist = [2,5,3,9,5,2]
In [3]: mylist
Out[3]: [2, 5, 3, 9, 5, 2]
In [4]: myarray = np.array(mylist)
In [5]: myarray
Out[5]: array([2, 5, 3, 9, 5, 2])
In [6]: type(myarray)
Out[6]: numpy.ndarray
```

We see that myarray is a Numpy array thanks to the array specification in the output. The type also says that we have a numpy ndarray (n-dimensional). At this point we don't see a big difference with regular lists, but we'll see in the following sections all the operations we can do with these objects.

We can already see a difference with two basic attributes of arrays: their type and shape.

1.1.1 Array Type

Just like when we create regular variables in Python, arrays receive a type when created. Unlike regular list, **all** elements of an array always have the same type. The type of an array can be recovered through the .dtype method:

```
In [7]: myarray.dtype
Out[7]: dtype('int64')
```

Depending on the content of the list, the array will have different types. But the logic of "maximal complexity" is kept. For example if we mix integers and floats, we get a float array:

```
In [8]: myarray2 = np.array([1.2, 6, 7.6, 5])
myarray2

Out[8]: array([1.2, 6. , 7.6, 5. ])

In [9]: myarray2.dtype

Out[9]: dtype('float64')
```

In general, we have the possibility to assign a type to an array. This is true here, as well as later when we'll create more complex arrays, and is done via the dtype option:

```
In [10]: myarray2 = np.array([1.2, 6, 7.6, 500], dtype=np.uint8)
myarray2

Out[10]: array([ 1, 6, 7, 244], dtype=uint8)
```

The type of the array can also be changed after creation using the <code>.astype()</code> method:

```
In [11]: myfloat_array = np.array([1.2, 6, 7.6, 500], dtype=np.float)
    myfloat_array.dtype

Out[11]: dtype('float64')

In [12]: myint_array = myfloat_array.astype(np.int8)
    myint_array.dtype

Out[12]: dtype('int8')
```

1.1.2 Array shape

A very important property of an array is its **shape** or in other words the dimensions of each axis. That property can be accessed via the . shape property:

```
In [13]: myarray
Out[13]: array([2, 5, 3, 9, 5, 2])
In [14]: myarray.shape
Out[14]: (6,)
```

We see that our simple array has only one dimension of length 6. Now of course we can create more complex arrays. Let's create for example a *list of two lists*:

We see now that the shape of this array is *two-dimensional*. We also see that we have 2 lists of 3 elements. In fact at this point we should forget that we have a list of lists and simply consider this object as a *matrix* with *two rows and three columns*. We'll use the following graphical representation to clarify some concepts:

1.2 Creating arrays

We have seen that we can turn regular lists into arrays. However this becomes quickly impractical for larger arrays. Numpy offers several functions to create particular arrays.

1.2.1 Common simple arrays

For example an array full of zeros or ones:

One can also create diagonal matrix:

By default Numpy creates float arrays:

```
In [21]: one_array.dtype
Out[21]: dtype('float64')
```

However as mentioned before, one can impose a type usine the dtype option:

1.2.2 Copying the shape

Often one needs to create arrays of same shape. This can be done with "like-functions":

1.2.3 Complex arrays

We are not limited to create arrays containing ones or zeros. Very common operations involve e.g. the creation of arrays containing regularly arrange numbers. For example a "from-to-by-step" list:

```
In [28]: np.arange(0, 10, 2)
Out[28]: array([0, 2, 4, 6, 8])
```

Or equidistant numbers between boundaries:

Numpy offers in particular a random submodules that allows one to create arrays containing values from a wide array of distributions. For example, normally distributed:

1.2.4 Higher dimensions

Until now we have almost only dealt with 1D or 2D arrays that look like a simple grid:

We are not limited to create 1 or 2 dimensional arrays. We can basically create any-dimension array. For example in microscopy, images can be volumetric and thus they are 3D arrays in Numpy. For example if we acquired 5 planes of a 10px by 10px image, we would have something like:

```
In [33]: array3D = np.ones((10,10,5))
```


All the functions and properties that we have seen until now are N-dimensional, i.e. they work in the same way irrespective of the array size.

1.3 Importing arrays

We have seen until now multiple ways to create arrays. However, most of the time, you will *import* data from some source, either directly as arrays or as lists, and use these data in your analysis.

1.3.1 Loading and saving arrays

Numpy can efficiently save and load arrays in its own format .npy . Let's create an array and save it:

```
In [37]: ls
         01-DA_Numpy_arrays_creation.ipynb
                                                98-DA_Numpy_Solutions.ipynb
         02-DA_Numpy_array_maths.ipynb
                                                99-DA_Pandas_Exercises.ipynb
         03-DA_Numpy_matplotlib.ipynb
04-DA_Numpy_indexing.ipynb
                                                99-DA_Pandas_Solutions.ipynb
                                                My first plot.png
         05-DA_Numpy_combining_arrays.ipynb
                                                SNSF data.ipynb
         06-DA Pandas introduction.ipynb
                                                Untitled.ipynb
         07-DA Pandas structures.ipynb
                                                  pycache /
                                                ipyleaflet.ipynb
         08-DA_Pandas_import.ipynb
         09-DA_Pandas_operations.ipynb
                                                multiple_arrays.npz
         10-DA Pandas combine.ipynb
                                                my saved array.npy
         11-DA Pandas splitting ipynb
                                                raw.githubusercontent.com/
         12-DA_Pandas_plotting.ipynb
                                                svg.py
         13-DA Pandas ML.ipynb
                                                unused/
         98-DA_Numpy_Exercises.ipynb
```

Now that this array is saved on disk, we can load it again using np.load:

If you have several arrays that belong together, you can also save them in a single file using np.savez in npz format. Let's create a second array:

```
In [39]: array to save2 = np.random.normal(10, 2, (1,2))
         array to save2
Out[39]: array([[14.57759687, 7.62340049]])
In [40]: | np.savez('multiple_arrays.npz', array_to_save=array_to_save, array_to_save2=
         array to save2)
In [41]: ls
         01-DA_Numpy_arrays_creation.ipynb
                                               98-DA_Numpy_Solutions.ipynb
         02-DA Numpy array maths.ipynb
                                               99-DA Pandas Exercises.ipynb
         03-DA_Numpy_matplotlib.ipynb
                                               99-DA_Pandas_Solutions.ipynb
         04-DA_Numpy_indexing.ipynb
                                               My_first_plot.png
         05-DA_Numpy_combining_arrays.ipynb
                                               SNSF_data.ipynb
         06-DA_Pandas_introduction.ipynb
                                               Untitled.ipynb
         07-DA_Pandas_structures.ipynb
                                                 _pycache_
         08-DA Pandas import.ipynb
                                               ipyleaflet.ipynb
         09-DA Pandas operations.ipynb
                                               multiple arrays.npz
         10-DA_Pandas_combine.ipynb
                                               my saved array.npy
         11-DA_Pandas_splitting.ipynb
                                               raw.githubusercontent.com/
         12-DA_Pandas_plotting.ipynb
13-DA_Pandas_ML.ipynb
                                               svg.py
                                               unused/
         98-DA Numpy Exercises.ipynb
```

And when we load it again:

```
In [42]: load_multiple = np.load('multiple_arrays.npz')
    type(load_multiple)
Out[42]: numpy.lib.npyio.NpzFile
```

We get here an NpzFile *object* from which we can read our data. Note that when we load an npz file, it is only loaded *lazily*, i.e. data are not actually read, but the content is parsed. This is very useful if you need to store large amounts of data but don't always need to re-load all of them. We can use methods to actually access the data:

```
In [43]: load_multiple.files
Out[43]: ['array_to_save', 'array_to_save2']
In [44]: load_multiple.get('array_to_save2')
Out[44]: array([[14.57759687, 7.62340049]])
```

1.3.2 Importing data as arrays

Images are a typical example of data that are array-like (matrix of pixels) and that can be imported directly as arrays. Of course, each domain will have it's own *importing libraries*. For example in the area of imaging, the scikit-image package is one of the main libraries, and it offers and importer of images as arrays which works both with local files and web addresses:

```
In [45]: import skimage.io
image = skimage.io.imread('https://upload.wikimedia.org/wikipedia/commons/f/
fd/%27%C3%9Cbermut_Exub%C3%A9rance%27_by_Paul_Klee%2C_1939.jpg')
```

We can briefly explore that image:

```
In [46]: type(image)
Out[46]: numpy.ndarray
In [47]: image.dtype
Out[47]: dtype('uint8')
In [48]: image.shape
Out[48]: (584, 756, 3)
```

We see that we have an array of integeres with 3 dimensions. Since we imported a jpg image, we know that the thrid dimension corresponds to three color channels Red, Green, Blue (RGB).

You can also read regular CSV files directly as Numpy arrays. This is more commonly done using Pandas, so we don't spend much time on this, but here is an example on importing data from the web:

In [50]: oilprice

```
Out[50]: array([126.6, 127.2, 132.1, 133.3, 133.9, 134.5, 133.9, 133.4, 132.8,
                             132.3, 131.1, 134.1, 119.2, 116.8, 113.9, 110.6, 107.8, 105.4, 102.5, 104.5, 104.3, 104.7, 105.2, 106.6, 106.9, 109. , 110.4, 111.3, 112.1, 112.9, 114. , 113.8, 113.5, 112.6, 111.4, 110.4, 109.8, 109.4, 109.1, 109.1, 109.9, 111.2, 112.4, 112.4, 112.7,
                              112. , 111. , 109.7, 109.2, 108.9, 108.4, 108.8, 109.1, 109.1,
                              110.2, 110.4, 109.9, 109.9, 109.1, 107.5, 106.3, 105.3, 104.2,
                             102.6, 101.4, 100.6, 99.5, 100.4, 101.1, 101.4, 101.2, 101.3, 101. , 101.5, 101.3, 102.6, 105.1, 105.8, 107.2, 108.9, 110.2, 111.8, 112. , 112.8, 114.3, 115.1, 115.3, 114.9, 114.7, 113.9,
                              113.2, 112.8, 112.6, 112.3, 111.6, 112.3, 112.1, 112.1, 112.4,
                              112.3, 111.8, 111.5, 111.5, 111.3, 111.3, 112. , 112. , 111.2,
                              110.6, 109.8, 108.9, 107.8, 107.4, 106.9, 106.5, 106.6, 106.1,
                             105.5, 105.5, 106.2, 105.3, 104.7, 104.2, 104.8, 105.8, 105.6, 105.7, 106.8, 107.9, 107.9, 108.6, 108.6, 109.7, 110.6, 110.7, 110.4, 110.1, 109.5, 108.9, 108.6, 108.1, 107.5, 106.9, 106.2, 106. , 105.9, 106.5, 106.2, 105.5, 105.1, 104.5, 104.7,
                             109.2, 109. , 109.3, 109.2, 108.4, 107.5, 106.4, 105.8, 105.1,
                              103.6, 101.8, 100.3, 99.9, 99.2, 99.5, 100.1, 99.9, 100.5,
                              100.7, 101.6, 100.9, 100.4, 100.7, 100.5, 100.7, 101.2, 101.1,
                             102.8, 103.3, 103.7, 104., 104.5, 104.6, 105., 105.6, 106.5, 107.3, 107.9, 109.5, 109.7, 110.3, 110.9, 111.4, 113., 115.7, 116.1, 116.5, 116.1, 115.6, 115., 114., 112.9, 112., 111.4, 110.6, 110.7, 112.1, 112.3, 112.2, 111.3, 108.2, 107.5, 106.4,
                              105.6, 104.4, 106.3, 107. , 106.2, 106.8, 106.8, 106.2, 105.8,
                              105.2, 106. , 106.3, 105.6, 105.5, 106.3, 107.7, 109.4, 111. ,
                             113.3, 114.1, 116.4, 117.3, 119.1, 119.3, 119.4, 119. , 118.3, 117.7, 116.9, 115.9, 114.8, 113.8, 112.6, 112.4, 112.1, 112.2, 111.3, 111.1, 110.7, 110.6, 110.6, 110. , 109.2, 108.1, 107.3, 106.2, 106. , 105.9, 105.6, 105.7, 105.8, 105.7, 107.2, 107.5, 107.7, 108.6, 109.2, 108.4, 107.9, 107.6, 107.3, 107.8, 109.9,
                              111.5, 111.6, 112.8, 115.8, 117.2, 119.5, 123.4, 124.3, 125.7,
                             125.9, 126.2, 126.9, 126., 125.2, 124.7, 124.1, 123., 121.9, 121.7, 121.5, 121.5, 120.9, 119.9, 119.6, 119.9, 120.1, 119.3, 120.1, 120.3, 120.3, 119.9, 119.1, 120.3, 120.5, 121.7, 122.5, 122.9, 123.8, 124.6, 124.2, 124.1, 123.3, 122.7, 122.4, 122., 123.5, 123.6, 123.2, 123. , 122.7, 122. , 121.7, 120.8, 119.9,
                              119.1, 119.6, 119.1, 119.2, 118.7, 118.8, 118.5, 118.2, 118.2,
                              119.5, 120.4, 120.6, 119.8, 118.9, 117.9, 117.1, 116.9, 116.5,
                              117. , 116.4, 118.5, 121.9, 121.8, 123. , 122.9, 122.7, 121.9,
                             120.8, 119.5, 119.5, 118.7, 117.8, 116.8, 116.3, 116.4, 115.6, 115. , 114. , 112.8, 111.8, 110.8, 109.9, 108.9, 108.3, 107.2, 105.5, 105.1, 104.5, 103.2, 103.8, 102.5, 101.7, 100.6, 99.8, 102.6, 102.3, 101.8, 102.1, 103.2, 103.8, 105.2, 105.5, 105.2,
                              104.7, 106. , 104.9, 104.1, 104.2, 104.1, 103.7, 104.4, 103.5,
                              102.3, 101.8, 101.1, 100.4,
                                                                                   99.8, 99.1,
                                                                                                            98.7,
                                                                                                                         99.9,
                              100.6, 101. , 100.7, 100.1,
                                                                                  99.7,
                                                                                               99.4,
                                                                                                            98.1,
                                                                                                                         97.1,
                                                                                                                                      95.4.
                                                                                               92.,
                                                                                                            92.1,
                               93.3, 92.3, 92.1, 91.4,
                                                                                  91.3,
                                                                                                                         91.3,
                                                                                                                                      90.8,
                             90.7, 89.9, 88.5, 89.1, 90., 95.8, 99.9, 105.5, 108.7, 110.7, 110.3, 109.9, 110.7, 110.9, 111.2, 110.1, 108.8, 109.2, 108.8, 110.5, 109.5, 111., 112.3, 114.8, 117.2, 117.2, 118.3,
                              121.4, 121.2, 121.4, 122.3, 123.4, 125.2, 124.8, 124.2, 123.4,
                              122. , 122.5, 121.8, 122.2, 124. , 125.8, 126.2, 126. , 126.3,
                             125.7, 126.3, 126. , 125.2, 126.8, 130.7, 130.7, 131.9, 135. , 140. , 141.3, 149. , 151.1, 150.8, 148.4, 147.8, 144.7, 141.5, 140.6, 138.6, 142.7, 146.6, 149.4, 150.9, 153.5, 160.7, 166.4, 164.1, 160.6, 157.1, 152.1, 149.9, 144.7, 143.7, 142. , 144.4,
                              145.6, 150.2, 153.5, 153.9, 152.5, 149.8, 147.3, 151.6, 153.2,
                              152.3, 150.2, 150.1, 148.7, 148.9, 146.4, 142.5, 139.6, 138.8,
                              137.7, 140. , 145.8, 145.6, 144.6, 142.6, 146. , 142.9, 141. ,
                             139.3, 138.7, 137.7, 137.9, 141.1, 146.9, 153.5, 158.6, 158.5, 165.9, 166.3, 163.7, 165.6, 163. , 158. , 152.6, 145.4, 138.4, 135. , 133. , 131.8, 131.9, 131.9, 134.7, 139.9, 148. , 153.8, 151.1, 151.6, 146. , 138.1, 131. , 126.4, 122.1, 119.3, 117. ,
                              114.7, 114., 109.7, 108.4, 107.5, 104.2, 106.3, 109.6, 110.9,
                              109.9, 108.7, 108.1, 109.8, 108.5, 108.9, 108.7, 111.8, 119.4,
                             126.2, 130.8, 133.9, 138.2, 136.8, 136.7, 135.3, 135.6, 134.9, 136. , 134.8, 135.3, 133.2, 133.5, 134.2, 135.7, 134.5, 136.1,
```

```
138.1, 137.6, 135.5, 135.5, 135.7, 136.5, 135.3, 135.5, 136.7, 135.7, 138.5, 141.6, 142.2, 144.3, 142.7, 142.7, 140.6, 137., 133.6, 131.6, 131.6, 132.2, 137.1, 141.7, 141.2, 142.3, 142.2, 143.7, 149.9, 158.2, 163., 161.7, 164.1, 166.3, 167.3, 162.6, 157.7, 155.7, 152.1, 150.4, 148.6, 144.1, 142.7, 144.4, 143.9, 142.8, 145.6, 148., 145.1, 144.3, 144.8, 148.9, 149.6, 148.8, 151.6, 155., 159.4, 169.3, 168.8, 165.3, 163.6, 158., 152.4, 151.1, 151.5, 152.7, 149.9, 149.4, 146.4, 145.9, 147.8, 145.4, 144.1, 143.3, 145.9, 145.4, 149.2, 154.4, 157.9, 160.4, 159.1, 160.9, 161.7])
```

```
In [ ]:
```

2. Mathematics with arrays

One of the great advantages of Numpy arrays is that they allow one to very easily apply mathematical operations to entire arrays effortlessly. We are presenting here 3 ways in which this can be done.

```
In [1]: import numpy as np
```

2.1 Simple calculus

To illustrate how arrays are useful, let's first consider the following problem. You have a list:

```
In [2]: mylist = [1,2,3,4,5]
```

And now you wish to add to each element of that list the value 3. If we write:

We receive an error because Python doesn't know how to combine a list with a simple integer. In this case we would have to use a for loop or a comprehension list, which is cumbersome.

```
In [4]: [x + 3 for x in mylist]
Out[4]: [4, 5, 6, 7, 8]
```

Let's see now how this works for an array:

```
In [5]: myarray = np.array(mylist)
In [6]: myarray + 3
Out[6]: array([4, 5, 6, 7, 8])
```

Numpy understands without trouble that our goal is to add the value 3 to *each element* in our list. Naturally this is dimension independent e.g.:

Of course as long as we don't reassign this new state to our variable it remains unchanged:

We have to write:

Naturally all basic operations work:

2.2 Mathematical functions

In addition to simple arithmetic, Numpy offers a vast choice of functions that can be directly applied to arrays. For example trigonometry:

```
In [15]: np.cos(myarray)
Out[15]: array([ 0.54030231, -0.41614684, -0.9899925 , -0.65364362,  0.28366219])
```

Exponentials and logs:

2.3 Logical operations

If we use a logical comparison on a regular variable, the output is a *boolean* (True or False) that describes the outcome of the comparison:

We can do exactly the same thing with arrays. When we added 3 to an array, that value was automatically added to each element of the array. With logical operations, the comparison is also done for each element in the array resulting in a boolean array:

Exactly as for simple variables, we can assign this boolean array to a new variable directly:

2.4 Methods modifying array dimensions

The operations described above were applied *element-wise*. However sometimes we need to do operations either at the array level or some of its axes. For example, we need very commonly statistics on an array (mean, sum etc.)

Or the maximum value:

```
In [26]: np.max(nd_array)
Out[26]: 12.162119714449235
```

Note that several of these functions can be called as array methods instead of numpy functions:

```
In [27]: nd_array.mean()
Out[27]: 9.762076209457817
In [28]: nd_array.max()
Out[28]: 12.162119714449235
```

Note that most functions can be applied to specific axes. Let's remember that our arrays is:

We can for example do a maximum projection along the first axis (rows): the maximum value of eadch column is kept:

```
In [30]: proj0 = nd_array.max(axis=0)
proj0

Out[30]: array([11.31745909, 10.86316749, 11.2873836 , 12.16211971])

In [31]: proj0.shape
Out[31]: (4,)
```

We can of course do the same operation for the second axis:

```
In [32]: proj1 = nd_array.max(axis=1)
proj1

Out[32]: array([12.16211971, 11.31745909, 11.77819806])

In [33]: proj1.shape
Out[33]: (3,)
```

There are of course more advanced functions. For example a cumulative sum:

3. Plotting arrays

Arrays can represent any type of numeric data, typical examples being e.g. time-series (1D), images (2D) etc. Very often it is helpful to visualize such arrays either while developing an analysis pipeline or as an end-result. We show here briefly how this visualization can be done using the Matplotlib library. That library has extensive capabilities and we present here a minimal set of examples to help you getting started. Note that we will see other libraries when exploring Pandas in the next chapters that are more specifically dedicated to data science.

All the necessary plotting functions reside in the pyplot module of Matplotlib. plt contains for example all the functions for various plot types:

```
plot an image: plt.imshow()line plot: plt.plotplot a histogram: plt.hist()etc.
```

Let's import it with it's standard abbreviation plt (as well as numpy):

```
In [1]: import matplotlib.pyplot as plt
import numpy as np
```

3.1 Data

We will use here Numpy to generate synthetic data to demonstrate plotting. We create an array for time, and then transform that array with a sine function. Finally we make a second version where we add some noise to the data:

```
In [2]: # time array
    time = np.arange(0,20,0.5)
# sine function
    time_series = np.sin(time)
# sine function plus noise
    time_series_noisy = time_series + np.random.normal(0,0.5,len(time_series))
```

3.2 General concepts

We are going to see in the next sections a few example of important plots and how to customize them. However we start here by explaining here the basic concept of Matplotlib using a simple line plot (see next section for details on line plot).

3.2.1 One-line plot

The simplest way to create a plot, is just to directly call the relevant function, e.g. plt.plot() for a line plot:

If we need to plot multiple datasets one the same plot, we can just keep adding plots on top of each other:

As you can see Matplotlib automatically knows that you want to combine different signals, and by default colors them. From here, we can further customize each plot individually, but we are very quickly going to see limits for how to adjust the figure settings. What we really need here is a *handle* for the figure and each plot.

3.2.2 Object-based plots

In order to gain more control on the plot, we need to gain control on the elements that constitute it. Those are:

- The Figure object which contains all elements of the figure
- The Axes object, the actual plots that belong to a figure object

We can gain this control by explicity creating these objects via the subplots () function which returns a figure and an axis object:

We see that we just get an empty figure with axes that we should now fill. For example the ax object can create an image plot on its own:

We can go further and customize other elements of the plot. Again, this is only possible because we have reference to the "plot-objects". For example we can add labels:

```
In [7]: fig, ax = plt.subplots()
   plt.plot(time_series);
   ax.set_xlabel('Time')
   ax.set_ylabel('Amplitude');
   ax.set_title('Sine function');
```


We can also superpose multiple plots. As we want all of them to share the same axis, we use the same ax reference. For example we can add a line plot:

```
In [8]: fig, ax = plt.subplots()
    ax.plot(time_series);
    ax.plot(time_series_noisy);
    ax.set_xlabel('Time')
    ax.set_ylabel('Amplitude');
    ax.set_title('Sine function');
```


And finally we can export our image as an independent picture using the fig reference:

```
In [9]: fig.savefig('My_first_plot.png')
```

3.2.3 Grids

Using the sort of syntax described above it is very easy to crate complex plots with multiple panels. The simplest solution is to specify a *grid* of plots when creating the figure using plt.subplots(). This provides a list of Axes objects, each corresponding to one element of the grid:

Here ax is now a 2D numpy array whose elements are Axis objects:

```
In [11]: type(ax)
Out[11]: numpy.ndarray
In [12]: ax.shape
Out[12]: (2, 2)
```

We access each element of the ax array like a regular list and use them to plot:

```
In [13]:
          # we create additional data
          time_series_noisy2 = time_series + np.random.normal(0,1,len(time_series))# c
          reate figure with 2x2 subplots
          time series noisy3 = time series + np.random.normal(0,1.5,len(time series))#
          create figure with 2x2 subplots
          # create the figure and axes
          fig, ax = plt.subplots(2,2, figsize=(10,10))
          # fill each subplot
          ax[0,0].plot(time, time series);
          ax[0,1].plot(time, time_series_noisy);
          ax[1,0].plot(time, time_series_noisy2);
          # in the last plot, we combined all plots
          ax[1,1].plot(time, time series);
          ax[1,1].plot(time, time_series noisy);
          ax[1,1].plot(time, time_series_noisy2);
          # we can add titles to subplots
          ax[0,0].set_title('Time series')
          ax[0,1].set_title('Time series + noise 1')
          ax[1,0].set_title('Time series + noise 2')
          ax[1,1].set_title('Combined');
                                                               Time series + noise 1
                           Time series
            1.00
                                                    1.5
            0.75
                                                    1.0
            0.50
                                                    0.5
            0.25
                                                    0.0
            0.00
           -0.25
                                                   -0.5
           -0.50
                                                   -1.0
           -0.75
                                                   -1.5
           -1.00
                               10
                                       15
                                               20
                                                                       10
                                                                               15
                                                                                      20
                       Time series + noise 2
                                                                    Combined
              2
              1
                                                     1
              0
             -1
                                                    -1
             -2
                                                    -2
```

An alternative is to use add_subplot. Here we only create a figure, and progressively add new subplots in a predetermined grid. This variant is useful when programmatically creating a figure, as it easily allows to create plots in a loop:

20

Ó

5

10

15

20

15

5

10

```
In [14]: # create a figure
fig = plt.figure(figsize=(7,7))
for x in range(1,5):
    # add subplot and create an axis
    ax = fig.add_subplot(2,2,x)
    # plot the histogram in the axis
    ax.plot(time, time_series + np.random.normal(0,x/10, len(time)))
    # customize axis
    ax.set_title(f'Noise: {x/10}')
```


3.3 Plot types

There is an extensive choice of plot types available in Matplotlib. Here we limit the presentation to the three most common ones: line plot, histogram and image.

3.3.1 Line plot

We have already seen line plots above, but we didn't customize the plot itself. A 1D array can simply be plotted by using:

This generates by default a line plot where the x-axis simply uses the array index and the array itself is plotted as y-axis. We can explicitly specify the x-axis by passing first x-axis array, here the time array:

Each Matplotlib plot can be extensively customized. We only give here a few examples of what can be done. For example, we can change the plot color (for a list of named colors see here (here (here (<a href="https://matplotlib.org/3.1.1/api/markers_api.html)):

Conveniently, several of this styling options can be added in a short form. In this example we can specify that we want a line (-), markers (0) and the color red (r) using -0r:

Of course if the data are not representing a continuous signal but just a cloud of points, we can skip the line argument to obtain a scatter plot. You can also directly use the plt.scatter() function:

3.3.2 Histogram

To get an idea of the contents of an array, it is very common to plot a histogram of it. This can be done with the plt.hist() function:

Matplotlib selects bins for you, but most of the time you'll want to change those. The simplest is just to specify all bins using np.arange():

Just like for line plots, you can superpose histograms. However they will overlap, so you may want to fix the transparency of the additional layers with the alpha parameter:

And also as demonstrated before you can adjust the settings of your figure, by creating figure and axis objects:

```
In [23]: fig, ax = plt.subplots()
    ax.hist(time_series, bins = np.arange(-1,1,0.25));
    ax.hist(time_series_noisy, bins = np.arange(-1,1,0.25), alpha = 0.5);
    ax.set_xlabel('Value')
    ax.set_ylabel('Counts');
    ax.set_title('Sine function');
```


3.3.4 Image plot

Finally, we often need to look at 2D arrays. These can of course be 2D functions but most of the time they are images. We can again create synthetic data with Numpy. First we create a two 2D grids that contain the x,y indices of each element:

```
In [24]: xindices, yindices = np.meshgrid(np.arange(20), np.arange(20))
```

Then we can crete an array that contains the euclidian distance from a given point $d=((x-x_0)^2+(y-y_0)^2)^{1/2}$

```
In [25]: centerpoint = [5,8]
dist = ((xindices - centerpoint[0])**2 + (yindices - centerpoint[1])**2)**0.
5
```

If we want to visualize this array, we can then use plt.imshow() :

Like the other functions plt.imshow() has numerous options to adjust the image aspect. For example one can change the default colormap, or the aspect ratio of the image:

Finally, one can mix different types of plot. We can for example add our line plot from the beginning on top of the image:

```
In [28]: plt.imshow(dist)
  plt.plot(time, time_series, color = 'r')
```

Out[28]: [<matplotlib.lines.Line2D at 0x113ade100>]

4. Indexing, slicing

Each element of an array can be located by its position in each dimension. Numpy offers multiple ways to access single elements or groups of elements in very efficient ways. We will illustrate these concepts both with small simple matrices as well as a regular image, in order to illustrate them.

```
In [1]: import numpy as np
   import matplotlib.pyplot as plt
   plt.gray();
   import skimage
```

<Figure size 432x288 with 0 Axes>

We first load an image included in the scikit-image package:

```
In [2]: image = skimage.data.chelsea()
plt.imshow(image);
```


We can check the dimensions of the image and see that it is an RGB image with 3 channels:

```
In [3]: image.shape
Out[3]: (300, 451, 3)
```

4.1 Accessing single values

We create a small 2D array to use as an example:

It is very easy to access an array's values. One can just pass an *index* for each dimensions. For example to recover the value on the last row and second column of the normal_array array we just write (remember counting starts at 0):

```
In [5]: single_value = normal_array[2,1]
single_value
Out[5]: 8.542439525354693
```

What is returned in that case is a single number that we can re-use:

```
In [6]: single_value += 10
single_value
Out[6]: 18.542439525354695
```

And that change doesn't affect the original value in the array:

However we can also directly change the value in an array:

4.2 Accessing part of an array with indices: slicing

4.2.1 Selecting a range of elements

One can also select multiple elements in each dimension (e.g. multiple rows and columns in 2D) by using the start:end:step syntax. By default, if omitted, start=0, end=last element and step=1. For example to select the first **and** second rows of the first column, we can write:

```
In [10]: normal_array[0:2,0]
Out[10]: array([12.99205086, 9.19391119])
```

Note that the end element is **not** included. One can use the same notation for all dimensions:

4.2.2 Selecting all elements

If we only specify: , it means we want to recover all elements in that dimension:

Also in general, if you only specify the value for a single axis, this will take the first element of the first dimension:

Finally note that if you want to recover only one element along a dimension (single row, column etc), you can do that in two ways:

```
In [16]: normal_array[0,:]
Out[16]: array([12.99205086, 7.7157832 , 14.66021898, 8.21412356])
```

This returns a one-dimensional array containing a single row from the original array:

```
In [17]: normal_array[0,:].shape
Out[17]: (4,)
```

Instead, if you specify actual boundaries that still return only a single row:

```
In [18]: normal_array[0:1,:]
Out[18]: array([[12.99205086, 7.7157832 , 14.66021898, 8.21412356]])
In [19]: normal_array[0:1,:].shape
Out[19]: (1, 4)
```

you recover a tow dimensional array where one of the dimensions has a size of 1.

4.2.3 Illustration on an image

We can for example only select half the rows of the image but all columns and channels:

```
In [20]: image.shape
Out[20]: (300, 451, 3)
In [21]: sub_image = image[0:150,:,:]
plt.imshow(sub_image);
```

Or we can take every fith column and row from a single channel, which returns a pixelated version of the original image:

4.3 Sub-arrays are not copies!

As often with Python when you create a new variable using a sub-array, that variable **is not independent** from the original variable:

If for example we modify normal_array, this is going to be reflected in sub_array too:

```
In [26]: normal_array[0,2] = 100
```

```
In [27]: normal array
Out[27]: array([[ 12.99205086,
                                  7.7157832 , 100.
                                                               8.21412356],
                   9.19391119,
                                  7.92142871,
                                                13.31222213,
                                                               8.199576881,
                 [ 11.08009573,
                                                              10.0963776111)
                                                12.71096417,
In [28]: sub array
Out[28]: array([[100.
                                  8.214123561,
                 [ 13.31222213,
                                  8.19957688]
                 [ 12.71096417,
                                 10.09637761]])
```

The converse is also true:

```
In [29]:
         sub array[0,1] = 50
In [30]: sub_array
Out[30]: array([[100.
                                  50.
                 [ 13.31222213,
                                  8.199576881,
                 [ 12.71096417,
                                  10.0963776111)
In [31]: normal array
Out[31]: array([[ 12.99205086,
                                  7.7157832 , 100.
                                                               50.
                   9.19391119,
                                  7.92142871,
                                                13.31222213,
                                                                8.199576881.
                 [ 11.08009573,
                                  23.
                                                12.71096417,
                                                               10.09637761]])
```

If you want your sub-array to be an *independent* copy of the original, you have to use the .copy() method:

```
In [32]: sub array copy = normal array[1:3,:].copy()
In [33]: | sub_array_copy
Out[33]: array([[ 9.19391119, 7.92142871, 13.31222213, 8.19957688],
                 [11.08009573, 23.
                                           , 12.71096417, 10.09637761]])
In [34]:
         sub\_array\_copy[0,0] = 500
In [35]: sub array copy
Out[35]: array([[500.
                                  7.92142871,
                                                13.31222213,
                                                               8.19957688],
                 [ 11.08009573,
                                                12.71096417,
                                                              10.09637761]])
                                 23.
In [36]: normal_array
Out[36]: array([[ 12.99205086,
                                  7.7157832 , 100.
                                                              50.
                                               13.31222213,
                                                               8.199576881,
                   9.19391119,
                                  7.92142871,
                 [ 11.08009573,
                                 23.
                                                12.71096417,
                                                              10.0963776111)
```

4.4. Accessing parts of an array with coordinates

In the above case, we are limited to select rectangular sub-regions of the array. But sometimes we want to recover a series of specific elements for example the elements (row=0, column=3) and (row=2, column=2). To achieve that we can simply index the array with a list containing row indices and another with columns indices:

```
In [37]:
         row indices = [0,2]
          col_indices = [3,2]
         normal array[row indices, col indices]
Out[37]: array([50.
                            , 12.710964171)
In [38]: normal array
Out[38]: array([[ 12.99205086,
                                  7.7157832 , 100.
                                                              50.
                   9.19391119,
                                 7.92142871, 13.31222213,
                                                              8.199576881.
                 [ 11.08009573.
                                23.
                                               12.71096417.
                                                             10.0963776111)
In [39]: | selected_elements = normal_array[row_indices, col_indices]
In [40]: selected elements
Out[40]: array([50.
                            , 12.71096417])
```

4.5 Logical indexing

The last way of extracting elements from an array is to use a boolean array of same shape. For example let's create a boolean array by comparing our original matrix to a threshold:

We see that we only have two elements which are above the threshold. Now we can use this logical array to *index* the original array. Imagine that the logical array is a mask with holes only in True positions and that we superpose it to the original array. Then we just take all the values visible in the holes:

```
In [42]: normal_array[bool_array]
Out[42]: array([100., 50.])
```

Coming back to our real image, we can for example first create an image that contains a single channel and then find bright regions in it:

```
In [43]: single_channel = image[:,:,0]
    mask = single_channel > 150
    plt.imshow(mask);
```


And now we can recover all the pixels that are "selected" by this mask:

```
In [44]: single_channel[mask]
Out[44]: array([152, 152, 154, ..., 161, 161, 162], dtype=uint8)
```

4.6 Reshaping arrays

Often it is necessary to reshape arrays, i.e. keep elements unchanged but change their position. There are multiple functions that allow one to do this. The main one is of course reshape.

4.6.1 reshape

Given an array of MxN elements, one can reshape it with a shape OxP as long as M*N=O*P.

```
In [45]:
         reshaped = np.reshape(normal_array,(2,6))
         reshaped
Out[45]: array([[ 12.99205086,
                                                             50.
                                  7.7157832 , 100.
                                  7.92142871],
                   9.19391119,
                [ 13.31222213,
                                 8.19957688,
                                               11.08009573,
                                                             23.
                  12.71096417, 10.09637761]])
In [46]: reshaped.shape
Out[46]: (2, 6)
In [47]: 300*451/150
Out[47]: 902.0
```

With the image as example, we can reshape the array from 300x451x3 to 150x902x3:

```
In [48]: plt.imshow(np.reshape(image, (150,902,3)))
Out[48]: <matplotlib.image.AxesImage at 0x11a925d60>
```

4.6.2 Flattening

It's also possible to simply flatten an array i.e. remove all dimensions to create a 1D array. This can be useful for example to create a histogram of a high-dimensional array.

4.6.3 Dimension collapse

Another common way that leads to reshaping is projection. Let's consider again our normal array:

We can project all values along the first or second axis, to recover for each row/column the largest value:

```
In [52]: proj0 = np.max(normal_array, axis = 0)
proj0

Out[52]: array([ 12.99205086, 23. , 100. , 50. ])

In [53]: proj0.shape
Out[53]: (4,)
```

We see that our projected array has lost a dimension, the one along which we performed the projection. With the image, we could project all channels along the third dimension:

4.6.4 Swaping dimensions

We can also simply exchange the position of dimensions. This can be achieved in different ways. For example we can np.roll dimensions, i.e. circularly shift dimensions. This conserves the relative oder of all axes:

```
In [55]: array3D = np.ones((4, 10, 20))
array3D.shape

Out[55]: (4, 10, 20)

In [56]: array_rolled = np.rollaxis(array3D, axis=1, start=0)
array_rolled.shape

Out[56]: (10, 4, 20)
```

Alternatively you can swap two axes. This doesn't preserver their relative positions:

```
In [57]: array_swapped = np.swapaxes(array3D, 0,2)
array_swapped.shape
Out[57]: (20, 10, 4)
```

With the image, we can for example swap the two first axes:

```
In [58]: plt.imshow(np.swapaxes(image, 0, 1));
```


4.6.5 Change positions

Finally, we can also change the position of elements without changing the shape of the array. For example if we have an array with two columns, we can swap them:

Similarly, if we have two rows:

For more complex cases you can also use the more general np.flip() function.

With the image, flipping a dimension just mirrors the picture. To do that we select a single channel:

```
In [63]: plt.imshow(np.flipud(image[:,:,0]));
```


5. Combining arrays

We have already seen how to create arrays and how to modify their dimensions. One last operation we can do is to combine multiple arrays. There are two ways to do that: by assembling arrays of same dimensions (concatenation, stacking etc.) or by combining arrays of different dimensions using *broadcasting*. Like in the previous chapter, we illustrate with small arrays and a real image.

```
In [1]: import numpy as np
    import matplotlib.pyplot as plt
    import skimage
    plt.gray();
    image = skimage.data.chelsea()

<Figure size 432x288 with 0 Axes>
```

5.1 Arrays of same dimensions

Let's start by creating a few two 2D arrays:

```
In [2]: array1 = np.ones((10,5))
    array2 = 2*np.ones((10,3))
    array3 = 3*np.ones((10,5))
```

5.1.1 Concatenation

The first operation we can perform is concatenation, i.e. assembling the two 2D arrays into a larger 2D array. Of course we have to be careful with the size of each dimension. For example if we try to concatenate array1 and array2 along the first dimension, we get:

Both array have 10 lines, but one has 3 and the other 5 columns. We can therefore only concatenate them along the second dimensions:

```
In [4]: array_conc = np.concatenate([array1, array2], axis = 1)
In [5]: array_conc.shape
Out[5]: (10, 8)
```

If we now use our example of real image, we can for example concatenate the two first channels of our RGB image:

5.1.2 Stacking

If we have several arrays with exact same sizes, we can also *stack* them, i.e. assemble them along a *new* dimension. For example we can create a 3D stack out of two 2D arrays:

```
In [9]: array_stack = np.stack([array1, array3])
In [10]: array_stack.shape
Out[10]: (2, 10, 5)
```

We can select the dimension along which to stack, again by using the axis keyword. For example if we want our new dimensions to be the *third* axis we can write:

```
In [11]: array_stack = np.stack([array1, array3], axis = 2)
In [12]: array_stack.shape
Out[12]: (10, 5, 2)
```

With our real image, we can for example stack the different channels in a new order (note that one could do that easily with np.swapaxis):

```
In [13]: image_stack = np.stack([image[:,:,2], image[:,:,0], image[:,:,1]], axis=2)
In [14]: plt.imshow(image_stack);
```

As we placed the red channel, which has the highest intensity, at the position of the green one (second position) our image now is dominated by green tones.

5.2 Arrays of different dimensions

5.2.1 Broadcasting

Numpy has a powerful feature called broadcasting. This is the feature that for example allows you to write:

Here we just combined a single number with an array and Numpy *re-used* or *broadcasted* the element with less dimensions (the number 2) across the entire array1. This does not only work with single numbers but also with arrays of different dimensions. Broadcasting can become very complex, so we limit ourselves here to a few common examples.

The general rule is that in an operation with arrays of different dimensions, **missing dimensions** or **dimensions of size 1** get *repeated* to create two arrays of same size. Note that comparisons of dimension size start from the **last** dimensions. For example if we have a 1D array and a 2D array:

```
In [16]:
          array1D = np.arange(4)
          array1D
Out[16]: array([0, 1, 2, 3])
          array2D = np.ones((6,4))
In [17]:
          array2D
Out[17]: array([[1., 1., 1., 1.],
                  [1., 1., 1., 1.],
                  [1., 1., 1., 1.],
                  [1., 1., 1., 1.],
                  [1., 1., 1., 1.],
                  [1., 1., 1., 1.]])
In [18]: array1D * array2D
Out[18]: array([[0., 1., 2., 3.],
                  [0., 1., 2., 3.],
[0., 1., 2., 3.],
[0., 1., 2., 3.],
                  [0., 1., 2., 3.],
                  [0., 1., 2., 3.]])
```

Here array1D which has a *single line* got *broadcasted* over *each line* of the 2D array array2D. Note the the size of each dimension is important. If array1D had for example more columns, that broadcasting could not work:

As mentioned above, dimension sizes comparison start from the last dimension, so for example if array1D had a length of 6, like the first dimension of array2D, broadcasting would fail:

```
In [21]: array1D = np.arange(6)
array1D.shape

Out[21]: (6,)
```

5.2.2 Higher dimensions

Broadcasting can be done in higher dimensional cases. Imagine for example that you have an RGB image with dimensions NxMx3. If you want to modify each channel independently, for example to rescale them, you can use broadcasting. We can use again our real image:

```
In [24]: image.shape
Out[24]: (300, 451, 3)
In [25]: scale_factor = np.array([0.5, 0.1, 1])
    scale_factor
Out[25]: array([0.5, 0.1, 1. ])
```

```
In [26]: rescaled_image = scale_factor * image
           rescaled_image
Out[26]: array([[[ 71.5, 12. , 104. ],
                              12. , 104. ],
11.8, 102. ],
                    [ 71.5,
                    [ 70.5,
                    [ 22.5,
                               2.7, 13.],
                    [ 22.5,
                               2.7, 13.],
                               2.7, 13. ]],
                    [ 22.5,
                   [[ 73. , 12.3, 107. ], [ 72.5, 12.2, 106. ],
                    [ 71.5, 12. , 104. ],
                               2.9, 13.],
                    [ 23. ,
                    [ 22.5,
                               2.9, 13.],
                    [ 23.5,
                               3., 14.]],
                   [[ 74. , 12.6, 112. ],
                    [ 73.5, 12.5, 111. ],
                    [ 73. , 12.2, 109. ],
                               2.8, 17.],
2.9, 18.],
3., 19.]],
                    [ 24. ,
                    [ 24.5,
                    [ 25. ,
                   . . . ,
                               5.8, 30.],
7.1, 43.],
9.8, 71.],
                   [[ 46. ,
                    [ 52.5,
                    [66.,
                    [ 86. , 14.5, 138. ],
                    [ 86. , 14.5, 138. ],
                    [ 86. , 14.5, 138. ]],
                    [[ 64. , 9.2, 60. ],
[ 69.5, 10.3, 71. ],
[ 67. , 9.5, 64. ],
                   [[ 64. ,
                    [ 83. , 14.2, 132. ],
                    [ 83. , 14.2, 132. ],
                    [ 83.5, 14.3, 133. ]],
                              10.3, 71.],
                   [[ 69.5,
                               8.8, 57.],
                    [ 63.5,
                               8.6, 53.],
                    [ 62.5,
                    [ 80.5, 13.7, 127. ],
                    [ 80.5, 13.7, 127. ],
[ 81. , 13.8, 128. ]]])
```

Note that if we the image has the dimensions 3xNxM (RGB planes in the first dimension), we encounter the same problem as before: a mismatch in size for the **last** dimension:

5.2.3 Adding axes

As seen above, if we have a mismatch in dimension size, the broadcasting mechanism doesn't work. To salvage such cases, we still have the possibility to *add* empty axes in an array to restore the matching of the non-empty dimension.

In the above example our arrays have the following shapes:

```
In [31]: image2.shape
Out[31]: (3, 300, 451)
In [32]: scale_factor.shape
Out[32]: (3,)
```

So we need to add two "empty" axes after the single dimension of scale_factor:

```
In [33]: scale_factor_corr = scale_factor[:, np.newaxis, np.newaxis]
In [34]: scale_factor_corr.shape
Out[34]: (3, 1, 1)
In [35]: image2_rescaled = scale_factor_corr * image2
```

6. Pandas Introduction

In the previous chapters, we have learned how to handle Numpy arrays that can be used to efficiently perform numerical calculations. Those arrays are however homogeneous structures i.e. they can only contain one type of data. Also, even if we have a single type of data, the different rows or columns of an array do not have labels, making it difficult to track what they contain. For such cases, we need a structure closer to a table as can be found in Excel, and these structures are implemented by the package Pandas.

But why can't we simply use Excel then? While Excel is practical to browse through data, it is very cumbersome to use to combine, re-arrange and thoroughly analyze data: code is hidden and difficult to share, there's no version control, it's difficult to automate tasks, the manual clicking around leads to mistakes etc.

In the next chapters, you will learn how to handle tabular data with Pandas, a Python package widely used in the scientific and data science areas. You will learn how to create and import tables, how to combine them, modify them, do statistical analysis on them and finally how to use them to easily create complex visualizations.

So that you see where this leads, we start with a short example of how Pandas can be used in a project. We look here at data provided openly by the Swiss National Science Foundation about grants attributed since 1975.

```
In [1]: import numpy as np import pandas as pd import seaborn as sns
```

6.1 Importing data

Before anything, we need access to the data that can be found https://opendata.swiss/de/dataset/p3-export-projects-people-and-publications). We can either manually download them and then use the path to read the data or directly use the url. The latter has the advantage that if you have an evolving source of data, these will always be up to date:

Then we can have a brief look at the table itself that Jupyter displays in a formated way and limit the view to the 5 first rows using head():

In [3]: projects.head(5)
Out[3]:

	Project Number	Project Number String	Project Title	Project Title English	Responsible Applicant	Funding Instrument	Funding Instrument Hierarchy	
0	1	1000-000001	Schlussband (Bd. VI) der Jacob Burckhardt-Biog	NaN	Kaegi Werner	Project funding (Div. I-III)	Project funding	
1	4	1000-000004	Batterie de tests à l'usage des enseignants po	NaN	Massarenti Léonard	Project funding (Div. I-III)	Project funding	Psych Scier
2	5	1000-000005	Kritische Erstausgabe der 'Evidentiae contra D	NaN	Kommission für das Corpus philosophorum medii 	Project funding (Div. I-III)	Project funding	Komm philoso _l
3	6	1000-000006	Katalog der datierten Handschriften in der Sch	NaN	Burckhardt Max	Project funding (Div. I-III)	Project funding	Hanc Alte Drı
4	7	1000-000007	Wissenschaftliche Mitarbeit am Thesaurus Lingu	NaN	Schweiz. Thesauruskommission	Project funding (Div. I-III)	Project funding	Thesauru

6.2 Exploring data

Pandas offers a variety of tools to compile information about data, and that compilation can be done very efficiently without the need for loops, conditionals etc.

For example we can quickly count how many times each University appear in that table. We just use the value_counts() method for that:

```
In [4]: projects['University'].value counts().head(10)
Out[4]: Institution abroad - IACH
                                          13348
                                           8170
         University of Zurich - ZH
         University of Geneva - GE
                                           7385
         ETH Zurich - ETHZ
                                           7278
         University of Berne - BE
                                           6445
         University of Basel - BS
                                           5560
         EPF Lausanne - EPFL
                                           5174
        University of Lausanne - LA
                                           4944
        Unassignable - NA
University of Fribourg - FR
                                           2642
                                           2535
         Name: University, dtype: int64
```

Then we can very easily plot the resulting information, either using directly Pandas or a more advanced library like Seaborn, plotnine or Altair.

Here first with plain Pandas (using Matplotlib under the hood):

6.3 Handling different data types

Unlike Numpy arrays, Pandas can handle a variety of different data types in a dataframe. For example it is very efficient at dealing with dates. We see that our table contains e.g. a Start Date. We can turn this string into an actual date:

```
In [6]: projects['start'] = pd.to_datetime(projects['Start Date'])
    projects['year'] = projects.start.apply(lambda x: x.year)

In [7]: projects.loc[0].start

Out[7]: Timestamp('1975-01-10 00:00:00')

In [8]: projects.loc[0].year

Out[8]: 1975.0
```

6.4 Data wrangling, aggregation and statistics

Pandas is very efficient at wrangling and aggregating data, i.e. grouping several elements of a table to calculate statistics on them. For example we first need here to convert the Approved Amount to a numeric value. Certain rows contain text (e.g. "not applicable") and we force the conversion:

```
In [9]: projects['Approved Amount'] = pd.to_numeric(projects['Approved Amount'], err
    ors = 'coerce')
```

Then we want to extract the type of filed without subfields e.g. "Humanities" instead of "Humanities and Social Sciences; Theology & religion". For that we can create a custom function and apply it to an entire column:

Then we group the data by discipline and year, and calculate the mean of each group:

```
In [11]: aggregated = projects.groupby(['Institution Country', 'year','Field'], as_in
    dex=False).mean()
```

Finally we can use Seaborn to plot the data by "Field" using just keywords to indicate what the axes and colours should mean (following some principles of the grammar of graphics):

```
In [12]: sns.lineplot(data = aggregated, x = 'year', y='Approved Amount', hue='Field
');
```


Note that here, axis labelling, colorouring, legend, interval of confidence have been done automatically based on the content of the dataframe.

We see a drastic augmentation around 2010: let's have a closer look. We can here again group data by year and funding type and calculate the total funding:

In [14]: grouped

Out[14]:
------	------

	year	Funding Instrument Hierarchy	total_sum
0	1975.0	Project funding	32124534.0
1	1975.0	Science communication	44600.0
2	1976.0	Programmes;National Research Programmes (NRPs)	268812.0
3	1976.0	Project funding	96620284.0
4	1976.0	Science communication	126939.0
378	2020.0	Programmes;r4d (Swiss Programme for Research o	195910.0
379	2020.0	Project funding	193568294.0
380	2020.0	Project funding; Project funding (special)	19239681.0
381	2020.0	Science communication	3451740.0
382	2021.0	Science communication	55200.0

383 rows × 3 columns

Now, for each year we keep only the 5 largest funding types to be able to plot them:

Finally, we only keep year in the 2000's:

```
In [16]: instruments_by_year = group_sorted[(group_sorted.year > 2005) & (group_sorted)
d.year < 2012)]</pre>
```

Out[17]: <matplotlib.axes._subplots.AxesSubplot at 0x105e35670>

We see that the main change, is the sudden increase in funding for national research programs.

```
In [ ]:
```

7. Pandas objects

```
In [1]: import numpy as np import pandas as pd import matplotlib.pyplot as plt
```

Python has a series of data containers (list, dicts etc.) and Numpy offers multi-dimensional arrays, however none of these structures offers a simple way neither to handle tabular data, nor to easily do standard database operations. This is why Pandas exists: it offers a complete ecosystem of structures and functions dedicated to handle large tables with inhomogeneous contents.

In this first chapter, we are going to learn about the two main structures of Pandas: Series and Dataframes.

7.1 Series

7.1.1 Simple series

Series are a the Pandas version of 1-D Numpy arrays. We are rarely going to use them directly, but they often appear implicitly when handling data from the more general Dataframe structure. We therefore only give here basics.

To understand Series' specificities, let's create one. Usually Pandas structures (Series and Dataframes) are created from other simpler structures like Numpy arrays or dictionaries:

```
In [2]: numpy_array = np.array([4,8,38,1,6])
```

The function pd.Series() allows us to convert objects into Series:

The underlying structure can be recovered with the .values attribute:

```
In [4]: pd_series.values
Out[4]: array([ 4,  8,  38,  1,  6])
```

Otherwise, indexing works as for regular arrays:

```
In [5]: pd_series[1]
Out[5]: 8
```

7.1.2 Indexing

On top of accessing values in a series by regular indexing, one can create custom indices for each element in the series:

Now a given element can be accessed either by using its regular index:

```
In [8]: pd_series2[1]
Out[8]: 8
```

or its chosen index:

```
In [9]: pd_series2['b']
Out[9]: 8
```

A more direct way to create specific indexes is to transform as dictionary into a Series:

```
In [10]:
         composer_birth = {'Mahler': 1860, 'Beethoven': 1770, 'Puccini': 1858, 'Shost
         akovich': 1906}
         pd_composer_birth = pd.Series(composer_birth)
In [11]:
         pd_composer_birth
Out[11]: Mahler
                         1860
         Beethoven
                         1770
         Puccini
                         1858
         Shostakovich
                         1906
         dtype: int64
In [12]: pd composer birth['Puccini']
Out[12]: 1858
```

7.2 Dataframes

In most cases, one has to deal with more than just one variable, e.g. one has the birth year and the death year of a list of composers. Also one might have different types of information, e.g. in addition to numerical variables (year) one might have string variables like the city of birth. The Pandas structure that allow one to deal with such complex data is called a Dataframe, which can somehow be seen as an aggregation of Series with a common index.

7.2.1 Creating a Dataframe

To see how to construct such a Dataframe, let's create some more information about composers:

```
In [13]: composer_death = pd.Series({'Mahler': 1911, 'Beethoven': 1827, 'Puccini': 19
24, 'Shostakovich': 1975})
composer_city_birth = pd.Series({'Mahler': 'Kaliste', 'Beethoven': 'Bonn', '
Puccini': 'Lucques', 'Shostakovich': 'Saint-Petersburg'})
```

Now we can combine multiple series into a Dataframe by precising a variable name for each series. Note that all our series need to have the same indices (here the composers' name):

```
composers df = pd.DataFrame({'birth': pd composer birth, 'death': composer d
In [14]:
           eath, 'city': composer city birth})
           composers_df
Out[14]:
                       birth
                             death
                                            city
                       1860
                                          Kaliste
                 Mahler
                              1911
             Beethoven
                       1770
                              1827
                                            Bonn
                Puccini
                       1858
                              1924
                                         Lucques
           Shostakovich 1906
                              1975 Saint-Petersburg
```

A more common way of creating a Dataframe is to construct it directly from a dictionary of lists where each element of the dictionary turns into a column:

```
dict of list = {'birth': [1860, 1770, 1858, 1906], 'death': [1911, 1827, 192
In [15]:
          4, 1975],
            'city':['Kaliste', 'Bonn', 'Lucques', 'Saint-Petersburg']}
In [16]:
          pd.DataFrame(dict of list)
Out[16]:
             birth death
                                 city
             1860
                   1911
                               Kaliste
             1770
                   1827
                                Bonn
             1858
                   1924
                              Lucques
            1906
                   1975 Saint-Petersburg
```

However we now lost the composers name. We can enforce it by providing, as we did before for the Series, a list of indices:

```
In [17]:
           pd.DataFrame(dict_of_list, index=['Mahler', 'Beethoven', 'Puccini', 'Shostak
           ovich'])
Out[17]:
                        birth death
                                              city
                        1860
                                            Kaliste
                 Mahler
                              1911
                        1770
                              1827
                                             Ronn
              Beethoven
                Puccini
                        1858
                              1924
                                          Lucques
            Shostakovich 1906
                              1975 Saint-Petersburg
```

7.2.2 Accessing values

There are multiple ways of accessing values or series of values in a Dataframe. Unlike in Series, a simple bracket gives access to a column and not an index, for example:

returns a Series. Alternatively one can also use the attributes synthax and access columns by using:

The attributes synthax has some limitations, so in case something does not work as expected, revert to the brackets notation.

When specifiying multiple columns, a DataFrame is returned:

```
In [20]: composers_df[['city', 'birth']]

Out[20]:

| City birth |
| Mahler | Kaliste | 1860 |
| Beethoven | Bonn | 1770 |
| Puccini | Lucques | 1858 |
| Shostakovich | Saint-Petersburg | 1906 |
```

One of the important differences with a regular Numpy array is that here, regular indexing doesn't work:

```
In [21]: #composers_df[0,0]
```

Instead one has to use either the .iloc[] or the .loc[] method. .iloc[] can be used to recover the regular indexing:

```
In [22]: composers_df.iloc[0,1]
Out[22]: 1911
```

While .loc[] allows one to recover elements by using the explicit index, on our case the composers name:

```
In [23]: composers_df.loc['Mahler','death']
Out[23]: 1911
```

Remember that loc and "iloc" use brackets [] and not parenthesis ().

Numpy style indexing works here too

```
In [24]: composers_df.iloc[1:3,:]

Out[24]: birth death city

Beethoven 1770 1827 Bonn

Puccini 1858 1924 Lucques
```

If you are working with a large table, it might be useful to sometimes have a list of all the columns. This is given by the .keys() attribute:

```
In [25]: composers_df.keys()
Out[25]: Index(['birth', 'death', 'city'], dtype='object')
```

7.2.3 Adding columns

It is very simple to add a column to a Dataframe. One can e.g. just create a column a give it a default value that we can change later:

```
In [26]:
            composers_df['country'] = 'default'
In [27]:
           composers_df
Out[27]:
                          birth death
                                                city country
                  Mahler
                         1860
                                1911
                                              Kaliste
                                                       default
               Beethoven
                         1770
                                1827
                                                Bonn
                                                       default
                 Puccini
                         1858
                                1924
                                             Lucques
                                                       default
            Shostakovich 1906
                                1975 Saint-Petersburg
                                                       default
```

Or one can use an existing list:

```
country = ['Austria','Germany','Italy','Russia']
In [28]:
In [29]: composers_df['country2'] = country
In [30]:
           composers_df
Out[30]:
                        birth death
                                              city country country2
                 Mahler
                        1860
                               1911
                                           Kaliste
                                                   default
                                                            Austria
                               1827
              Beethoven 1770
                                             Bonn
                                                   default
                                                          Germany
                 Puccini 1858
                               1924
                                                   default
                                          Lucques
                                                              Italy
            Shostakovich 1906
                              1975 Saint-Petersburg
                                                   default
                                                            Russia
```

8. Importing/export, basic plotting

```
In [1]: import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   import seaborn as sns
```

We have seen in the previous chapter what structures are offered by Pandas and how to create them. Another very common way of "creating" a Pandas Dataframe is by importing a table from another format like CSV or Excel.

8.1 Simple import

An Excel table containing the same information as we had in <u>Chapter 1 (01-Pandas_structures.ipynb</u>) is provided in <u>composers.xlsx (composers.xlsx)</u> and can be read with the <u>read_excel</u> function. There are many more readers for other types of data (csv, json, html etc.) but we focus here on Excel.

```
pd.read_excel('Data/composers.xlsx')
In [2]:
Out[2]:
                composer birth death
                                                 city
           0
                   Mahler
                          1860
                                 1911
                                               Kaliste
                                 1827
                Beethoven 1770
                                                Bonn
           2
                   Puccini
                          1858
                                 1924
                                             Lucques
             Shostakovich 1906
                                 1975 Saint-Petersburg
```

The reader automatically recognized the heaers of the file. However it created a new index. If needed we can specify which column to use as header:

```
In [3]:
          pd.read_excel('Data/composers.xlsx', index_col = 'composer')
Out[3]:
                        birth death
                                              city
              composer
                                            Kaliste
                 Mahler
                        1860
                              1911
             Beethoven
                        1770
                              1827
                                             Bonn
                Puccini
                       1858
                              1924
                                          Lucques
           Shostakovich 1906
                              1975 Saint-Petersburg
```

If we open the file in Excel, we see that it is composed of more than one sheet. Clearly, when not specifying anything, the reader only reads the first sheet. However we can specify a sheet:

```
In [4]: specific_sheet = pd.read_excel('Data/composers.xlsx', index_col = 'composer
', sheet_name='Sheet2')
```

```
In [5]:
           specific_sheet
Out[51:
                            birth
                                    death
                                                      city
               composer
                          1860.0
                  Mahler
                                     1911
                                                    Kaliste
              Beethoven
                          1770.0
                                     1827
                                                     Bonn
                 Puccini
                          1858.0
                                     1924
                                                  Lucques
            Shostakovich
                          1906.0
                                     1975 Saint-Petersburg
                 Sibelius
                             10.0 unknown
                                                  unknown
                  Haydn
                            NaN
                                      NaN
                                                   Röhrau
```

For each reader, there is a long list of options to specify how the file should be read. We can see all these options using the help (see below). Imagine that our tables contains a title and unnecessary rows: we can use the skiprows argument. Imagine you have dates in your table: you can use the date_parser argument to specify how to format them etc.

```
In [6]: #use shift+tab within the parenthesis to see optional arguemnts
#pd.read_excel()
```

8.2 Handling unknown values

As you can see above, some information is missing. Some missing values are marked as "unknown" while other are NaN. NaN is the standard symbol for unknown/missing values and is understood by Pandas while "unknown" is just seen as text. This is impractical as now we have e.g. columns with a mix of numbers and text which will make later computations difficult. What we would like to do is to replace all "irrelevant" values with the standard NaN symbol that says "no information".

Let's first do a regular import:

```
import1 = pd.read_excel('Data/composers.xlsx', index_col = 'composer',sheet_
          name='Sheet2')
          import1
Out[7]:
                          birth
                                  death
                                                  city
              composer
                 Mahler
                        1860.0
                                  1911
                                                Kaliste
              Beethoven
                        1770.0
                                  1827
                                                 Bonn
                        1858.0
                Puccini
                                  1924
                                               Lucques
           Shostakovich
                        1906.0
                                  1975 Saint-Petersburg
                Sibelius
                          10.0
                                              unknown
                               unknown
                 Haydn
                                                Röhrau
                          NaN
                                   NaN
```

If we look now at one column, we can see that columns have been imported in different ways. One column is an object, i.e. mixed types, the other contains floats:

```
In [8]:
        import1.birth
Out[8]: composer
                         1860.0
        Mahler
        Beethoven
                         1770.0
        Puccini
                         1858.0
        Shostakovich
                         1906.0
        Sibelius
                           10.0
        Haydn
                            NaN
        Name: birth, dtype: float64
In [9]: import1.death
Out[9]: composer
        Mahler
                             1911
        Beethoven
                             1827
                             1924
        Puccini
        Shostakovich
                            1975
        Sibelius
                         unknown
        Haydn
                             NaN
        Name: death, dtype: object
```

If we want to do calculations, for example getting summary information using describe() we have a problem: the death column is skipped because no calculation can be done with strings:

```
In [10]:
           import1.describe()
Out[10]:
                         birth
                     5.000000
            count
                  1480.800000
            mean
              std
                   823.674207
             min
                     10.000000
             25%
                  1770.000000
             50%
                   1858.000000
             75%
                  1860.000000
             max 1906.000000
```

Now we specify that 'unknown' should be a NaN value:

```
In [11]:
           import2 = pd.read_excel('Data/composers.xlsx', index_col = 'composer',
                                        sheet_name='Sheet2', na_values=['unknown'])
           import2
Out[11]:
                          birth
                                death
                                                city
              composer
                 Mahler
                        1860.0
                               1911.0
                                              Kaliste
              Beethoven
                        1770.0
                               1827.0
                                               Bonn
                 Puccini
                        1858.0
                               1924.0
                                             Lucques
            Shostakovich
                        1906.0
                               1975.0 Saint-Petersburg
                Sibelius
                          10.0
                                 NaN
                                                NaN
                 Haydn
                          NaN
                                 NaN
                                             Röhrau
```

And now computations are again possible, as Pandas knows how to deal with NaNs:

```
import2.describe()
In [12]:
Out[12]:
                          birth
                                     death
            count
                      5.000000
                                   4.000000
            mean
                  1480.800000
                               1909.250000
                    823.674207
                                  61.396933
              std
              min
                     10.000000
                               1827.000000
              25%
                  1770.000000
                               1890.000000
              50%
                   1858.000000
                               1917.500000
                   1860 000000 1936 750000
             75%
             max 1906 000000 1975 000000
```

Handling bad or missing values is a very important part of data science. Taking care of the most common occurrences at import is a good solution.

8.3 Column types

We see above that the birth column has been "classified" as a float. However we know that this is not the case, it's just an integer. Here again, we can specify the column type already at import time using the dtype option and a dictionary:

```
In [13]:
         import2 = pd.read_excel('Data/composers.xlsx', index_col = 'composer',sheet_
         name='Sheet1', na_values=['unknown'],
                                 dtype={'composer':np.str,'birth':np.int32,'death':np.
         int32, 'city':np.str})
In [14]: import2.birth
Out[14]: composer
         Mahler
                          1860
         Beethoven
                          1770
         Puccini
                          1858
         Shostakovich
                          1906
         Name: birth, dtype: int32
```

8.4 Modifications after import

Of course we don't have to do all these adjustement at import time. We can also do a default import and check what has to be corrected afterward.

8.4.1 Create NaNs

If we missed some bad values at import we can just replace all those directly in the dataframe. We can achieve that by using the replace() method and specifying what should be replaced:

```
In [15]:
           import1
Out[15]:
                         birth
                                 death
                                                city
              composer
                       1860.0
                                              Kaliste
                 Mahler
                                 1911
              Beethoven
                       1770.0
                                 1827
                                               Bonn
                Puccini
                       1858.0
                                 1924
                                             Lucques
           Shostakovich
                       1906.0
                                 1975 Saint-Petersburg
                Sibelius
                          10.0 unknown
                                             unknown
                 Haydn
                         NaN
                                  NaN
                                              Röhrau
In [16]:
          import_nans = import1.replace('unknown', np.nan)
           import_nans.birth
Out[16]: composer
                             1860.0
          Mahler
          Beethoven
                             1770.0
          Puccini
                             1858.0
                             1906.0
          Shostakovich
          Sibelius
                                10.0
          Haydn
                                 NaN
          Name: birth, dtype: float64
```

Note that when we fix "bad" values, e.g. here the "unknown" text value with NaNs, Pandas automatically adjust the type of the column, allowing us for exampel to later do mathematical operations.

```
In [17]: import1.death.dtype
Out[17]: dtype('0')
In [18]: import_nans.death.dtype
Out[18]: dtype('float64')
```

8.4.2 Changing the type

We can also change the type of a column on an existing Dataframe with the same command as in Numpy:

If we look again at import2:

we see that we didn't actually change the type. Changes on a Dataframe are only effective if we reassign the column:

8.5 Export

You can easily export a Dataframe that you worked on. Most commonly you will export it in a common format like CSV:

```
In [24]: import2.to_csv('mydataframe.csv')
```

If you have a complex dataframe that e.g. contains lists, you can save it as a *pickle* object, a specific Python format that allows one to save complex data:

```
In [25]: import2.to_pickle('Data/my_dataframe.pkl')
```

You can reload this type of data via the pickle loading function of Pandas:

```
In [26]: import3 = pd.read_pickle('Data/my_dataframe.pkl')
```


8.6 Plotting

We will learn more about plotting later, but let's see here some possibilities offered by Pandas. Pandas builds on top of Matplotlib but exploits the knowledge included in Dataframes to improve the default output. Let's see with a simple dataset.

```
In [28]: composers = pd.read_excel('Data/composers.xlsx', sheet_name='Sheet5')
```

We can pass Series to Matplotlib which manages to understand them. Here's a default scatter plot:

Now we look at the default Pandas output. Different types of plots are accessible when using the data_frame.plot function via the kind option. The variables to plot are column names passed as keywords instead of whole series like in Matplotlib:

```
In [30]:
           composers.plot(x = 'birth', y = 'death', kind = 'scatter')
           plt.show()
              2000
              1900
              1800
              1700
              1600
              1500
                           1500
                   1400
                                                    1800
                                                             1900
                                    1600
                                            1700
                                         birth
```

We see that the plot automatically gets axis labels. Another gain is that some obvious options like setting a title are directly accesible when creating the plot:

One can add even more information on the plot by using more arguments used in a similar way as a grammar of graphics. For example we can color the scatter plot by periods:

Here you see already a limitation of the plotting library. To color dots by the peiod category, we had to turn the latter into a series of numbers. We could then rename those to improve the plot, but it's better to use more specialized packages such as Seaborn which allow to realize this kind of plot easily:

Some additional plotting options are available in the plot() module. For example histograms:

Here you see again the gain from using Pandas: without specifying anything, Pandas made a histogram of the two columns containing numbers, labelled the axis and even added a legend to the plot.

All these features are very nice and very helpful when exploring a dataset. When analyzing data in depth and creating complex plots, Pandas's plotting might however be limiting and other options such as Seaborn or Plotnine can be used.

Finally, all plots can be "styled" down to the smallest detail, either by using Matplotlib options or by directly applying a style e.g.:

9. Operations with Pandas objects

```
In [1]: import pandas as pd import numpy as np
```

One of the great advantages of using Pandas to handle tabular data is how simple it is to extract valuable information from them. Here we are going to see various types of operations that are available for this.

9.1 Matrix types of operations

The strength of Numpy is its natural way of handling matrix operations, and Pandas reuses a lot of these features. For example one can use simple mathematical operations to operate at the cell level:

```
In [2]:
         compo_pd = pd.read_excel('Data/composers.xlsx')
         compo_pd
Out[2]:
              composer birth death
                                            city
          0
                 Mahler
                        1860
                              1911
                                          Kaliste
          1
              Beethoven 1770
                              1827
                                           Bonn
                 Puccini 1858
          2
                              1924
                                         Lucques
            Shostakovich 1906
                              1975 Saint-Petersburg
         compo_pd['birth']*2
In [3]:
Out[3]: 0
               3720
               3540
         1
         2
               3716
         3
               3812
         Name: birth, dtype: int64
In [4]: | np.log(compo_pd['birth'])
Out[4]:
         0
               7.528332
               7.478735
               7.527256
         2
               7.552762
         Name: birth, dtype: float64
```

Here we applied functions only to series. Indeed, since our Dataframe contains e.g. strings, no operation can be done on it:

```
In [5]: #compo_pd+1
```

If however we have a homogenous Dataframe, this is possible:

```
In [6]:
         compo_pd[['birth','death']]
Out[6]:
             birth death
             1860
                   1911
                   1827
            1770
             1858
                   1924
            1906
                   1975
         compo pd[['birth','death']]*2
Out[7]:
             birth death
                   3822
             3720
            3540
                   3654
            3716
                   3848
            3812
                   3950
```

9.2 Column operations

There are other types of functions whose purpose is to summarize the data. For example the mean or standard deviation. Pandas by default applies such functions column-wise and returns a series containing e.g. the mean of each column:

Note that columns for which a mean does not make sense, like the city are discarded. A series of common functions like mean or standard deviation are directly implemented as methods and can be accessed in the alternative form:

```
compo pd.describe()
 In [9]:
 Out[9]:
                        birth
                                   death
            count
                     4.000000
                                4.000000
                 1848.500000
                             1909.250000
            mean
                    56.836021
                               61.396933
             std
             min 1770.000000
                             1827.000000
                  1836.000000
                             1890.000000
             50%
                  1859.000000
                             1917.500000
                 1871.500000 1936.750000
             max 1906.000000 1975.000000
In [10]: compo pd.std()
Out[10]: birth
                     56.836021
           death
                     61.396933
           dtype: float64
```

If you need the mean of only a single column you can of course chains operations:

```
In [11]: compo_pd.birth.mean()
Out[11]: 1848.5
```

9.3 Operations between Series

We can also do computations with multiple series as we would do with Numpy arrays:

We can even use the result of this computation to create a new column in our Dataframe:

```
In [13]:
           compo pd
Out[13]:
                 composer birth
                                 death
                                                  city
            0
                    Mahler
                           1860
                                  1911
                                               Kaliste
            1
                 Beethoven
                           1770
                                  1827
                                                 Bonn
            2
                    Puccini 1858
                                  1924
                                              Lucques
            3 Shostakovich 1906
                                  1975 Saint-Petersburg
In [14]:
           compo_pd['age'] = compo_pd['death']-compo_pd['birth']
           compo_pd
In [15]:
Out[15]:
                 composer birth
                                 death
                                                  city
                                                      age
            0
                    Mahler
                           1860
                                  1911
                                               Kaliste
                 Beethoven
                           1770
                                  1827
                                                 Bonn
                                                        57
            2
                   Puccini 1858
                                  1924
                                              Lucques
                                                        66
              Shostakovich 1906
                                  1975 Saint-Petersburg
```

9.4 Other functions

Sometimes one needs to apply to a column a very specific function that is not provided by default. In that case we can use one of the different apply methods of Pandas.

The simplest case is to apply a function to a column, or Series of a DataFrame. Let's say for example that we want to define the the age >60 as 'old' and <60 as 'young'. We can define the following general function:

```
In [16]: def define_age(x):
    if x>60:
        return 'old'
    else:
        return 'young'

In [17]: define_age(30)
Out[17]: 'young'
In [18]: define_age(70)
```

We can now apply this function on an entire Series:

```
In [19]: compo_pd.age.apply(define_age)
Out[19]: 0
               young
         1
               young
         2
                 old
         3
                 old
         Name: age, dtype: object
In [20]: compo_pd.age.apply(lambda x: x**2)
Out[20]:
         0
               2601
               3249
         1
               4356
         3
               4761
         Name: age, dtype: int64
```

And again, if we want, we can directly use this output to create a new column:

```
compo pd['age def'] = compo pd.age.apply(define age)
In [21]:
           compo pd
Out[21]:
                 composer birth death
                                                 city age age_def
            0
                           1860
                                 1911
                                               Kaliste
                    Mahler
                                                       51
                                                             young
            1
                 Beethoven 1770
                                 1827
                                                Bonn
                                                       57
                                                            young
            2
                   Puccini 1858
                                 1924
                                             Lucques
                                                       66
                                                               old
            3 Shostakovich 1906
                                 1975 Saint-Petersburg
                                                       69
                                                               old
```

We can also apply a function to an entire DataFrame. For example we can ask how many composers have birth and death dates within the XIXth century:

```
In [22]: def nineteen_century_count(x):
    return np.sum((x>=1800)&(x<1900))

In [23]: compo_pd[['birth','death']].apply(nineteen_century_count)

Out[23]: birth    2
    death    1
    dtype: int64</pre>
```

The function is applied column-wise and returns a single number for each in the form of a series.

Here the operation is again applied column-wise but the output is a Series.

There are more combinations of what can be the in- and output of the apply function and in what order (column- or row-wise) they are applied that cannot be covered here.

9.5 Logical indexing

Just like with Numpy, it is possible to subselect parts of a Dataframe using logical indexing. Let's have a look again at an example:

```
In [26]:
            compo_pd
Out[26]:
                  composer birth
                                  death
                                                    city
                                                              age_def
                                                         age
             0
                     Mahler
                                                  Kaliste
                                                                 young
             1
                  Beethoven
                            1770
                                    1827
                                                   Bonn
                                                           57
                                                                 young
             2
                     Puccini
                            1858
                                    1924
                                                 Lucques
                                                           66
                                                                   old
               Shostakovich 1906
                                    1975 Saint-Petersburg
                                                           69
                                                                   old
```

If we use a logical comparison on a series, this yields a logical Series:

```
compo_pd['birth']
In [27]:
Out[27]:
        0
               1860
         1
               1770
         2
               1858
               1906
         3
         Name: birth, dtype: int64
In [28]:
         compo_pd['birth'] > 1859
Out[28]:
         0
                True
               False
               False
                True
         Name: birth, dtype: bool
```

Just like in Numpy we can use this logical Series as an index to select elements in the Dataframe:

```
In [29]: log indexer = compo pd['birth'] > 1859
           log_indexer
Out[29]:
          0
                 True
                False
           2
                False
           3
                 True
           Name: birth, dtype: bool
In [30]:
           compo pd
Out[30]:
                composer birth death
                                               city age age_def
           0
                   Mahler
                         1860
                                1911
                                             Kaliste
                                                    51
                                                          young
           1
                Beethoven
                         1770
                                1827
                                              Bonn
                                                    57
                                                          young
           2
                  Puccini
                         1858
                                1924
                                            Lucques
                                                    66
                                                            old
           3 Shostakovich 1906
                                1975 Saint-Petersburg
                                                    69
                                                            old
In [31]: ~log_indexer
Out[31]: 0
                False
                  True
           2
                 True
           3
                False
           Name: birth, dtype: bool
In [32]:
          compo pd[~log indexer]
Out[32]:
              composer birth death
                                       city age
                                                age_def
              Beethoven
                                      Bonn
                                                  young
           2
                 Puccini
                       1858
                              1924 Lucques
                                            66
                                                    old
```

We can also create more complex logical indexings:

```
In [33]:
          (compo_pd['birth'] > 1859)&(compo_pd['age']>60)
Out[33]: 0
               False
          1
               False
          2
               False
                True
          dtype: bool
In [34]:
          compo pd[(compo pd['birth'] > 1859)&(compo pd['age']>60)]
Out[34]:
               composer birth death
                                            city
                                                    age_def
                                               age
          3 Shostakovich 1906
                              1975 Saint-Petersburg
```

And we can create new arrays containing only these subselections:

```
In [35]: compos_sub = compo_pd[compo_pd['birth'] > 1859]
```

```
In [36]:
            compos sub
Out[361:
                  composer
                             birth
                                   death
                                                     city
                                                          age
                                                               age_def
                     Mahler
                             1860
                                    1911
                                                  Kaliste
                                                                 young
             3 Shostakovich 1906
                                    1975 Saint-Petersburg
                                                           69
                                                                   old
```

We can then modify the new array:

3 Shostakovich 1906

```
In [37]: compos_sub.loc[0,'birth'] = 3000
```

/Users/gw18g940/miniconda3/envs/danalytics/lib/python3.8/site-packages/pandas/core/indexing.py:966: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row indexer,col indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self.obj[item] = s

Note that we get this SettingWithCopyWarning warning. This is a very common problem hand has to do with how new arrays are created when making subselections. Simply stated, did we create an entirely new array or a "view" of the old one? This will be very case-dependent and to avoid this, if we want to create a new array we can just enforce it using the copy() method (for more information on the topic see for example this explanation (https://www.dataquest.io (blog/settingwithcopywarning/):

```
In [38]:
          compos_sub2 = compo_pd[compo_pd['birth'] > 1859].copy()
           compos sub2.loc[0, 'birth'] = 3000
In [39]:
          compos_sub2
Out[391:
               composer
                         birth
                              death
                                              city
                                                  age
                                                      age_def
           0
                  Mahler
                         3000
                               1911
                                            Kaliste
                                                   51
                                                        young
```

69

old

1975 Saint-Petersburg

10. Combining information in Pandas

```
In [1]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
```

Often information is comming from different sources and it is necessary to combine it into one object. We are going to see the different ways in which information contained within separate Dataframes can be combined in a meaningful way.

10.1 Concatenation

The simplest way we can combine two Dataframes is simply to "paste" them together:

```
composers1 = pd.read_excel('Data/composers.xlsx', index_col='composer', sheet
In [2]:
          name='Sheet1')
          composers1
Out[2]:
                       birth death
                                             city
             composer
                Mahler
                       1860
                             1911
                                           Kaliste
                             1827
                                            Bonn
             Beethoven
                       1770
               Puccini
                       1858
                             1924
                                         Lucques
           Shostakovich 1906
                             1975 Saint-Petersburg
In [3]:
          composers2 = pd.read excel('Data/composers.xlsx', index col='composer', sheet
          name='Sheet3')
          composers2
Out[3]:
                     birth death
                                        city
           composer
               Verdi
                     1813
                           1901
                                     Roncole
             Dvorak 1841
                           1904
                                 Nelahozeves
           Schumann
                     1810
                                     7wickau
                           1856
                                 Oranienbaum
           Stravinsky
                     1882
                           1971
              Mahler
                     1860
                           1911
                                      Kaliste
```

To be concatenated, Dataframes need to be provided as a list:

```
In [4]: all_composers = pd.concat([composers1,composers2])
```

```
In [5]:
           all_composers
Out[5]:
                          birth death
                                                 city
               composer
                  Mahler
                         1860
                                 1911
                                               Kaliste
              Beethoven
                         1770
                                 1827
                                                Bonn
                 Puccini
                         1858
                                 1924
                                              Lucques
            Shostakovich
                         1906
                                 1975 Saint-Petersburg
                   Verdi
                         1813
                                 1901
                                              Roncole
                 Dvorak
                         1841
                                 1904
                                          Nelahozeves
                                              Zwickau
              Schumann
                         1810
                                 1856
              Stravinsky
                         1882
                                 1971
                                         Oranienbaum
                  Mahler
                         1860
                                 1911
                                               Kaliste
```

One potential problem is that two tables contain duplicated information:

It is very easy to get rid of it using. duplicated() gives us a boolean series of duplications and we can just selected non-duplicated rows:

```
In [7]: all_composers.duplicated()
Out[7]: composer
        Mahler
                         False
        Beethoven
                         False
                         False
        Puccini
        Shostakovich
                         False
        Verdi
                         False
        Dvorak
                         False
        Schumann
                         False
        Stravinsky
                         False
        Mahler
                          True
        dtype: bool
```

```
In [8]:
          all_composers[~all_composers.duplicated()]
Out[8]:
                         birth death
                                                city
              composer
                         1860
                                              Kaliste
                 Mahler
                                1911
              Beethoven
                         1770
                                1827
                                               Bonn
                 Puccini
                         1858
                                1924
                                            Lucques
           Shostakovich
                         1906
                                1975 Saint-Petersburg
                   Verdi
                         1813
                                1901
                                            Roncole
                 Dvorak
                        1841
                                1904
                                         Nelahozeves
              Schumann
                        1810
                                1856
                                            7wickau
              Stravinsky 1882
                                1971
                                        Oranienbaum
```

10.2 Joining two tables

An other classical case is that of two list with similar index but containing different information, e.g.

```
In [9]:
          composers1 = pd.read excel('Data/composers.xlsx', index col='composer', sheet
           name='Sheet1')
           composers1
 Out[9]:
                        birth death
                                             city
              composer
                        1860
                                           Kaliste
                 Mahler
                              1911
              Beethoven
                       1770
                              1827
                                            Bonn
                Puccini
                       1858
                              1924
                                         Lucques
           Shostakovich 1906
                              1975 Saint-Petersburg
In [10]:
           composers2 = pd.read excel('Data/composers.xlsx', index col='composer', sheet
           name='Sheet4')
           composers2
Out[10]:
                      first name
            composer
              Mahler
                        Gustav
           Beethoven
                     Ludwig van
              Puccini
                       Giacomo
              Brahms
                      Johannes
```

If we we use again simple concatenation, this doesn't help us much. We just end up with a large matrix with lots of NaN's:

```
In [11]:
            pd.concat([composers1, composers2])
Out[11]:
                           birth
                                  death
                                                        first name
                                                   city
               composer
                          1860.0
                  Mahler
                                 1911.0
                                                 Kaliste
                                                              NaN
               Beethoven
                          1770.0
                                 1827.0
                                                  Bonn
                                                             NaN
                  Puccini
                          1858.0
                                 1924.0
                                               Lucques
                                                             NaN
             Shostakovich
                          1906.0
                                 1975.0 Saint-Petersburg
                                                             NaN
                  Mahler
                            NaN
                                   NaN
                                                  NaN
                                                            Gustav
               Beethoven
                            NaN
                                   NaN
                                                  NaN Ludwig van
                  Puccini
                            NaN
                                   NaN
                                                  NaN
                                                          Giacomo
                 Brahms
                            NaN
                                   NaN
                                                  NaN
                                                         Johannes
```

The better way of doing this is to join the tables. This is a classical database concept available in Pandas.

join() operates on two tables: the first one is the "left" table which uses join() as a method. The other table is the "right" one.

Let's try the default join settings:

```
In [12]:
            composers1
Out[12]:
                          birth death
                                                  city
                composer
                   Mahler
                           1860
                                 1911
                                                Kaliste
                                 1827
               Beethoven
                          1770
                                                 Bonn
                  Puccini
                          1858
                                 1924
                                              Lucques
             Shostakovich
                          1906
                                 1975 Saint-Petersburg
In [13]:
            composers2
Out[13]:
                        first name
             composer
                Mahler
                           Gustav
                        Ludwig van
             Beethoven
               Puccini
                          Giacomo
               Brahms
                         Johannes
```

```
In [14]:
            composers1.join(composers2)
Out[14]:
                          birth death
                                                  city
                                                       first name
                composer
                           1860
                                                Kaliste
                   Mahler
                                 1911
                                                           Gustav
               Beethoven
                                 1827
                          1770
                                                 Bonn
                                                      Ludwig van
                  Puccini
                           1858
                                 1924
                                              Lucques
                                                         Giacomo
             Shostakovich
                          1906
                                 1975 Saint-Petersburg
                                                             NaN
```

We see that Pandas was smart enough to notice that the two tables had a index name and used it to combine the tables. We also see that one element from the second table (Brahms) is missing. The reason for this is the way indices not present in both tables are handled. There are four ways of doing this with two tables called here the "left" and "right" table.

10.2.1. Join left

Here "left" and "right" just represent two Dataframes that should be merged. They have a common index, but not necessarily the same items. For example here Shostakovich is missing in the second table, while Brahms is missing in the first one. When using the "right" join, we use the first Dataframe as basis and only use the indices that appear there.

In [15]:	<pre>composers1.join(composers2, how = 'left'</pre>							
Out[15]:		birth	death	city	first name			
	composer							
	Mahler	1860	1911	Kaliste	Gustav			
	Beethoven	1770	1827	Bonn	Ludwig van			
	Puccini	1858	1924	Lucques	Giacomo			
	Shostakovich	1906	1975	Saint-Petersburg	NaN			

Hence Brahms is left out.

10.2.2. Join right

We can do the the opposite and use the indices of the second Dataframe as basis:

Here we have Brahms but not Shostakovich.

10.2.3. Inner, outer

Finally, we can just say that we want to recover either only the items that appaer in both Dataframes (inner, like in a Venn diagram) or all the items (outer).

```
In [17]:
           composers1.join(composers2, how = 'inner')
Out[17]:
                       birth death
                                           first name
                                       city
             composer
                Mahler
                       1860
                              1911
                                     Kaliste
                                                Gustav
            Beethoven
                       1770
                              1827
                                      Bonn Ludwig van
               Puccini 1858
                              1924 Lucques
                                              Giacomo
In [18]:
           composers1.join(composers2, how = 'outer')
Out[18]:
                           birth
                                 death
                                                  city
                                                        first name
               composer
               Beethoven
                         1770.0
                                 1827.0
                                                 Bonn
                                                       Ludwig van
                 Brahms
                            NaN
                                   NaN
                                                  NaN
                                                         Johannes
                  Mahler
                         1860.0 1911.0
                                                Kaliste
                                                           Gustav
                 Puccini
                         1858.0 1924.0
                                                         Giacomo
                                               Lucques
            Shostakovich 1906.0 1975.0 Saint-Petersburg
                                                             NaN
```

10.3.4 Joining on columns: merge

Above we have used join to join based on indices. However sometimes tables don't have the same indices but similar contents that we want to merge. For example let's imagine whe have the two Dataframes below:

```
In [19]:
           composers1 = pd.read_excel('Data/composers.xlsx', sheet_name='Sheet1')
           composers2 = pd.read_excel('Data/composers.xlsx', sheet_name='Sheet6')
In [20]:
           composers1
Out[20]:
                         birth
                               death
                                               city
                composer
           0
                   Mahler
                          1860
                                1911
                                            Kaliste
           1
                Beethoven
                         1770
                                1827
                                              Bonn
           2
                  Puccini
                         1858
                                1924
                                           Lucques
             Shostakovich
                         1906
                                1975 Saint-Petersburg
```

```
In [21]:
            composers2
Out[21]:
               last name
                          first name
                  Puccini
                            Giacomo
            1
               Beethoven
                          Ludwig van
            2
                  Brahms
                           Johannes
            3
                  Mahler
                             Gustav
```

The indices don't match and are not the composer name. In addition the columns containing the composer names have different labels. Here we can use <code>merge()</code> and specify which columns we want to use for merging, and what type of merging we need (inner, left etc.)

```
pd.merge(composers1, composers2, left_on='composer', right_on='last name')
Out[22]:
               composer birth
                              death
                                        city
                                             last name
                                                        first name
            0
                 Mahler
                         1860
                               1911
                                      Kaliste
                                                Mahler
                                                          Gustav
              Beethoven
                        1770
                               1827
                                                       Ludwig van
            1
                                       Bonn
                                             Beethoven
                        1858
                                                         Giacomo
                 Puccini
                               1924 Lucques
                                                Puccini
```

Again we can use another variety of join than the default inner:

In [23]:	<pre>pd.merge(composers1, composers2, left_on='composer', right_on='last name', w = 'outer')</pre>									
Out[23]:		compose	birth	death	1	city	last name	first name		
	0	Mahlei	1860.0	1911.0)	Kaliste	Mahler	Gustav	•	
	1	Beethoven	1770.0	1827.0)	Bonn	Beethoven	Ludwig van		
	2	Puccin	i 1858.0	1924.0)	Lucques	Puccini	Giacomo		
	3	Shostakovich	1906.0	1975.0) Saint-F	etersburg	NaN	NaN		
	4	NaN	l NaN	NaN	I	NaN	Brahms	Johannes		
In [24]:		.merge(co = 'right'		s1, co	ompose	rs2, lef	t_on='co	omposer',	right_on='last	name',ho
Out[24]:		composer	birth	death	city	last name	e first nam	ne		
	0	Mahler	1860.0	1911.0	Kaliste	Mahle	r Gusta	av		
	1	Beethoven	1770.0	1827.0	Bonn	Beethover	n Ludwig va	an		
	2	Puccini	1858.0	1924.0	Lucques	Puccin	i Giacom	10		
	3	NaN	NaN	NaN	NaN	Brahms	s Johanne	es		

11. Splitting data

Often one has tables that mix regular variables (e.g. the size of cells in microscopy images) with categorical variables (e.g. the type of cell to which they belong). In that case, it is quite usual to split the data by categories or *groups* to do computations. Pandas allows to do this very easily.

```
In [1]: import numpy as np import pandas as pd import matplotlib.pyplot as plt
```

11.1 Grouping

Let's import some data and have a look at them:

```
composers = pd.read excel('Data/composers.xlsx', sheet name='Sheet5')
In [3]:
          composers.head()
Out[3]:
                composer birth
                                death
                                            period
                                                    country
           0
                   Mahler
                          1860
                                1911.0 post-romantic
                                                     Austria
                Beethoven 1770 1827.0
           1
                                           romantic
                                                   Germany
           2
                  Puccini
                          1858
                                1924.0 post-romantic
                                                        Italy
           3
             Shostakovich 1906
                               1975.0
                                            modern
                                                      Russia
                    Verdi 1813 1901.0
                                           romantic
                                                        Italy
```

We also add a column here to calculate the composers' age:

```
In [4]: composers['age'] = composers.death - composers.birth
```

11.1.1 Single level

What if we want now to count how many composers we have in a certain category like the period or country? In classical computing we would maybe do a for loop to count occurrences. Pandas simplifies this with the groupby () function, which actually groups elements by a certain criteria, e.g. a categorical variable like the period:

```
In [5]: composer_grouped = composers.groupby('period')
  composer_grouped

Out[5]: <pandas.core.groupby.generic.DataFrameGroupBy object at 0x11d2fc850>
```

The output is a bit cryptic. What we actually have is a new object called a group which has a lot of handy properties. First let's see what the groups actually are. We can find all groups with groups:

```
In [6]: composer_grouped.groups
Out[6]: {'baroque': Int64Index([14, 16, 17, 20, 21, 28, 29, 30, 31, 47], dtype='int64'),
    'classic': Int64Index([9, 10, 32, 40, 51], dtype='int64'),
    'modern': Int64Index([3, 7, 11, 12, 19, 25, 45, 46, 50, 53, 54, 55, 56], dty pe='int64'),
    'post-romantic': Int64Index([0, 2, 8, 18, 49], dtype='int64'),
    'renaissance': Int64Index([13, 26, 27, 36, 37, 43, 44], dtype='int64'),
    'romantic': Int64Index([1, 4, 5, 6, 15, 22, 23, 24, 33, 34, 35, 38, 39, 41, 42, 48, 52], dtype='int64')}
```

We have a dictionary, where each *period* that appears in the Dataframe is a key and each key contains a list of dataframe *indices* of rows with those periods. We will rarely directly use those indices, as most operations on groups only use those "behind the scene".

For example we can use describe() on a group object, just like we did it before for a Dataframe:

]:	birth								death	
	count	mean	std	min	25%	50%	75%	max	count	mean
period										
baroque	10.0	1663.300000	36.009412	1587.0	1647.0	1676.5	1685.0	1710.0	10.0	1720.2000
classic	5.0	1744.400000	12.054045	1731.0	1732.0	1749.0	1754.0	1756.0	5.0	1801.2000
modern	13.0	1905.692308	28.595992	1854.0	1891.0	1902.0	1918.0	1971.0	11.0	1974.0909
post- romantic	50	1854.200000	17.123084	1824.0	1858.0	1860.0	1864.0	1865.0	5.0	1927.4000
renaissance	7.0	1527.142857	59.881629	1397.0	1528.5	1540.0	1564.5	1567.0	7.0	1595.2857
romantic	17.0	1824.823529	25.468695	1770.0	1810.0	1824.0	1841.0	1867.0	17.0	1883.5882

We see here that the statistical analysis has been done for each group, the index of each row being the group name (or key in the dictionary). If we are interested in a specific group we can also easily recover it:

In [8]:	com	<pre>composer_grouped.get_group('classic')</pre>									
Out[8]:		composer	birth	death	period	country	age				
	9	Haydn	1732	1809.0	classic	Austria	77.0				
	10	Mozart	1756	1791.0	classic	Austria	35.0				
	32	Cimarosa	1749	1801.0	classic	Italy	52.0				
	40	Soler	1754	1806.0	classic	Spain	52.0				
	51	Dusek	1731	1799.0	classic	Czechia	68.0				

We see that this returns a sub-group from the original table. Effectively it is almost equivalent to:

6 rows × 24 columns

```
In [9]:
          composers[composers.period == 'classic']
Out[9]:
               composer birth
                               death period country
                                                     age
            9
                  Haydn 1732
                              1809.0 classic
                                             Austria
                                                    77.0
           10
                 Mozart 1756 1791.0 classic
                                             Austria 35.0
                                                    52.0
           32
               Cimarosa 1749 1801.0 classic
                                                Italy
           40
                   Soler 1754 1806.0 classic
                                              Spain 52.0
           51
                  Dusek 1731 1799.0 classic Czechia 68.0
```

11.1.2 Multi-level

If one has multiple categorical variables, one can also do a grouping on several levels. For example here we want to classify composers both by period and country. For this we just give two column names to the groupby () function:

In [10]: composer_grouped = composers.groupby(['period','country'])
 composer_grouped.describe()

Out[10]:

		birth								death	
		count	mean	std	min	25%	50%	75%	max	count	m
period	country										
baroque	England	1.0	1659.000000	NaN	1659.0	1659.00	1659.0	1659.00	1659.0	1.0	16
	France	3.0	1650.666667	29.263174	1626.0	1634.50	1643.0	1663.00	1683.0	3.0	10
	Germany	2.0	1685.000000	0.000000	1685.0	1685.00	1685.0	1685.00	1685.0	2.0	17
	Italy	4.0	1663.000000	53.285395	1587.0	1649.25	1677.5	1691.25	1710.0	4.0	1.
classic	Austria	2.0	1744.000000	16.970563	1732.0	1738.00	1744.0	1750.00	1756.0	2.0	18
	Czechia	1.0	1731.000000	NaN	1731.0	1731.00	1731.0	1731.00	1731.0	1.0	17
	Italy	1.0	1749.000000	NaN	1749.0	1749.00	1749.0	1749.00	1749.0	1.0	18
	Spain	1.0	1754.000000	NaN	1754.0	1754.00	1754.0	1754.00	1754.0	1.0	18
modern	Austria	1.0	1885.000000	NaN	1885.0	1885.00	1885.0	1885.00	1885.0	1.0	19
	Czechia	1.0	1854.000000	NaN	1854.0	1854.00	1854.0	1854.00	1854.0	1.0	19
	England	2.0	1936.500000	48.790368	1902.0	1919.25	1936.5	1953.75	1971.0	1.0	19
	France	2.0	1916.500000	12.020815	1908.0	1912.25	1916.5	1920.75	1925.0	2.0	20
	Germany	1.0	1895.000000	NaN	1895.0	1895.00	1895.0	1895.00	1895.0	1.0	19
	RUssia	1.0	1891.000000	NaN	1891.0	1891.00	1891.0	1891.00	1891.0	1.0	19
	Russia	2.0	1894.000000	16.970563	1882.0	1888.00	1894.0	1900.00	1906.0	2.0	19
	USA	3.0	1918.333333	18.502252	1900.0	1909.00	1918.0	1927.50	1937.0	2.0	19
post- romantic	Austria	2.0	1842.000000	25.455844	1824.0	1833.00	1842.0	1851.00	1860.0	2.0	19
romantic	Finland	1.0	1865.000000	NaN	1865.0	1865.00	1865.0	1865.00	1865.0	1.0	19
	Germany	1.0	1864.000000	NaN	1864.0	1864.00	1864.0	1864.00	1864.0	1.0	19
	Italy	1.0	1858.000000	NaN	1858.0	1858.00	1858.0	1858.00	1858.0	1.0	19
renaissance	Belgium	2.0	1464.500000	95.459415	1397.0	1430.75	1464.5	1498.25	1532.0	2.0	1!
	England	2.0	1551.500000	16.263456	1540.0	1545.75	1551.5	1557.25	1563.0	2.0	16
	Italy	3.0	1552.666667	23.965253	1525.0	1545.50	1566.0	1566.50	1567.0	3.0	16
romantic	Czechia	2.0	1832.500000	12.020815	1824.0	1828.25	1832.5	1836.75	1841.0	2.0	18
	France	3.0	1821.000000	19.672316	1803.0	1810.50	1818.0	1830.00	1842.0	3.0	18
	Germany	4.0	1806.500000	26.388129	1770.0	1800.00	1811.5	1818.00	1833.0	4.0	18
	Italy	4.0	1817.250000	28.004464	1797.0	1800.00	1807.0	1824.25	1858.0	4.0	18
	Russia	2.0	1836.000000	4.242641	1833.0	1834.50	1836.0	1837.50	1839.0	2.0	18
	Spain	2.0	1863.500000	4.949747	1860.0	1861.75	1863.5	1865.25	1867.0	2.0	19

29 rows × 24 columns

In [11]: composer_grouped.get_group(('baroque','Germany'))

Out[11]:

	composer	birth	death	period	country	age
14	Haendel	1685	1759.0	baroque	Germany	74.0
47	Bach	1685	1750.0	baroque	Germany	65.0

11.2 Operations on groups

The main advantage of this Group object is that it allows us to do very quickly both computations and plotting without having to loop through different categories. Indeed Pandas makes all the work for us: it applies functions on each group and then reassembles the results into a Dataframe (or Series depending on the operation).

For example we can apply most functions we used for Dataframes (mean, sum etc.) on groups as well and Pandas seamlessly does the work for us:

In [12]: composer_grouped.mean()
Out[12]:

		birth	death	age
perio	od country			
baroqı	ue England	1659.000000	1695.000000	36.000000
	France	1650.666667	1709.666667	59.000000
	Germany	1685.000000	1754.500000	69.500000
	Italy	1663.000000	1717.250000	54.250000
class	ic Austria	1744.000000	1800.000000	56.000000
	Czechia	1731.000000	1799.000000	68.000000
	Italy	1749.000000	1801.000000	52.000000
	Spain	1754.000000	1806.000000	52.000000
mode	rn Austria	1885.000000	1935.000000	50.000000
	Czechia	1854.000000	1928.000000	74.000000
	England	1936.500000	1983.000000	81.000000
	France	1916.500000	2004.000000	87.500000
	Germany	1895.000000	1982.000000	87.000000
	RUssia	1891.000000	1953.000000	62.000000
	Russia	1894.000000	1973.000000	79.000000
	USA	1918.333333	1990.000000	81.000000
post-romant	ic Austria	1842.000000	1903.500000	61.500000
	Finland	1865.000000	1957.000000	92.000000
	Germany	1864.000000	1949.000000	85.000000
	Italy	1858.000000	1924.000000	66.000000
renaissand	ce Belgium	1464.500000	1534.000000	69.500000
	England	1551.500000	1624.500000	73.000000
	Italy	1552.666667	1616.666667	64.000000
romant	ic Czechia	1832.500000	1894.000000	61.500000
	France	1821.000000	1891.333333	70.333333
	Germany	1806.500000	1865.750000	59.250000
	Italy	1817.250000	1875.750000	58.500000
	Russia	1836.000000	1884.000000	48.000000

5 of 11 9/10/20, 10:22 AM

Spain 1863.500000 1912.500000 49.000000

In [13]: composer_grouped.count()

Out[13]:

		composer	birth	death	age
period	country				
baroque	England	1	1	1	1
	France	3	3	3	3
	Germany	2	2	2	2
	Italy	4	4	4	4
classic	Austria	2	2	2	2
	Czechia	1	1	1	1
	Italy	1	1	1	1
	Spain	1	1	1	1
modern	Austria	1	1	1	1
	Czechia	1	1	1	1
	England	2	2	1	1
	France	2	2	2	2
	Germany	1	1	1	1
	RUssia	1	1	1	1
	Russia	2	2	2	2
	USA	3	3	2	2
post-romantic	Austria	2	2	2	2
	Finland	1	1	1	1
	Germany	1	1	1	1
	Italy	1	1	1	1
renaissance	Belgium	2	2	2	2
	England	2	2	2	2
	Italy	3	3	3	3
romantic	Czechia	2	2	2	2
	France	3	3	3	3
	Germany	4	4	4	4
	Italy	4	4	4	4
	Russia	2	2	2	2
	Spain	2	2	2	2

We can also design specific functions (again, like in the case of Dataframes) and apply them on groups:

```
In [14]: def mult(myseries):
    return myseries.max() * 3
```

In [15]: composer_grouped.apply(mult)

Out[15]:

		composer	birth	death	period
period	country				
baroque	England	PurcellPurcellPurcell	4977	5085.0	baroquebaroquebaroque
	France	RameauRameauRameau	5049	5292.0	baroquebaroquebaroque
	Germany	HaendelHaendelHaendel	5055	5277.0	baroquebaroquebaroque
	Italy	ScarlattiScarlatti	5130	5271.0	baroquebaroquebaroque
classic	Austria	MozartMozartMozart	5268	5427.0	classicclassicclassic
	Czechia	DusekDusekDusek	5193	5397.0	classicclassicclassic
	Italy	CimarosaCimarosaCimarosa	5247	5403.0	classicclassicclassic
	Spain	SolerSolerSoler	5262	5418.0	classicclassicclassic
modern	Austria	BergBergBerg	5655	5805.0	modernmodernmodern
	Czechia	JanacekJanacekJanacek	5562	5784.0	modernmodernmodern
	England	WaltonWaltonWalton	5913	5949.0	modernmodernmodern
	France	MessiaenMessiaenMessiaen	5775	6048.0	modernmodern
	Germany	OrffOrffOrff	5685	5946.0	modernmodern
	RUssia	ProkofievProkofievProkofiev	5673	5859.0	modernmodern
	Russia	StravinskyStravinsky	5718	5925.0	modernmodern
	USA	GlassGlassGlass	5811	5970.0	modernmodern
post- romantic	Austria	MahlerMahlerMahler	5580	5733.0	post-romanticpost-romanticpost- romantic
	Finland	SibeliusSibeliusSibelius	5595	5871.0	post-romanticpost-romanticpost-romantic
	Germany	StraussStraussStrauss	5592	5847.0	post-romanticpost-romanticpost-romantic
	Italy	PucciniPucciniPuccini	5574	5772.0	post-romanticpost-romanticpost-romantic
renaissance	Belgium	LassusLassusLassus	4596	4782.0	renaissancerenaissance
	England	DowlandDowlandDowland	4689	4878.0	renaissancerenaissance
	Italy	PalestrinaPalestrinaPalestrina	4701	4929.0	renaissancerenaissance
romantic	Czechia	SmetanaSmetanaSmetana	5523	5712.0	romanticromanticromantic
	France	MassenetMassenetMassenet	5526	5736.0	romanticromanticromantic
	Germany	WagnerWagnerWagner	5499	5691.0	romanticromanticromantic
	Italy	VerdiVerdiVerdi	5574	5757.0	romanticromanticromantic
	Russia	MussorsgskyMussorsgsky	5517	5661.0	romanticromanticromantic
	Spain	GranadosGranadosGranados	5601	5748.0	romanticromanticromantic

11.3 Reshaping dataframes

As we see above, grouping operations can create more or less complex dataframes by adding one or multiple indexing levels. There are multiple ways to "reshape" such dataframes in order to make thm usable e.g. for plotting. Typically, plotting software based on a grammar of graphics expect a simple 2D dataframe where each line is an observation with several properties.

11.3.1 re-indexing, unstacking

One of the most common "reshaping" is to reset the index. In its simplest form, it will create a new dataframe, where each row corresponds to one observation. For example in the case of a dataframe with multi-indices, it will re-cast these indices as columns:

```
In [16]:
            composer_grouped = composers.groupby(['period','country']).mean()
            composer_grouped.head(10)
Out[16]:
                               birth
                                            death
                                                        age
              period
                      country
                      England
                               1659.000000
                                           1695.000000
                                                        36.00
            baroque
                       France
                               1650.666667
                                           1709.666667
                                                       59.00
                                                       69.50
                     Germany
                               1685.000000
                                           1754.500000
                          Italy
                               1663.000000
                                           1717.250000
                                                       54.25
             classic
                       Austria
                               1744.000000
                                           1800.000000
                                                        56.00
                      Czechia
                              1731.000000
                                           1799.000000
                          Italy
                               1749.000000
                                           1801.000000
                                                        52.00
                        Spain 1754.000000
                                           1806.000000
                                                        52.00
                              1885 000000
                                           1935 000000
                                                       50.00
             modern
                       Austria
                      Czechia
                              1854.000000 1928.000000 74.00
In [17]:
            composer_grouped.reset_index().head(5)
Out[17]:
                period
                        country
                                       birth
                                                   death
                                                           age
                                 1659.000000
                                             1695.000000
                                                          36.00
               baroque
                        England
               baroque
                                1650.666667
                                             1709.666667
                                                          59.00
                         France
                                 1685.000000 1754.500000
              baroque
                        Germany
                                                          69.50
                                 1663.000000 1717.250000
               baroque
                            Italy
                classic
                          Austria
                                1744.000000 1800.000000 56.00
```

One can of course be more specific and reset only specific indices e.g. by level:

```
In [18]:
           composer grouped.reset index(level=1).head(5)
Out[18]:
                     country
                              birth
                                          death
                                                       age
              period
            baroque
                      England 1659.000000
                                          1695.000000
            baroque
                       France
                             1650.666667
                                          1709.666667
                                                      59.00
            baroque
                     Germany
                              1685.000000
                                          1754.500000
                                                      69.50
                              1663 000000
                                         1717 250000 54 25
            baroque
                         Italy
             classic
                       Austria 1744.000000
                                          1800.000000 56.00
```

11.3.2 unstacking

Another way to move indices to columns is to unstack a dataframe, in other words pivot some indices to columns:

In [19]: composer grouped.unstack() Out[19]: birth country Austria Belgium Czechia England Finland France Germany Italy RUssia F period baroque NaN NaN NaN 1659 0 NaN 1650 666667 1685.0 1663.000000 NaN classic 1744.0 NaN 1731.0 NaN NaN NaN NaN 1749.000000 NaN modern 1885.0 NaN 1854.0 1936.5 NaN 1916.500000 1895.0 NaN 1891.0 post-1842 0 1865.0 1864.0 1858.000000 NaN NaN NaN NaN NaN romantic renaissance NaN 1464.5 NaN 1551.5 NaN NaN NaN 1552.666667 NaN romantic NaN NaN 1832.5 NaN NaN 1821.000000 1806.5 1817.250000 NaN

6 rows × 36 columns

This creates a multi-level column indexing.

11.3.3 Wide to long: melt

A very common operation when handling tables is to switch from wide to long format and vice versa. In our composer example, let's for example imagine that you want both birth and death dates to be grouped in a single column called dates. But you still need to know if that data is a birth or date, so you need a new column that indicates that. To achieve that, we need to specify id_vars a list of columns to be used as *identifiers* e.g. the composer name, and value_vars, a list of columns that should become rows:

In [20]: composers.head(5) Out[20]: composer birth death period country age 0 Mahler 1860 1911.0 post-romantic Austria 51.0 1827.0 57.0 1 Beethoven 1770 romantic Germany 2 1858 1924.0 post-romantic 66.0 Puccini Italy 3 Shostakovich 1906 1975.0 modern Russia 69.0 4 Verdi 1813 1901.0 romantic 88.0 Italy

```
In [21]: pd.melt(composers, id_vars=['composer'], value_vars=['birth', 'death'])
Out[21]:
```

	composer	variable	value
0	Mahler	birth	1860.0
1	Beethoven	birth	1770.0
2	Puccini	birth	1858.0
3	Shostakovich	birth	1906.0
4	Verdi	birth	1813.0
109	Smetana	death	1884.0
110	Janacek	death	1928.0
111	Copland	death	1990.0
112	Bernstein	death	1990.0
113	Glass	death	NaN

114 rows × 3 columns

We can keep more of the original columns as *identifiers* and also specify names for the *variable* and *value* columns:

Out[22]:

	composer	period	age	country	date_type	dates
0	Mahler	post-romantic	51.0	Austria	birth	1860.0
1	Beethoven	romantic	57.0	Germany	birth	1770.0
2	Puccini	post-romantic	66.0	Italy	birth	1858.0
3	Shostakovich	modern	69.0	Russia	birth	1906.0
4	Verdi	romantic	88.0	Italy	birth	1813.0
	•••					
109	Smetana	romantic	60.0	Czechia	death	1884.0
110	Janacek	modern	74.0	Czechia	death	1928.0
111	Copland	modern	90.0	USA	death	1990.0
112	Bernstein	modern	72.0	USA	death	1990.0
113	Glass	modern	NaN	USA	death	NaN

114 rows × 6 columns

11.4 Plotting

We have seen above that we can create groups and apply functions to them to get some summary of them as new dataframes or series that could then also be reshaped. The final result of these operations is then ideally suited to be plotted in a very efficient way.

Here's a simple example: we group composers by periods and then calculate the mean age, resulting in a series where periods are indices:

We can just add one more operation to that line to create a bar plot illustrating this:

The built-in plotting capabilities of Pandas automatically used the indices to label the bars, and also used the series name as a general label.

Using more advanced libraries, we can go further than that and use multiple columns to create complex plots. This will be shown in the next chapter.

12. A complete example

```
In [1]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

We have seen now most of the basic features of Pandas including importing data, combining dataframes, aggregating information and plotting it. In this chapter, we are going to re-use these concepts with the real data seen in the <u>introduction chapter (06-DA_Pandas_introduction.ipynb)</u>. We are also going to explore some more advanced plotting libraries that exploit to the maximum dataframe structures.

12.1 Importing data

We are importing here two tables provided openly by the Swiss National Science Foundation. One contains a list of all *projects* to which funds have been allocated since 1975. The other table contains a list of all *people* to which funds have been awarded during the same period:

```
In [7]: # local import
projects = pd.read_csv('Data/P3_GrantExport.csv',sep = ';')
persons = pd.read_csv('Data/P3_PersonExport.csv',sep = ';')

# import from url
#projects = pd.read_csv('http://p3.snf.ch/P3Export/P3_GrantExport.csv',sep =
';')
#persons = pd.read_csv('http://p3.snf.ch/P3Export/P3_PersonExport.csv',sep =
';')
```

We can have a brief look at both tables:

In [8]: projects.head(5)

Out[8]:

	Project Number	Project Number String	Project Title	Project Title English	Responsible Applicant	Funding Instrument	Funding Instrument Hierarchy	
0	1	1000-000001	Schlussband (Bd. VI) der Jacob Burckhardt-Biog	NaN	Kaegi Werner	Project funding (Div. I-III)	Project funding	
1	4	1000-000004	Batterie de tests à l'usage des enseignants po	NaN	Massarenti Léonard	Project funding (Div. I-III)	Project funding	Psych Scier
2	5	1000-000005	Kritische Erstausgabe der 'Evidentiae contra D	NaN	Kommission für das Corpus philosophorum medii 	Project funding (Div. I-III)	Project funding	Komm philoso _l
3	6	1000-000006	Katalog der datierten Handschriften in der Sch	NaN	Burckhardt Max	Project funding (Div. I-III)	Project funding	Hanc Alte Drı
4	7	1000-000007	Wissenschaftliche Mitarbeit am Thesaurus Lingu	NaN	Schweiz. Thesauruskommission	Project funding (Div. I-III)	Project funding	Thesauru

In [9]: persons.head(5)

Out[9]:

	Last Name	First Name	Gender	Institute Name	Institute Place	Person ID SNSF	OCRID	Projects as responsible Applicant	Projects as Applicant	Projects as Partner	Projec Fraction Partn
-	a Marca	Davide	male	NaN	NaN	53856	NaN	NaN	NaN	NaN	Nε
	a Marca	Andrea	male	NaN	NaN	132628	NaN	67368	NaN	NaN	Nε
:	2 A. Jafari	Golnaz	female	Universität Luzern	Luzern	747886	NaN	191432	NaN	NaN	Na
;	3 Aaberg	Johan	male	NaN	NaN	575257	NaN	NaN	NaN	NaN	Nε
	1 Aahman	Josefin	female	NaN	NaN	629557	NaN	NaN	NaN	NaN	Nε

We see that the persons table gives information such as the role of a person in various projects (applicant, employee etc.), her/his gender etc. The *project* table on the other side gives information such as the period of a grant, how much money was awarded etc.

What if we now wish to know for example:

- How much money is awarded on average depending on gender?
- How long does it typically take for a researcher to go from employee to applicant status on a grant?

We need a way to *link* the two tables, i.e. create a large table where *each row* corresponds to a single *observation* containing information from the two tables such as: applicant, gender, awarded funds, dates etc. We will now go through all necessary steps to achieve that goal.

12.2 Merging tables

If each row of the persons table contained a single observation with a single person and a single project (the same person would appear of course multiple times), we could just *join* the two tables based e.g. on the project ID. Unfortunately, in the persons table, each line corresponds to a *single researcher* with all projects IDs lumped together in a list. For example:

```
In [12]: persons.iloc[10041]
Out[12]: Last Name
         Bodenmann
         First Name
         Guy
         Gender
         male
         Institute Name
                                               Lehrstuhl für Klinische Psychologie Kind
         er/Jug...
         Institute Place
         Zürich
         Person ID SNSF
         47670
         OCRID
                                                                              0000-0003-
         0964-6409
         Projects as responsible Applicant
                                               46820;56660;62901;109547;115948;128960;1
         29627;...
         Projects as Applicant
                                                                             112141:1220
         90;166348
         Projects as Partner
         NaN
         Projects as Practice Partner
         NaN
         Projects as Employee
         62901
         Projects as Contact Person
         NaN
         Name: 10041, dtype: object
In [13]: persons.iloc[10041]['Projects as responsible Applicant']
Out[13]: '46820;56660;62901;109547;115948;128960;129627;129699;133004;146775;147634;17
         3270
```

Therefore the first thing we need to do is to split those strings into actual lists. We can do that by using classic Python string splitting. We simply apply that function to the relevant columns. We need to take care of rows containing NaNs on which we cannot use split(). We create two series, one for applicants, one for employees:

```
In [14]: projID_a = persons['Projects as responsible Applicant'].apply(lambda x: x.sp
lit(';') if not pd.isna(x) else np.nan)
projID_e = persons['Projects as Employee'].apply(lambda x: x.split(';') if n
ot pd.isna(x) else np.nan)
```

```
In [15]: projID_a
Out[15]: 0
                                                          NaN
         1
                                                      [67368]
         2
                                                     [191432]
         3
                                                          NaN
         4
                                                          NaN
         110811
                    [52821, 143769, 147153, 165510, 183584]
         110812
                                                          NaN
         110813
                                                          NaN
         110814
                                                          NaN
         110815
                                                          NaN
         Name: Projects as responsible Applicant, Length: 110816, dtype: object
In [17]: projID_a[10041]
Out[17]: ['46820',
           '56660',
           62901'
           '109547'
           115948
           '128960'
           '129627'
           '129699'
           '133004'
           '146775',
           '147634'
           '173270']
```

Now, to avoid problems later we'll only keep rows that are not NaNs. We first add the two series to the dataframe and then remove NaNs:

```
In [18]: pd.isna(projID_a)
Out[18]: 0
                    True
                    False
         1
         2
                    False
         3
                    True
         4
                    True
         110811
                   False
         110812
                    True
         110813
                    True
         110814
                    True
         110815
                    True
         Name: Projects as responsible Applicant, Length: 110816, dtype: bool
In [19]:
         applicants = persons.copy()
         applicants['projID'] = projID a
         applicants = applicants[~pd.isna(projID a)]
         employees = persons.copy()
         employees['projID'] = projID_e
         employees = employees[~pd.isna(projID_e)]
```

Now we want each of these projects to become a single line in the dataframe. Here we use a function that we haven't used before called explode which turns every element in a list into a row (a good illustration of the variety of available functions in Pandas):

```
In [20]: applicants = applicants.explode('projID')
employees = employees.explode('projID')

In [21]: applicants.head(5)
Out[21]:
```

	Last Name	First Name	Gender	Institute Name	Institute Place	Person ID SNSF	OCRID	Projects as responsible Applicant	Projects as Applicant	Projects as Partner
1	a Marca	Andrea	male	NaN	NaN	132628	NaN	67368	NaN	NaN
2	A. Jafari	Golnaz	female	Universität Luzern	Luzern	747886	NaN	191432	NaN	NaN
7	Aapro	Matti S.	male	Clinique de Genolier F.M.H. Oncologie- Hématolo	Genolier	3268	NaN	8532;9513	8155	NaN
7	Aapro	Matti S.	male	Clinique de Genolier F.M.H. Oncologie- Hématolo	Genolier	3268	NaN	8532;9513	8155	NaN
11	Aas	Gregor	male	Lehrstuhl für Pflanzenphysiologie Universität	Bayreuth	36412	NaN	52037	NaN	NaN

So now we have one large table, where each row corresponds to a *single* applicant and a *single* project. We can finally do our merging operation where we combined information on persons and projects. We will do two such operations: one for applicants using the projID_a column for merging and one using the projID_e column. We have one last problem to fix:

```
In [22]: applicants.loc[1].projID
Out[22]: '67368'
In [23]: projects.loc[1]['Project Number']
Out[23]: 4
```

We need the project ID in the persons table to be a *number* and not a *string*. We can try to convert but get an error:

```
In [24]:
         applicants.projID = applicants.projID.astype(int)
         employees.projID = employees.projID.astype(int)
                                                    Traceback (most recent call last)
         <ipython-input-24-fca9460da04e> in <module>
         ----> 1 applicants.projID = applicants.projID.astype(int)
               2 employees.projID = employees.projID.astype(int)
         ~/miniconda3/envs/danalytics/lib/python3.8/site-packages/pandas/core/generic.
         py in astype(self, dtype, copy, errors)
            5696
                         else:
            5697
                             # else, only a single dtype is given
         -> 5698
                             new_data = self._data.astype(dtype=dtype, copy=copy, erro
         rs=errors)
            5699
                             return self. constructor(new data). finalize (self)
            5700
         ~/miniconda3/envs/danalytics/lib/python3.8/site-packages/pandas/core/internal
         s/managers.py in astype(self, dtype, copy, errors)
             580
             581
                     def astype(self, dtype, copy: bool = False, errors: str = "rais
         e"):
         --> 582
                         return self.apply("astype", dtype=dtype, copy=copy, errors=er
         rors)
             583
                     def convert(self, **kwargs):
             584
         ~/miniconda3/envs/danalytics/lib/python3.8/site-packages/pandas/core/internal
         s/managers.py in apply(self, f, filter, **kwargs)
                                 applied = b.apply(f, **kwargs)
             441
                             else:
         --> 447
                                  applied = getattr(b, f)(**kwargs)
                              result blocks = extend blocks(applied, result blocks)
             443
             444
         ~/miniconda3/envs/danalytics/lib/python3.8/site-packages/pandas/core/internal
         s/blocks.py in astype(self, dtype, copy, errors)
             623
                             vals1d = values.ravel()
             624
                             try:
         --> 625
                                 values = astype nansafe(vals1d, dtype, copy=True)
             626
                             except (ValueError, TypeError):
                                  # e.g. astype_nansafe can fail on object-dtype of str
             627
         ings
         ~/miniconda3/envs/danalytics/lib/python3.8/site-packages/pandas/core/dtypes/c
         ast.py in astype_nansafe(arr, dtype, copy, skipna)
                         # work around NumPy brokenness, #1987
             872
             873
                         if np.issubdtype(dtype.type, np.integer):
         --> 874
                             return lib.astype_intsafe(arr.ravel(), dtype).reshape(ar
         r.shape)
             875
             876
                         # if we have a datetime/timedelta array of objects
         pandas/ libs/lib.pyx in pandas. libs.lib.astype intsafe()
         ValueError: invalid literal for int() with base 10: ''
```

It looks like we have a row that doesn't conform to expectation and only contains ". Let's try to figure out what happened. First we find the location with the issue:

```
In [25]: applicants[applicants.projID=='']
Out[25]:
```

	Last Name	First Name	Gender	Institute Name	Institute Place	Person ID SNSF	OCRID	Projects as responsible Applicant	Projects as Applicant	Proje Parl
50947	Kleinewefers	Henner	male	Séminaire de politique économique, d'économie 	Fribourg	10661	NaN	8;	NaN	1
62384	Massarenti	Léonard	male	Faculté de Psychologie et des Sciences de l'Ed	Genève 4	11138	NaN	4;	NaN	1

Then we look in the original table:

```
In [26]: persons.loc[50947]
Out[26]: Last Name
                                                                                       Kle
         inewefers
         First Name
         Henner
         Gender
         male
         Institute Name
                                                Séminaire de politique économique, d'éco
         nomie ...
         Institute Place
         Fribourg
         Person ID SNSF
         10661
         OCRID
         NaN
         Projects as responsible Applicant
         8;
         Projects as Applicant
         NaN
         Projects as Partner
         NaN
         Projects as Practice Partner
         NaN
         Projects as Employee
         NaN
         Projects as Contact Person
         NaN
         Name: 50947, dtype: object
```

Unfortunately, as is often the case, we have a misformatting in the original table. The project as applicant entry has a single number but still contains the ; sign. Therefore when we split the text, we end up with ['8','']. Can we fix this? We can for example filter the table and remove rows where projID has length 0:

```
In [30]: applicants = applicants[applicants.projID.apply(lambda x: len(x) > 0)] employees = employees[employees.projID.apply(lambda x: len(x) > 0)]
```

Now we can convert the projID column to integer:

```
In [31]: applicants.projID = applicants.projID.astype(int)
    employees.projID = employees.projID.astype(int)
```

Finally we can use merge to combine both tables. We will combine the projects (on 'Project Number') and persons table (on 'projID a' and 'projID e'):

```
In [32]: merged_appl = pd.merge(applicants, projects, left_on='projID', right_on='Pro
    ject Number')
    merged_empl = pd.merge(employees, projects, left_on='projID', right_on='Proj
    ect Number')
In [33]: applicants.head(5)
```

Out[33]:

	Last Name	First Name	Gender	Institute Name	Institute Place	Person ID SNSF	OCRID	Projects as responsible Applicant	Projects as Applicant	Projects as Partner
1	a Marca	Andrea	male	NaN	NaN	132628	NaN	67368	NaN	NaN
2	A. Jafari	Golnaz	female	Universität Luzern	Luzern	747886	NaN	191432	NaN	NaN
7	Aapro	Matti S.	male	Clinique de Genolier F.M.H. Oncologie- Hématolo	Genolier	3268	NaN	8532;9513	8155	NaN
7	Aapro	Matti S.	male	Clinique de Genolier F.M.H. Oncologie- Hématolo	Genolier	3268	NaN	8532;9513	8155	NaN
11	Aas	Gregor	male	Lehrstuhl für Pflanzenphysiologie Universität	Bayreuth	36412	NaN	52037	NaN	NaN

12.3 Reformatting columns: time

We now have in those tables information on both scientists and projects. Among other things we now when each project of each scientist has started via the Start Date column:

```
In [34]: merged empl['Start Date']
Out[34]: 0
                    01.04.1993
                    01.04.1993
         1
         2
                    01.04.1993
         3
                    01.04.1993
                    01.04.1993
                    01.04.1990
         127126
         127127
                    01.04.1991
         127128
                    01.11.1998
                    01.11.1992
         127129
         127130
                    01.10.2008
         Name: Start Date, Length: 127131, dtype: object
```

If we want to do computations with dates (e.g. measuring time spans) we have to change the type of the column. Currently it is indeed just a string. We could parse that string, but Pandas already offers tools to handle dates. For example we can use pd.to_datetime to transform the string into a Python datetime format. Let's create a new date column:

```
In [35]: merged_empl['date'] = pd.to_datetime(merged_empl['Start Date'])
    merged_appl['date'] = pd.to_datetime(merged_appl['Start Date'])

In [36]: merged_empl.iloc[0]['date']

Out[36]: Timestamp('1993-01-04 00:00:00')

In [37]: merged_empl.iloc[0]['date'].year

Out[37]: 1993
```

Let's add a year column to our dataframe:

```
In [38]: merged_empl['year'] = merged_empl.date.apply(lambda x: x.year)
merged_appl['year'] = merged_appl.date.apply(lambda x: x.year)
```

12.4 Completing information

As we did in the introduction, we want to be able to broadly classify projects into three categories. We therefore search for a specific string ('Humanities', 'Mathematics', 'Biology') within the 'Discipline Name Hierarchy' column to create a new column called 'Field'^:

We will use the amounts awarded in our analysis. Let's look at that column:

```
In [40]: merged appl['Approved Amount']
Out[40]: 0
                                  20120.00
                   data not included in P3
         1
         2
                                 211427.00
         3
                                 174021.00
         4
                                    8865.00
         74650
                                 150524.00
         74651
                                 346000.00
         74652
                                 262960.00
         74653
                                 449517.00
         74654
                                1433628.00
         Name: Approved Amount, Length: 74655, dtype: object
```

Problem: we have rows that are not numerical. Let's coerce that column to numerical:

```
In [41]: merged_appl['Approved Amount'] = pd.to_numeric(merged_appl['Approved Amount
'], errors='coerce')
```

```
In [42]:
         merged_appl['Approved Amount']
Out[42]: 0
                     20120.0
                         NaN
         1
         2
                    211427.0
         3
                    174021.0
         4
                      8865.0
         74650
                    150524.0
         74651
                    346000.0
         74652
                    262960.0
         74653
                    449517.0
         74654
                   1433628.0
         Name: Approved Amount, Length: 74655, dtype: float64
```

12.5 Data anaylsis

We are finally done tidying up our tables so that we can do proper data analysis. We can *aggregate* data to answer some questions.

12.5.1 Amounts by gender

Let's see for example what is the average amount awarded every year, split by gender. We keep only the 'Project funding' category to avoid obscuring the results with large funds awarded for specific projects (PNR etc):

```
In [44]:
           merged_projects = merged_appl[merged_appl['Funding Instrument Hierarchy'] ==
           'Project funding']
In [45]:
           grouped gender = merged projects.groupby(['Gender', 'year'])['Approved Amount
            ].mean().reset index()
           grouped gender
Out[45]:
                        year Approved Amount
               Gender
                                 101433.200000
            0
                       1975 0
                female
             1
                female
                       1976.0
                                 145017.750000
            2
                female
                       1977.0
                                 177826.157895
             3
                female
                      1978.0
                                 141489.857143
             4
                female
                      1979.0
                                 218496.904762
            ---
                 male 2016.0
            87
                                 429717 055907
                 male 2017.0
            88
                                 507521.397098
            89
                 male
                       2018.0
                                 582461.020513
            90
                  male 2019.0
                                 624826.387985
                 male 2020.0
                                 617256 523404
            91
           92 rows × 3 columns
```

To generate a plot, we use here Seaborn which uses some elements of a grammar of graphics. For example we can assign variables to each "aspect" of our plot. Here x and y axis are year and amount while color ('hue') is the gender. In one line, we can generate a plot that compiles all the information:

There seems to be a small but systematic difference in the average amount awarded.

We can now use a plotting library that is essentially a Python port of ggplot to add even more complexity to this plot. For example, let's split the data also by Field:

```
In [47]:
           import plotnine as p9
           grouped gender field = merged projects.groupby(['Gender','year','Field'])['A
In [48]:
            pproved Amount'].mean().reset index()
In [49]:
           grouped_gender_field
Out[49]:
                 Gender
                           year
                                      Field Approved Amount
                                                95049.000000
                         1975.0
                                    Biology
              0
                 female
              1
                  female
                         1975.0
                                 Humanities
                                                95451.666667
              2
                  female
                         1975.0
                                Mathematics
                                               125762.000000
              3
                  female
                         1976.0
                                    Biology
                                               183154.200000
              4
                  female
                         1976.0
                                 Humanities
                                                68590.750000
            271
                         2019.0
                                 Humanities
                                               523397.013072
                   male
            272
                   male
                         2019.0
                                Mathematics
                                               632188.796040
            273
                         2020.0
                                    Biology
                                               694705.243590
                                 Humanities
                                               520925 507246
            274
                   male
                         2020.0
            275
                   male
                         2020.0 Mathematics
                                               624141.068182
```

276 rows × 4 columns

Out[50]: <ggplot: (305412337)>

12.5.2 From employee to applicant

One of the questions we wanted to answer above was how much time goes by between the first time a scientist is mentioned as "employee" on an application and the first time he applies as main applicant. We have therefore to:

- 1. Find all rows corresponding to a specific scientist
- 2. Find the earliest date of project

For (1) we can use groupby and use the Person ID SNSF ID which is a unique ID assigned to each researcher. Once this *aggregation* is done, we can summarize each group by looking for the "minimal" date:

```
In [51]: first_empl = merged_empl.groupby('Person ID SNSF').date.min().reset_index()
first_appl = merged_appl.groupby('Person ID SNSF').date.min().reset_index()
```

We have now two dataframes indexed by the $\ensuremath{\operatorname{Person}}$ ID:

In [52]: first_empl.head(5)

Out[52]:

	Person ID Sh	NSF	date
0	1	611	1990-01-10
1	1	659	1988-01-11
2	1	661	1978-01-07
3	1	694	1978-01-06
4	1	712	1982-01-04

Now we can again merge the two series to be able to compare applicant/employee start dates for single people:

	Person ID SNSF	date_appl	date_empl
0	1659	1975-01-10	1988-01-11
1	1661	1978-01-07	1978-01-07
2	1694	1985-01-01	1978-01-06
3	1712	1982-01-04	1982-01-04
4	1726	1985-01-03	1985-01-03
10336	748652	2019-01-12	2019-01-12
10337	748760	2020-01-03	2020-01-03
10338	749430	2020-01-04	2020-01-04
10339	749991	2020-01-03	2020-01-03
10340	750593	2020-01-01	2020-01-01

10341 rows × 3 columns

Finally we merge with the full table, based on the index to recover the other paramters:

```
In [55]: full_table = pd.merge(merge_first, merged_appl,on = 'Person ID SNSF')
```

Finally we can add a column to that dataframe as a "difference in dates":

We see that we have one strong peak at $\Delta T==0$ which corresponds to people who were paid for the first time through an SNSF grant when they applied themselves. The remaining cases have a peak around $\Delta T==5$ which typically corresponds to the case where a PhD student was payed on a grant and then applied for a postdoc grant ~4-5 years later.

We can go further and ask how dependent this waiting time is on the Field of research. Obviously Humanities are structured very differently


```
In [2]: import numpy as np
import matplotlib.pyplot as plt
```

Exercice Numpy

1. Array creation

Cre	ate a 1D arra	v with values f	om 0 to 10	and in steps of	f 0.1. Check	the shape of the	arrav:

In []:	In []:	:
---------	---------	---

ullet Create an array of normally distributed numbers with mean $\mu=0$ and standard deviation $\sigma=0.5$. It should have 20 rows and as many columns as there are elements in xarray . Call it normal_array :

```
In [ ]:
```

• Check the type of normal array:

```
In [ ]:
```

2. Array mathematics

• Using xarray as x-variable, create a new array yarray as y-variable using the function $y=10*cos(x)*e^{-0.1x}$:

```
In [ ]:
```

• Create array_abs by taking the absolute value of array_mul:

```
In [ ]:
```

ullet Create a boolan array (logical array) where all positions >0.3 in array_abs are True and the others False

```
In [ ]:
```

• Create a standard deviation projection along the second dimension (columns) of array_abs. Check that the dimensions are the ones you expected. Also are the values around the value you expect?

In []:
3. Plotting
Use a line plot to plot yarray vs xarray:
In []:
Try to change the color of the plot to red and to have markers on top of the line as squares:
In []:
• Plot the normal_array as an imagage and change the colormap to 'gray':
In []:
Assemble the two above plots in a figure with one row and two columns grid:
In []:
I. Indexing
Create new arrays where you select every second element from xarray and yarray. Plot them on top of xarray and yarray.
In []:
• Select all values of yarray that are larger than 0. Plot those on top of the regular xarray and yarray plot.
In []:
• Flip the order of xarray use it to plot yarray:
In []:
5. Combining arrays
Create an array filled with ones with the same shape as normal_array . Concatenate it to normal_array along

the first dimensions and plot the result:

```
In [ ]:
```

•	yarray	represent	s a signal.	Each line	of norma	al_array	represen	ts a pos	ssible ranc	dom noi	se for that sig	gnal.
	Using bro	oadcasting,	try to crea	ate an arra	y of noisy	versions of	yarray	/ using	normal	array	. Finally, plo	t it:

To [].	
III [];	

```
In [2]: import numpy as np import matplotlib.pyplot as plt
```

Exercice Numpy

1. Array creation

• Create a 1D array with values from 0 to 10 and in steps of 0.1. Check the shape of the array:

1.2. Create an array of normally distributed numbers with mean $\mu=0$ and standard deviation $\sigma=0.5$. It should have 20 rows and as many columns as there are elements in xarray . Call it normal_array :

```
In [146]: normal_array = np.random.normal(0,0.5,(20, xarray.shape[0]))
```

• Check the type of normal array:

```
In [147]: normal_array.dtype
Out[147]: dtype('float64')
```

2. Array mathematics

• Using xarray as x-variable, create a new array yarray as y-variable using the function $y=10*cos(x)*e^{-0.1x}$:

```
In [148]: yarray = 5*np.cos(xarray)*np.exp(-0.1*xarray)
```

• 2.2 Create array_abs by taking the absolute value of array_mul:

```
In [149]: array_abs = np.abs(yarray)
```

ullet 2.2 Create a boolan array (logical array) where all positions >0.3 in ${\tt array_abs}$ are True and the others False

```
In [165]: array_bool = array_abs > 0.3
```

• 2.3 Create a standard deviation projection along the second dimension (columns) of array_abs. Check that the dimensions are the ones you expected. Also are the values around the value you expect?

```
In [167]: array_min = normal_array.std(axis = 1)
array_min.shape

Out[167]: (20,)

In [168]: array_min

Out[168]: array([0.54167658, 0.51651789, 0.4832876, 0.54537271, 0.50834276, 0.47623427, 0.44677832, 0.47841273, 0.50255308, 0.50656681, 0.47822978, 0.52051232, 0.55511136, 0.46977863, 0.57914545, 0.47393849, 0.52705922, 0.43786828, 0.55795931, 0.45476456])
```

3. Plotting

• Use a line plot to plot yarray vs xarray:

```
In [172]: plt.plot(xarray, yarray,'ro')
Out[172]: [<matplotlib.lines.Line2D at 0x11fb2b9d0>]
```

• Try to change the color of the plot to red and to have markers on top of the line as squares:

```
In [174]: plt.plot(xarray, yarray, '-sr')
Out[174]: [<matplotlib.lines.Line2D at 0x11f806070>]
```

• Plot the normal array as an imagage and change the colormap to 'gray':

```
In [175]: plt.imshow(normal_array, cmap = 'gray')
Out[175]: <matplotlib.image.AxesImage at 0x11fd9dfd0>
```

• Assemble the two above plots in a figure with one row and two columns grid:

```
In [176]: fig, ax = plt.subplots(1,2)
ax[0].plot(xarray, yarray, '-sr')
ax[1].imshow(normal_array, cmap = 'gray')

Out[176]: <matplotlib.image.AxesImage at 0x11fd9a340>
```

4. Indexing

• Create new arrays where you select every second element from xarray and yarray. Plot them on top of xarray and yarray .

```
In [179]: xarray2 = xarray[::2]
yarray2 = yarray[::2]
plt.plot(xarray, yarray)
plt.plot(xarray2, yarray2,'o')

Out[179]: [<matplotlib.lines.Line2D at 0x12045fbb0>]
```

• Select all values of yarray that are larger than 0. Plot those on top of the regular xarray and yarray plot.

10

```
In [181]: plt.plot(xarray, yarray)
    plt.plot(xarray[yarray>0], yarray[yarray>0],'o')
Out[181]: [<matplotlib.lines.Line2D at 0x1205f0880>]
```

• Flip the order of xarray use it to plot yarray :

ź

```
In [185]: flipped_array = np.flipud(xarray)
plt.plot(flipped_array, yarray)

Out[185]: [<matplotlib.lines.Line2D at 0x120848dc0>]
```

5. Combining arrays

• Create an array filled with ones with the same shape as normal_array . Concatenate it to normal_array along the first dimensions and plot the result:

• yarray represents a signal. Each line of normal_array represents a possible random noise for that signal. Using broadcasting, try to create an array of noisy versions of yarray using normal_array. Finally, plot it:

The last dimensions of both arrays are matching. We can therefore simply added the two arrays, and yarray will simply be "replicated" as many times as needed:

```
In [194]: yarray_noise = yarray + normal_array
In [196]: plt.imshow(yarray_noise)
Out[196]: <matplotlib.image.AxesImage at 0x11b249b80>
```

```
In [21]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

Exercise Pandas

For these exercices we are using a <u>dataset (https://www.kaggle.com/dgomonov/new-york-city-airbnb-open-data/kernels)</u> provided by Airbnb for a Kaggle competition. It describes its offer for New York City in 2019, including types of appartments, price, location etc.

1. Create a dataframe

Create a dataframe of a few lines with objects and their poperties (e.g fruits, their weight and colour). Calculate the mean of your Dataframe.

2. Import

- Import the table called AB_NYC_2019.csv as a dataframe. It is located in the Datasets folder. Have a look at the beginning of the table (head).
- · Create a histogram of prices

3. Operations

Create a new column in the dataframe by multiplying the "price" and "availability_365" columns to get an estimate of the maximum yearly income.

3b. Subselection and plotting

Create a new Dataframe by first subselecting yearly incomes between 1 and 100'000. Then make a scatter plot of yearly income versus number of reviews

4. Combine

We provide below and additional table that contains the number of inhabitants of each of New York's boroughs ("neighbourhood_group" in the table). Use merge to add this population information to each element in the original dataframe.

5. Groups

- Using groupby calculate the average price for each type of room (room_type) in each neighbourhood_group. What is the average price for an entire home in Brooklyn?
- Unstack the multi-level Dataframe into a regular Dataframe with unstack() and create a bar plot with the resulting table

6. Advanced plotting

Using Seaborn, create a scatter plot where x and y positions are longitude and lattitude, the color reflects price and the shape of the marker the borough (neighbourhood_group). Can you recognize parts of new york? Does the map make sense?

```
In [8]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

Exercise

For these exercices we are using a <u>dataset (https://www.kaggle.com/dgomonov/new-york-city-airbnb-open-data/kernels)</u> provided by Airbnb for a Kaggle competition. It describes its offer for New York City in 2019, including types of appartments, price, location etc.

1. Create a dataframe

Create a dataframe of a few lines with objects and their poperties (e.g fruits, their weight and colour). Calculate the mean of your Dataframe.

```
fruits = pd.DataFrame({'fruits':['strawberry', 'orange','melon'], 'weight
':[20, 200, 1000],'weight2':[20, 200, 1000], 'color': ['red','orange','yello
In [5]:
            w']})
In [6]: fruits.describe()
Out[6]:
                         weight
                                     weight2
                                    3.000000
                      3.000000
            count
                                  406.666667
            mean
                    406.666667
                    521.664004
                                  521.664004
              std
              min
                     20.000000
                                   20.000000
             25%
                    110.000000
                                  110.000000
                    200.000000
             50%
                                  200.000000
             75%
                    600.000000
                                  600.000000
             max 1000.000000
                                 1000.000000
In [5]: fruits.mean()
Out[5]: weight
                         406.666667
           dtype: float64
```

2. Import

- Import the table called AB_NYC_2019.csv as a dataframe. It is located in the Datasets folder. Have a look at the beginning of the table (head).
- · Create a histogram of prices

```
In [11]: airbnb = pd.read_csv('Data/AB_NYC_2019.csv')
```

In [13]:	airbnb	.head()						
Out[13]:	ic	l name	host_id	host_name	neighbourhood_group	neighbourhood	latitude	longitude
	0 2539	Clean & quiet apt home by the park	2787	John	Brooklyn	Kensington	40.64749	-73.97237
	1 2595 Skylit Mic		2845	Jennifer	Manhattan	Midtown	40.75362	-73.98377
	2 3647	THE VILLAGE OF HARLEMNEW YORK!	4632	Elisabeth	Manhattan	Harlem	40.80902	-73.94190
	3 3831	Cozy Entire Floor of Brownstone	4869	LisaRoxanne	Brooklyn	Clinton Hill	40.68514	-73.95976
	4 5022	Entire Apt: Spacious Studio/Loft by central park	7192	Laura	Manhattan	East Harlem	40.79851	-73.94399
In [17]:	airbnb	['price'].plo	ot(kind	= 'hist',	bins = range(0,	1000,10));		
	3500 3000 2500 2000 1500 1000 500	0 200	400	600	800 1000			

3. Operations

Create a new column in the dataframe by multiplying the "price" and "availability_365" columns to get an estimate of the maximum yearly income.

```
In [18]: | airbnb['yearly_income'] = airbnb['price']*airbnb['availability_365']
In [19]: airbnb['yearly_income']
Out[19]: 0
                  54385
                  79875
                  54750
         2
         3
                  17266
         48890
                    630
         48891
                   1440
         48892
                   3105
         48893
                    110
         48894
                   2070
         Name: yearly_income, Length: 48895, dtype: int64
```

3b. Subselection and plotting

Create a new Dataframe by first subselecting yearly incomes between 1 and 100'000 and then by suppressing cases with 0 reviews. Then make a scatter plot of yearly income versus number of reviews

```
(airbnb.yearly_income>1)&(airbnb.yearly_income<100000)
Out[20]:
          0
                     True
                     True
          2
                     True
          3
                     True
                    False
          48890
                     True
          48891
                     True
          48892
                     True
          48893
                     True
          48894
                     True
          Name: yearly_income, Length: 48895, dtype: bool
          sub airbnb = airbnb[(airbnb.yearly income>1)&(airbnb.yearly income<100000)].</pre>
In [21]:
          copy()
          sub airbnb.plot(x = 'number of reviews', y = 'yearly income', kind = 'scatte
          r', alpha = 0.01)
          plt.show()
             100000
              80000
           early income
              60000
              40000
              20000
                  0
                           100
                                 200
                                        300
                                              400
                                                     500
                                                           600
                     0
                                   number_of_reviews
```

4. Combine

We provide below and additional table that contains the number of inhabitants of each of New York's boroughs ("neighbourhood_group" in the table). Use <code>merge</code> to add this population information to each element in the original dataframe.

```
In [23]: boroughs = pd.read_excel('Data/ny_boroughs.xlsx')
```

In [24]: boroughs

Out[24]:

	borough	population
0	Brooklyn	2648771
1	Manhattan	1664727
2	Queens	2358582
3	Staten Island	479458
4	Bronx	1471160

In [25]: airbnb

Out[25]:

latitude	neighbourhood	neighbourhood_group	host_name	host_id	name	id	
40.64749	Kensington	Brooklyn	John	2787	Clean & quiet apt home by the park	2539	0
40.75362	Midtown	Manhattan	Jennifer	2845	Skylit Midtown Castle	2595	1
40.80902	Harlem	Manhattan	Elisabeth	4632	THE VILLAGE OF HARLEMNEW YORK!	3647	2
40.68514	Clinton Hill	Brooklyn	LisaRoxanne	4869	Cozy Entire Floor of Brownstone	3831	3
40.79851	East Harlem	Manhattan	Laura	7192	Entire Apt: Spacious Studio/Loft by central park	5022	4
	•••						
40.67853	Bedford- Stuyvesant	Brooklyn	Sabrina	8232441	Charming one bedroom - newly renovated rowhouse	36484665	48890
40.70184	Bushwick	Brooklyn	Marisol	6570630	Affordable room in Bushwick/East Williamsburg	36485057	48891
40.81475	Harlem	Manhattan	Ilgar & Aysel	23492952	Sunny Studio at Historical Neighborhood	36485431	48892
40.75751	Hell's Kitchen	Manhattan	Taz	30985759	43rd St. Time Square-cozy single bed	36485609	48893
40.76404	Hell's Kitchen	Manhattan	Christophe	68119814	Trendy duplex in the very heart of Hell's Kitchen	36487245	48894
						47	40005

48895 rows × 17 columns

```
In [26]: merged = pd.merge(airbnb, boroughs, left_on = 'neighbourhood_group', right_o
         n='borough')
```

Williamsburg 40.70837 -73.95352

In [27]: merged.head() Out[27]: id host_name neighbourhood_group neighbourhood name host_id latitude longitude Clean & quiet 0 2539 2787 John Brooklyn Kensington 40.64749 -73.97237 apt home by the park Cozy Entire 1 3831 Floor of 4869 LisaRoxanne Brooklyn Clinton Hill 40.68514 -73.95976 Brownstone Bedford-2 5121 BlissArtsSpace! 7356 Garon Brooklyn 40.68688 -73.95596 Stuyvesant Lovely Room 1, Garden, Best 5803 9744 Laurie Brooklyn South Slope 40.66829 -73.98779 Area, Legal rental Only 2 stops to

Brooklyn

5. Groups

6848

Manhattan

studio

15991

• Using groupby calculate the average price for each type of room (room_type) in each neighbourhood_group. What is the average price for an entire home in Brooklyn?

Allen & Irina

• Unstack the multi-level Dataframe into a regular Dataframe with unstack() and create a bar plot with the resulting table

<pre>In [28]: airbnb.groupby(['neighbourhood_group','room_type']).mean() Out[28]:</pre>										
neighbourhood_group	room_type	id	host_id	latitude	longitude	price	minimu			
	Entire home/apt	2.269787e+07	1.037373e+08	40.848013	-73.880363	127.506596				
Bronx	Private room	2.235896e+07	1.060786e+08	40.849158	-73.886172	66.788344				
	Shared room	2.705442e+07	1.123450e+08	40.840873	-73.893407	59.800000				
	Entire home/apt	1.730117e+07	4.861704e+07	40.685211	-73.955603	178.327545				
Brooklyn	Private room	1.894125e+07	6.242636e+07	40.685513	-73.947150	76.500099				
	Shared room	2.358634e+07	1.040423e+08	40.669307	-73.948156	50.527845				
	Entire home/apt	1.866860e+07	6.557697e+07	40.758266	-73.978402	249.239109	1			
Manhattan	Private room	1.880759e+07	6.982314e+07	40.776002	-73.968506	116.776622				
	Shared room	2.115615e+07	9.666720e+07	40.770035	-73.971700	88.977083				
	Entire home/apt	2.112772e+07	8.713280e+07	40.728993	-73.874459	147.050573				
Queens	Private room	2.197231e+07	1.008169e+08	40.732940	-73.871716	71.762456				
	Shared room	2.469434e+07	1.123200e+08	40.734411	-73.872973	69.020202				
	Entire home/apt	2.170833e+07	9.618779e+07	40.605728	-74.109460	173.846591				
Staten Island	Private room	2.106201e+07	1.017539e+08	40.614450	-74.103089	62.292553				
	Shared room	3.061484e+07	7.713866e+07	40.609894	-74.091077	57.444444				
summary = airbnb	.groupby(['neighbour	hood_group	','room_	type']).m	ean().pri	ce			
summary										
neighbourhood_gr Bronx	Enti	_type re home/apt ate room	127.500 66.78							
Brooklyn	Enti Priv	ed room re home/apt ate room	59.800 178.32 76.500 50.52	7545 9099						
Manhattan	Share Manhattan Entir Priva Share			7645 9109 6622 7083						
Queens	Enti Priv	re home/apt ate room ed room		9573 2456						
Staten Island	Enti Priv	re home/apt ate room ed room		6591 2553						
Name: price, dty	pe: float	64								

```
In [31]:
           summary[('Brooklyn','Entire home/apt')]
Out[31]: 178.32754472225128
In [32]:
           summary.unstack()
Out[32]:
                      room_type Entire home/apt Private room Shared room
            neighbourhood_group
                                                                59.800000
                           Bronx
                                      127.506596
                                                   66.788344
                         Brooklyn
                                      178.327545
                                                   76.500099
                                                                50.527845
                       Manhattan
                                     249.239109
                                                  116.776622
                                                                88.977083
                         Queens
                                      147.050573
                                                   71.762456
                                                                69.020202
                     Staten Island
                                      173.846591
                                                   62.292553
                                                                57.444444
In [33]:
           summary.unstack().plot(kind = 'bar', alpha = 0.5)
           plt.show()
            250
                                                     room type
                                                     Entire home/apt
                                                     Private room
             200
                                                     Shared room
            150
            100
             50
              0
                               Brooklyn
                                 neighbourhood_group
```

6. Advanced plotting

Using Seaborn, create a scatter plot where x and y positions are longitude and lattitude, the color reflects price and the shape of the marker the borough (neighbourhood_group). Can you recognize parts of new york? Does the map make sense?

In []:

```
g = sns.scatterplot(data = airbnb, y = 'latitude', x = 'longitude', hue = 'price',
In [32]:
                                    hue_norm=(0,200), s=10, palette='inferno')
                                                                                                price
                                                                                                0
              40.9
                                                                                                80
                                                                                                160
                                                                                                240
              40.8
            latitnde
40.7
              40.6
              40.5
                           -74.2
                                         -74.1
                                                                     -73.9
                                                                                  -73.8
                                                                                                -73.7
                                                       -74.0
                                                        longitude
```