01-DA Numpy arrays creation file:///home/marie/Documents/github_accounts/...

1. Creating Numpy arrays

Numpy has many different types of data "containers": lists, dictionaries, tuples etc. However none of them allows for
efficient numerical calculation, in particular not in multi-dimensional cases (think e.g. of operations on images). Numpy has
been developed exactly to fill this gap. It provides a new data structure, the numpy array, and a large library of operations
that allow to:

« generate such arrays

« combine arrays in different ways (concatenation, stacking etc.)
« modify such arrays (projection, extraction of sub-arrays etc.)

« apply mathematical operations on them

Numpy is the base of almost the entire Python scientific programming stack. Many libraries build on top of Numpy, either
by providing specialized functions to operate on them (e.g. scikit-image for image processing) or by creating more complex
data containers on top of it. The data science library Pandas that will also be presented in this course is a good example of
this with its dataframe structures.

In []: import numpy as np

from svg import numpy to svg

1.1 What is an array ?

Let us create the simplest example of an array by transforming a regular Python list into an array (we will see more
advanced ways of creating arrays in the next chapters):

In [1: mylist = [2,5,3,9,5,2]

In [3]: mylist
Out[31: [2, 5, 3, 9, 5, 2]

In [4]: myarray = np.array(mylist)

In [5]: myarray
Out[5]: array([2, 5, 3, 9, 5, 2])

In [6]: type(myarray)

Out[6]: numpy.ndarray

We see that myarray is a Numpy array thanks to the array specification in the output. The type also says that we
have a numpy ndarray (n-dimensional). At this point we don't see a big difference with regular lists, but we'll see in the
following sections all the operations we can do with these objects.

We can already see a difference with two basic attributes of arrays: their type and shape.

1.1.1 Array Type

1of11 9/10/20, 10:23 AM

01-DA Numpy arrays creation file:///home/marie/Documents/github_accounts/...

Just like when we create regular variables in Python, arrays receive a type when created. Unlike regular list, all elements
of an array always have the same type. The type of an array can be recovered through the .dtype method:

In [7]: myarray.dtype
Out[7]: dtype('int64')

Depending on the content of the list, the array will have different types. But the logic of "maximal complexity" is kept. For
example if we mix integers and floats, we get a float array:

In [8]: myarray2 = np.array([1.2, 6, 7.6, 5])
myarray?2

Out[8]: array([1.2, 6. , 7.6, 5. 1)

In [9]: myarray2.dtype
Out[9]: dtype('float64')

In general, we have the possibility to assign a type to an array. This is true here, as well as later when we'll create more
complex arrays, and is done via the dtype option:

In [10]: myarray2 = np.array([1.2, 6, 7.6, 500], dtype=np.uint8)
myarray?2

Out[10]: array([1, 6, 7, 244], dtype=uint8)

The type of the array can also be changed after creation using the .astype() method:

In [11]: myfloat array = np.array([1.2, 6, 7.6, 500], dtype=np.float)
myfloat array.dtype

Out[11]: dtype('float64')

In [12]: myint array = myfloat array.astype(np.int8)
myint array.dtype

Out[12]: dtype('int8"')

1.1.2 Array shape

A very important property of an array is its shape or in other words the dimensions of each axis. That property can be
accessed via the .shape property:

In [13]: myarray
Out[13]: array([2, 5, 3, 9, 5, 2])

In [14]: myarray.shape
Outl[14]: (e,)

We see that our simple array has only one dimension of length 6. Now of course we can create more complex arrays. Let's
create for example a list of two lists:

20f11 9/10/20, 10:23 AM

01-DA Numpy arrays creation file:///home/marie/Documents/github_accounts/...

In [15]: my2d list = [[1,2,3], [4,5,6]]

my2d _array = np.array(my2d list)
my2d array

Out[15]: array([[1, 2, 3],

[4, 5, 6]])
In [16]: my2d_array.shape
Out[16]: (2, 3)

We see now that the shape of this array is two-dimensional. We also see that we have 2 lists of 3 elements. In fact at this
point we should forget that we have a list of lists and simply consider this object as a matrix with two rows and three
columns. We'll use the follwing graphical representation to clarify some concepts:

In [17]: numpy to svg(my2d array)

Out[17]:

1.2 Creating arrays

We have seen that we can turn regular lists into arrays. However this becomes quickly impractical for larger arrays. Numpy
offers several functions to create particular arrays.

1.2.1 Common simple arrays
For example an array full of zeros or ones:
In [18]: one_array = np.ones((2,3))
one_array
Out[18]: array([[1l., 1., 1.1,
(1., 1., 1.11)
In [19]: zero_array = np.zeros((2,3))
zero_array
Out[19]: array([[0., 0., 0.],
(0., 0., 0.11)

One can also create diagonal matrix:

3ofll 9/10/20, 10:23 AM

01-DA Numpy arrays creation file:///home/marie/Documents/github_accounts/...

In [20]: np.eye(3)

Out[20]: array([[1., 0., 0.7,
[0., 1., 0.1,
[0., 0., 1.1])

By default Numpy creates float arrays:

In [21]: one_array.dtype
Out[21]: dtype('float64')

However as mentioned before, one can impose a type usine the dtype option:
In [22]: one array int = np.ones((2,3), dtype=np.int8)
one_array_int
Out[22]: array([[1, 1, 11,
[1, 1, 1]], dtype=int8)
In [23]: one_array int.dtype
Out[23]: dtype('int8"')

1.2.2 Copying the shape

Often one needs to create arrays of same shape. This can be done with "like-functions":
In [24]: same_shape_array = np.zeros_like(one_array)
same_shape array

Out[24]: array([[0., 0.

’ 0]
(0., 0., 0.]

1)
In [25]: one_array.shape

Out[25]: (2, 3)

In [26]: same_shape array.shape

Qut[26]: (2, 3)

In [27]: np.ones_like(one_array)

Out[27]: array([[1., 1., 1.1,
[1., 1., 1.11)

1.2.3 Complex arrays

We are not limited to create arrays containing ones or zeros. Very common operations involve e.g. the creation of arrays
containing regularly arrange numbers. For example a "from-to-by-step" list:

In [28]: np.arange(0, 10, 2)
Out[28]: array([0, 2, 4, 6, 8])

4 of 11 9/10/20, 10:23 AM

01-DA Numpy arrays creation file:///home/marie/Documents/github_accounts/...

Or equidistant numbers between boundaries:

In [29]: np.linspace(0,1, 10)

Out[29]: array([0. , 0.11111111, 0.22222222, 0.33333333, 0.44444444,
0.55555556, 0.66666667, 0.77777778, ©0.88888889, 1. 1)

Numpy offers in particular a random submodules that allows one to create arrays containing values from a wide array of
distributions. For example, normally distributed:

In [30]: normal_array = np.random.normal(loc=10, scale=2, size=(3,4))
normal_array

Out[30]: array([[16.64156121, 13.38970093, 11.32772287, 7.93713055],
[8.33365707, 11.27817138, 9.81766403, 11.11541451],
[12.97743479, 7.1622948 , 12.02417108, 8.64402656]])

In [31]: np.random.poisson(lam=5, size=(3,4))

Out[31]: array([[4, 4, 2, 4],
[3, 7, 6, 31,
[6, 5, 5, 411)

1.2.4 Higher dimensions

Until now we have almost only dealt with 1D or 2D arrays that look like a simple grid:

In [32]: myarray = np.ones((5,10))
numpy_ to svg(myarray)

Out[32]:

10

We are not limited to create 1 or 2 dimensional arrays. We can basically create any-dimension array. For example in
microscopy, images can be volumetric and thus they are 3D arrays in Numpy. For example if we acquired 5 planes of a
10px by 10px image, we would have something like:

In [33]: array3D = np.ones((10,10,5))

50f11 9/10/20, 10:23 AM

01-DA Numpy arrays creation file:///home/marie/Documents/github_accounts/...

In [34]: numpy to svg(array3D)

Qut[34]: AN
N N\

All the functions and properties that we have seen until now are N-dimensional, i.e. they work in the same way irrespective
of the array size.

1.3 Importing arrays

We have seen until now multiple ways to create arrays. However, most of the time, you will import data from some source,
either directly as arrays or as lists, and use these data in your analysis.

1.3.1 Loading and saving arrays
Numpy can efficiently save and load arrays in its own format .npy . Let's create an array and save it:
In [35]: array_to save = np.random.normal(10, 2, (4,5))

array to save

Out[35]: array([[5.41052227, 11.78370736, 9.22402365, 9.91645679, 9.48495895],
[10.10853493, 8.75839699, 8.26026504, 12.51736441, 9.80407577],
[10.09084097, 7.27962072, 11.05963249, 14.37978527, 9.00654627],
[6.01521954, 10.25115807, 10.28647927, 10.12389832, 8.911843971])

In [36]: np.save('my saved array.npy', array to_save)

60f11 9/10/20, 10:23 AM

01-DA Numpy arrays creation

7o0f11

In [37]:

1s

01-DA Numpy arrays creation.ipynb
02-DA Numpy array maths.ipynb
03-DA Numpy matplotlib.ipynb
04-DA Numpy indexing.ipynb

05-DA Numpy combining arrays.ipynb
06-DA Pandas introduction.ipynb
07-DA Pandas_structures.ipynb
08-DA Pandas_import.ipynb

09-DA Pandas_operations.ipynb
10-DA _Pandas_combine.ipynb

11-DA Pandas splitting.ipynb
12-DA_Pandas_plotting.ipynb

13-DA Pandas_ML.ipynb

98-DA Numpy Exercises.ipynb

file:///home/marie/Documents/github_accounts/...

98-DA Numpy Solutions.ipynb
99-DA Pandas Exercises.ipynb
99-DA Pandas_Solutions.ipynb
My first plot.png
SNSF_data.ipynb
Untitled.ipynb

__pycache /
ipyleaflet.ipynb

multiple arrays.npz

my saved array.npy
raw.githubusercontent.com/
svg.py

unused/

Now that this array is saved on disk, we can load it again using np.load :

In [38]:

Out[38]:

If you have several arrays that belong together, you can also save them in a single file using np.savez in npz format.

new_array = np.load('my saved array.npy')

new_array

array([[5.41052227, 11.78370736,
[10.10853493, 8.75839699,
[10.09084097, 7.27962072,

[6.01521954, 10.25115807,

Let's create a second array:

In [39]:

Out[39]:

In [40]:

In [41]:

array_to save2 = np.random.normal(10, 2,

array to save2

array([[14.57759687, 7.62340049]1])

np.savez('multiple arrays.npz', array to save=array to save, array to save2=

array to save2)

1s

01-DA Numpy arrays creation.ipynb
02-DA Numpy array maths.ipynb
03-DA Numpy matplotlib.ipynb
04-DA Numpy indexing.ipynb

05-DA Numpy combining arrays.ipynb
06-DA Pandas_introduction.ipynb
07-DA Pandas structures.ipynb
08-DA Pandas_import.ipynb

09-DA Pandas_operations.ipynb
10-DA_Pandas_combine.ipynb
11-DA_Pandas_splitting.ipynb
12-DA Pandas plotting.ipynb
13-DA_Pandas_ML.ipynb

98-DA Numpy Exercises.ipynb

And when we load it again:

11.05963249,
10.28647927,

9.22402365,
8.26026504,

9.91645679,
12.51736441,
14.37978527,
10.12389832,

9.48495895],
9.804075771,
9.006546271],
8.91184397]11])

(1,2))

98-DA Numpy Solutions.ipynb
99-DA Pandas Exercises.ipynb
99-DA Pandas Solutions.ipynb
My first plot.png
SNSF_data.ipynb
Untitled.ipynb

__pycache /
ipyleaflet.ipynb

multiple arrays.npz
my_saved_array.npy
raw.githubusercontent.com/
Svg.py

unused/

9/10/20, 10:23 AM

01-DA Numpy arrays creation file:///home/marie/Documents/github_accounts/...

In [42]: load multiple = np.load('multiple arrays.npz')
type(load multiple)

Out[42]: numpy.lib.npyio.NpzFile

We get here an NpzFile object from which we can read our data. Note that when we load an npz file, it is only loaded
lazily, i.e. data are not actually read, but the content is parsed. This is very useful if you need to store large amounts of
data but don't always need to re-load all of them. We can use methods to actually access the data:

In [43]: load multiple.files

Out[43]: ['array to save', 'array to save2']

In [44]: load multiple.get('array to save2')
Out[44]: array([[14.57759687, 7.62340049]])

1.3.2 Importing data as arrays

Images are a typical example of data that are array-like (matrix of pixels) and that can be imported directly as arrays. Of
course, each domain will have it's own importing libraries. For example in the area of imaging, the scikit-image package is
one of the main libraries, and it offers and importer of images as arrays which works both with local files and web
addresses:

In [45]: import skimage.io

image = skimage.io.imread('https://upload.wikimedia.org/wikipedia/commons/f/
fd/%27%C3%9Cbermut Exub%C3%A9rance%27 by Paul Klee%2C 1939.jpg')

We can briefly explore that image:

In [46]: type(image)

Out[46]: numpy.ndarray

In [47]: image.dtype
Out[47]: dtype('uint8')

In [48]: image.shape

Out[48]: (584, 756, 3)

We see that we have an array of integeres with 3 dimensions. Since we imported a jpg image, we know that the thrid
dimension corresponds to three color channels Red, Green, Blue (RGB).

You can also read regular CSV files directly as Numpy arrays. This is more commonly done using Pandas, so we don't
spend much time on this, but here is an example on importing data from the web:

In [49]: oilprice = np.loadtxt('https://raw.githubusercontent.com/guiwitz/Rdatasets/m
aster/csv/quantreg/gasprice.csv',
delimiter=',', usecols=range(2,3), skiprows=1)

8ofl11 9/10/20, 10:23 AM

01-DA Numpy arrays creation file:///home/marie/Documents/github_accounts/...

In [50]: oilprice

9o0f11 9/10/20, 10:23 AM

01-DA Numpy arrays creation file:///home/marie/Documents/github_accounts/...

Out[50]: array([126.6, 127.2, 132.1, 133.3, 133.9, 134.5, 133.9, 133.4, 132.8,
132.3, 131.1, 134.1, 119.2, 116.8, 113.9, 110.6, 107.8, 105.4,
102.5, 104.5, 104.3, 104.7, 105.2, 106.6, 106.9, 109. , 110.4,
111.3, 112.1, 112.9, 114. , 113.8, 113.5, 112.6, 111.4, 110.4,
109.8, 109.4, 109.1, 109.1, 109.9, 111.2, 112.4, 112.4, 112.7,
112. , 111. , 109.7, 109.2, 108.9, 108.4, 108.8, 109.1, 109.1,
110.2, 110.4, 109.9, 109.9, 109.1, 107.5, 106.3, 105.3, 104.2,
102.6, 101.4, 100.6, 99.5, 100.4, 101.1, 101.4, 101.2, 101.3,
101. , 101.5, 101.3, 102.6, 105.1, 105.8, 107.2, 108.9, 110.2,
111.8, 112. , 112.8, 114.3, 115.1, 115.3, 114.9, 114.7, 113.9,
113.2, 112.8, 112.6, 112.3, 111.6, 112.3, 112.1, 112.1, 112.4,
112.3, 111.8, 111.5, 111.5, 111.3, 111.3, 112. , 112. , 111.2,
110.6, 109.8, 108.9, 107.8, 107.4, 106.9, 106.5, 106.6, 106.1,
105.5, 105.5, 106.2, 105.3, 104.7, 104.2, 104.8, 105.8, 105.6,
105.7, 106.8, 107.9, 107.9, 108.6, 108.6, 109.7, 110.6, 110.6,
110.7, 110.4, 110.1, 109.5, 108.9, 108.6, 108.1, 107.5, 106.9,
106.2, 106. , 105.9, 106.5, 106.2, 105.5, 105.1, 104.5, 104.7,
109.2, 109. , 109.3, 109.2, 108.4, 107.5, 106.4, 105.8, 105.1,
103.6, 101.8, 100.3, 99.9, 099.2, 099.5, 100.1, 99.9, 100.5,
100.7, 101.6, 100.9, 100.4, 100.7, 100.5, 100.7, 1601.2, 101.1,
102.8, 103.3, 103.7, 104. , 104.5, 104.6, 105. , 105.6, 106.5,
107.3, 107.9, 109.5, 109.7, 110.3, 110.9, 111.4, 113. , 115.7,
116.1, 116.5, 116.1, 115.6, 115. , 114. , 112.9, 112. , 111.4,
110.6, 110.7, 112.1, 112.3, 112.2, 111.3, 108.2, 107.5, 106.4,
105.6, 104.4, 106.3, 107. , 106.2, 106.8, 106.8, 106.2, 105.8,
105.2, 106. , 106.3, 105.6, 105.5, 106.3, 107.7, 109.4, 111. ,
113.3, 114.1, 116.4, 117.3, 119.1, 119.3, 119.4, 119. , 118.3,
117.7, 116.9, 115.9, 114.8, 113.8, 112.6, 112.4, 112.1, 112.2,
111.3, 111.1, 110.7, 110.6, 110.6, 110. , 109.2, 108.1, 107.3,
106.2, 106. , 105.9, 105.6, 105.7, 105.8, 105.7, 107.2, 107.5,
107.7, 108.6, 109.2, 108.4, 107.9, 107.6, 107.3, 107.8, 109.9,
111.5, 111.6, 112.8, 115.8, 117.2, 119.5, 123.4, 124.3, 125.7,
125.9, 126.2, 126.9, 126. , 125.2, 124.7, 124.1, 123. , 121.9,
121.7, 121.5, 121.5, 120.9, 119.9, 119.6, 119.9, 120.1, 119.3,
120.1, 120.3, 120.3, 119.9, 119.1, 120.3, 120.5, 121.7, 122.5,
122.9, 123.8, 124.6, 124.2, 124.1, 123.3, 122.7, 122.4, 122. ,
123.5, 123.6, 123.2, 123. , 122.7, 122. , 121.7, 120.8, 119.9,
119.1, 119.6, 119.1, 119.2, 118.7, 118.8, 118.5, 118.2, 118.2,
119.5, 120.4, 120.6, 119.8, 118.9, 117.9, 117.1, 116.9, 116.5,
117. , 116.4, 118.5, 121.9, 121.8, 123. , 122.9, 122.7, 121.9,
120.8, 119.5, 119.5, 118.7, 117.8, 116.8, 116.3, 116.4, 115.6,
115. , 114. , 112.8, 111.8, 110.8, 109.9, 108.9, 108.3, 107.2,
105.5, 105.1, 104.5, 103.2, 103.8, 102.5, 101.7, 100.6, 99.8,
102.6, 102.3, 101.8, 102.1, 103.2, 103.8, 105.2, 105.5, 105.2,
104.7, 106. , 104.9, 104.1, 104.2, 104.1, 103.7, 104.4, 103.5,
102.3, 101.8, 101.1, 100.4, 99.8, 99.1, 98.7, 99.9, 99.9,
100.6, 101. , 100.7, 100.1, 99.7, 99.4, 098.1, 97.1, 95.4,

93.3, 92.3, 92.1, 091.4, 091.3, 92., 92.1, 91.3, 90.8,
90.7, 89.9, 88.5, 89.1, 90. , 95.8, 99.9, 105.5, 108.7,
110.7, 110.3, 109.9, 110.7, 110.9, 111.2, 110.1, 108.8, 109.2,
108.8, 110.5, 109.5, 111. , 112.3, 114.8, 117.2, 117.2, 118.3,
121.4, 121.2, 121.4, 122.3, 123.4, 125.2, 124.8, 124.2, 123.4,
122. , 122.5, 121.8, 122.2, 124. , 125.8, 126.2, 126. , 126.3,
125.7, 126.3, 126. , 125.2, 126.8, 130.7, 130.7, 131.9, 135. ,
140. , 141.3, 149. , 151.1, 150.8, 148.4, 147.8, 144.7, 141.5,
140.6, 138.6, 142.7, 146.6, 149.4, 150.9, 153.5, 160.7, 166.4,
164.1, 160.6, 157.1, 152.1, 149.9, 144.7, 143.7, 142. , 144.4,
145.6, 150.2, 153.5, 153.9, 152.5, 149.8, 147.3, 151.6, 153.2,
152.3, 150.2, 150.1, 148.7, 148.9, 146.4, 142.5, 139.6, 138.8,
137.7, 140. , 145.8, 145.6, 144.6, 142.6, 146. , 142.9, 141. ,
139.3, 138.7, 137.7, 137.9, 141.1, 146.9, 153.5, 158.6, 158.5,
165.9, 166.3, 163.7, 165.6, 163. , 158. , 152.6, 145.4, 138.4,
135. , 133. , 131.8, 131.9, 131.9, 134.7, 139.9, 148. , 153.8,
151.1, 151.6, 146. , 138.1, 131. , 126.4, 122.1, 119.3, 117. ,
114.7, 114. , 109.7, 108.4, 107.5, 104.2, 106.3, 109.6, 110.9,
109.9, 108.7, 108.1, 109.8, 108.5, 108.9, 108.7, 111.8, 119.4,
126.2, 130.8, 133.9, 138.2, 136.8, 136.7, 135.3, 135.6, 134.9,
136. , 134.8, 135.3, 133.2, 133.5, 134.2, 135.7, 134.5, 136.1,

10 of 11 9/10/20, 10:23 AM

01-DA Numpy arrays creation file:///home/marie/Documents/github_accounts/...

138.1, 137.6, 135.5, 135.5, 135.7, 136.5, 135.3, 135.5, 136.7,
135.7, 138.5, 141.6, 142.2, 144.3, 142.7, 142.7, 140.6, 137. ,
133.6, 131.6, 131.6, 132.2, 137.1, 141.7, 141.2, 142.3, 142.2,
143.7, 149.9, 158.2, 163. , 161.7, 164.1, 166.3, 167.3, 162.6,
157.7, 155.7, 152.1, 150.4, 148.6, 144.1, 142.7, 144.4, 143.9,
142.8, 145.6, 148. , 145.1, 144.3, 144.8, 148.9, 149.6, 148.8,
151.6, 155. , 159.4, 169.3, 168.8, 165.3, 163.6, 158. , 152.4,
151.1, 151.5, 152.7, 149.9, 149.4, 146.4, 145.9, 147.8, 145.4,
144.1, 143.3, 145.9, 145.4, 149.2, 154.4, 157.9, 160.4, 159.1,
160.9, 161.7])

In []:

11 0f 11 9/10/20, 10:23 AM

02-DA Numpy array maths file:///home/marie/Documents/github_accounts/...

2. Mathematics with arrays

One of the great advantages of Numpy arrays is that they allow one to very easily apply mathematical operations to entire
arrays effortlessly. We are presenting here 3 ways in which this can be done.

In [1]: import numpy as np

2.1 Simple calculus

To illustrate how arrays are useful, let's first consider the following problem. You have a list:

In [2]: mylist = [1,2,3,4,5]

And now you wish to add to each element of that list the value 3. If we write:

In [3]: mylist + 3

TypeError Traceback (most recent call last)
<ipython-input-3-ecae2962d7bl> in <module>
----> 1 mylist + 3

TypeError: can only concatenate list (not "int") to list

We receive an error because Python doesn't know how to combine a list with a simple integer. In this case we would have
to use a for loop or a comprehension list, which is cumbersome.

In [4]: [x + 3 for x in mylist]
Out[4]: [4, 5, 6, 7, 8]

Let's see now how this works for an array:
In [5]: myarray = np.array(mylist)

In [6]: myarray + 3
Out[6]: array([4, 5, 6, 7, 8])

Numpy understands without trouble that our goal is to add the value 3 to each element in our list. Naturally this is
dimension independent e.g.:

In [7]: my2d _array = np.ones((3,6))
my2d _array

Out[7]: array([[1., 1., 1., 1., 1.,
(1., 1., 1., 1., 1.,
[1., 1., 1., 1., ,

]

1of5 9/10/20, 10:24 AM

02-DA Numpy array maths file:///home/marie/Documents/github_accounts/...

In [8]: my2d array + 3

Out[8]: array([[4., 4., 4., 4., 4.
(4., 4., 4., 4., 4.
(4., 4., 4., 4., 4

S~ bh s

’ ’
’ ’
L] ’])

Of course as long as we don't reassign this new state to our variable it remains unchanged:

In [9]: my2d array

Out[9]: array([[1., 1., 1., 1., 1., 1.1,
[r., 1., 1., 1., 1., 1.1,
(., 1., 1., 1., 1., 1.11)

We have to write:

In [10]: my2d array = my2d array + 3

In [11]: my2d array

Out[11]: array([[4., 4., 4., 4., 4., 4.],
[4'I 4" 4" 4'I 4'I 4']'
(4., 4., 4., 4., 4., 4.11)

Naturally all basic operations work:

In [12]: my2d array * 4

Out[12]: array([[16., 16., 16., 16., 16., 16.],
[16., 16., 16., 16., 16., 16.1,
[16., 16., 16., 16., 16., 16.11)

In [13]: my2d array / 5

Out[13]: array([[0.8, 0.8, 0.8, 0.8, 0.8, 0.8],
[0.8, 0.8, 0.8, 0.8, 0.8, 0.81],
[0.8, 0.8, 0.8, 0.8, 0.8, 0.8]])

In [14]: my2d array ** 5

Out[14]: array([[1024., 1024., 1024., 1024., 1024., 1024.],
[1024., 1024., 1024., 1024., 1024., 1024.],
[1024., 1024., 1024., 1024., 1024., 1024.]1])

2.2 Mathematical functions

In addition to simple arithmetic, Numpy offers a vast choice of functions that can be directly applied to arrays. For example
trigonometry:

In [15]: np.cos(myarray)
Out[15]: array([0.54030231, -0.41614684, -0.9899925 , -0.65364362, 0.28366219])

Exponentials and logs:

20f5 9/10/20, 10:24 AM

02-DA Numpy array maths file:///home/marie/Documents/github_accounts/...

In [16]: np.exp(myarray)

Out[16]: array([2.71828183, 7.3890561 , 20.08553692, 54.59815003,

148.4131591])

In [17]: np.loglO(myarray)

Out[17]: array([0. , 0.30103 , 0.47712125, 0.60205999, 0.69897

2.3 Logical operations

If we use a logical comparison on a regular variable, the output is a boolean (True or False) that describes the outcome of

the comparison:

In [18]: a =3
b =2
a>3

Out[18]: False

We can do exactly the same thing with arrays. When we added 3 to an array, that value was automatically added to each
element of the array. With logical operations, the comparison is also done for each element in the array resulting in a

boolean array:

In [19]: myarray = np.zeros((4,4))
myarray[2,3] =1
myarray

Out[19]: array([[O.,
[0'1
[O'I
[e.,

[cRNoNo]

[cNoNoNo]
[cNoNoNo]

In [20]: myarray > 0

Out[20]: array([[False, False, False, False],
[False, False, False, Falsel],
[False, False, False, Truel,
[False, False, False, False]l)

Exactly as for simple variables, we can assign this boolean array to a new variable directly:
In [21]: myboolean = myarray > 0

In [22]: myboolean

Out[22]: array([[False, False, False, False],
[False, False, False, Falsel],
[False, False, False, True],
[False, False, False, Falsell)

2.4 Methods modifying array dimensions

30f5

9/10/20, 10:24 AM

02-DA Numpy array maths file:///home/marie/Documents/github_accounts/...

The operations described above were applied element-wise. However sometimes we need to do operations either at the
array level or some of its axes. For example, we need very commonly statistics on an array (mean, sum etc.)

In [23]: nd_array = np.random.normal(10, 2, (3,4))
nd_array

Out[23]: array([[8.22235922, 10.86316749, 8.97190654, 12.16211971],
[11.31745909, 9.80774793, 11.2873836 , 6.77945745],
[10.20776894, 8.78011512, 6.96723135, 11.77819806]1])

In [24]: np.mean(nd_array)

Out[24]: 9.762076209457817

In [25]: np.std(nd _array)

Out[25]: 1.747626512794281
Or the maximum value:

In [26]: np.max(nd array)

Out[26]: 12.162119714449235

Note that several of these functions can be called as array methods instead of numpy functions:

In [27]: nd_array.mean()

Out[27]: 9.762076209457817
In [28]: nd_array.max()
Out[28]: 12.162119714449235
Note that most functions can be applied to specific axes. Let's remember that our arrays is:
In [29]: nd_array
Out[29]: array([[8.22235922, 10.86316749, 8.97190654, 12.16211971],

[11.31745909, 9.80774793, 11.2873836 , 6.77945745],
[10.20776894, 8.78011512, 6.96723135, 11.77819806]1)

We can for example do a maximum projection along the first axis (rows): the maximum value of eadch column is kept:
In [30]: proj0® = nd _array.max(axis=0)
projo
Out[30]: array([11.31745909, 10.86316749, 11.2873836 , 12.16211971])

In [31]: proj0.shape
Out[31]: (4,)

We can of course do the same operation for the second axis:

40f5 9/10/20, 10:24 AM

02-DA Numpy array maths file:///home/marie/Documents/github_accounts/...

In [32]: projl = nd_array.max(axis=1)
projl

Out[32]: array([12.16211971, 11.31745909, 11.77819806])
In [33]: projl.shape

out[33]: (3,)

There are of course more advanced functions. For example a cumulative sum:

In [34]: np.cumsum(nd array)

Out[34]: array([8.22235922, 19.08552671, 28.05743325, 40.21955296,
51.53701205, 61.34475998, 72.63214358, 79.41160103,
89.61936998, 98.3994851 , 105.36671645, 117.14491451])

50f5 9/10/20, 10:24 AM

03-DA Numpy matplotlib file:///home/marie/Documents/github_accounts/...

3. Plotting arrays

Arrays can represent any type of numeric data, typical examples being e.g. time-series (1D), images (2D) etc. Very often it
is helpful to visualize such arrays either while developing an analysis pipeline or as an end-result. We show here briefly
how this visualization can be done using the Matplotlib library. That library has extensive capabilities and we present here
a minimal set of examples to help you getting started. Note that we will see other libraries when exploring Pandas in the
next chapters that are more specifically dedicated to data science.

All the necessary plotting functions reside in the pyplot module of Matplotlib. plt contains for example all the
functions for various plot types:

e plot animage: plt.imshow()
e line plot: plt.plot

« plot a histogram: plt.hist()
- efc.

Let's import it with it's standard abbreviation plt (as well as numpy):

In [1]: import matplotlib.pyplot as plt
import numpy as np

3.1 Data

We will use here Numpy to generate synthetic data to demonstrate plotting. We create an array for time, and then
transform that array with a sine function. Finally we make a second version where we add some noise to the data:

In [2]: | # time array
time = np.arange(0,20,0.5)
sine function
time series = np.sin(time)
sine function plus noise
time_series noisy = time_series + np.random.normal(0,0.5,len(time_series))

3.2 General concepts

We are going to see in the next sections a few example of important plots and how to customize them. However we start
here by explaining here the basic concept of Matplotlib using a simple line plot (see next section for details on line plot).

3.2.1 One-line plot

The simplest way to create a plot, is just to directly call the relevant function, e.g. plt.plot() for a line plot:

10f12 9/10/20, 10:23 AM

03-DA Numpy matplotlib file:///home/marie/Documents/github_accounts/...

In [3]: plt.plot(time_series);

100 1

0.75 1
0.50 1

0.00 1
-0.25 1
-0.50 1
-0.75 1

-1.00 1

If we need to plot multiple datasets one the same plot, we can just keep adding plots on top of each other:

In [4]: plt.plot(time_series);
plt.plot(time_series noisy);

A M
o1 [\
ERYAVAY

As you can see Matplotlib automatically knows that you want to combine different signals, and by default colors them.
From here, we can further customize each plot individually, but we are very quickly going to see limits for how to adjust the
figure settings. What we really need here is a handle for the figure and each plot.

3.2.2 Object-based plots

In order to gain more control on the plot, we need to gain control on the elements that constitute it. Those are:

e The Figure object which contains all elements of the figure
« The Axes object, the actual plots that belong to a figure object

We can gain this control by explicity creating these objects via the subplots() function which returns a figure and an
axis object:

20f12 9/10/20, 10:23 AM

03-DA Numpy matplotlib file:///home/marie/Documents/github_accounts/...

In [5]: fig, ax = plt.subplots()

10

0.8

0.6 1

0.4 1

0.2 1

0.0 T T T T
0.0 0.2 04 0.6 08 10

We see that we just get an empty figure with axes that we should now fill. For example the ax object can create an
image plot on its own:

In [6]: fig, ax = plt.subplots()
ax.plot(time series);

-0.25 1
-0.50 1
-0.75 1

-1.00 1

We can go further and customize other elements of the plot. Again, this is only possible because we have reference to the
"plot-objects". For example we can add labels:

3of12 9/10/20, 10:23 AM

03-DA Numpy matplotlib

4 0f12

In [7]: fig, ax

file:///home/marie/Documents/github_accounts/...

plt.subplots()

plt.plot(time_series);

ax.set xlabel('Time")

set ylabel('Amplitude');
set title('Sine function');

ax.
ax.

Amplitude

0.75 1
0.50 1
0.25
0.00 A
-0.25 1
-0.50 1
-0.75 1

-1.00 1

Sine function

We can also superpose multiple plots. As we want all of them to share the same axis, we use the same ax reference.
For example we can add a line plot:

In [8]: fig, ax

ax

ax.
ax.
ax.
ax.

Amplitude

And finally we can export our image as an independent picture using the fig reference:

plt.subplots()

.plot(time series);

15 |

10 A1

05 1

0.0 1

plot(time _series noisy);
set xlabel('Time")

set _ylabel('Amplitude');
set title('Sine function');

Sine function

YAYAY

In [9]: fig.savefig('My first plot.png')

3.2.3 Grids

Using the sort of syntax described above it is very easy to crate complex plots with multiple panels. The simplest solution
is to specify a grid of plots when creating the figure using plt.subplots() . This provides a list of Axes objects, each
corresponding to one element of the grid:

9/10/20, 10:23 AM

03-DA Numpy matplotlib file:///home/marie/Documents/github_accounts/...

In [10]: fig, ax = plt.subplots(2,2)

100 100

0.75 1 0.75 1

0.50 - 10.50 1

0.25 10.25 1

0.00 T T T T .00 T T T T
10000 02 04 06 08 1,97000,0 02 04 06 08 10
0.75 0.75 1

0.50 - 0.50 1

0.25 10.25 1

0.00 T T T

T .00 T T T T
00 02 04 06 08 10 00 02 04 06 08 10

Here ax is now a 2D numpy array whose elements are Axis objects:

In [11]: type(ax)

Out[11]: numpy.ndarray

In [12]: ax.shape
Qut[12]: (2, 2)

We access each element of the ax array like a regular list and use them to plot:

50f12 9/10/20, 10:23 AM

03-DA Numpy matplotlib file:///home/marie/Documents/github_accounts;/...

In [13]: # we create additional data
time_series noisy2 = time_series + np.random.normal(0,1,len(time_series))# ¢
reate figure with 2x2 subplots
time series noisy3 = time series + np.random.normal(0,1.5,len(time series))#
create figure with 2x2 subplots

create the figure and axes
fig, ax = plt.subplots(2,2, figsize=(10,10))

fill each subplot

ax[0,0].plot(time, time series);
ax[0,1].plot(time, time_series noisy);
ax[1,0].plot(time, time series noisy2);

in the last plot, we combined all plots
ax[1l,1].plot(time, time_ series);
ax[1l,1].plot(time, time_series noisy);
ax[1l,1].plot(time, time series noisy2);

we can add titles to subplots
ax[0,0].set_title('Time series')
ax[0,1].set_title('Time series + noise 1')
ax[1,0].set title('Time series + noise 2')
ax[1l,1].set title('Combined');

Time series Time series + noise 1
100 1
15 1
0.75 1
10 1
0.50 A
0.25 031
0.00 A 0.0 1
-0.25 1 -0.5
-0.50 1
_10 .
-0.75 1
-15
-1.00 1
0 5 10 15 20 0 5 10 15 20
Time series + noise 2 Combined
2 2
1 11
0 0
|
-1 1 -1 1
_2 - _2 4
0 10 15 20 0 5 10 15 20

An alternative is to use add subplot . Here we only create a figure, and progressively add new subplots in a pre-
determined grid. This variant is useful when programmatically creating a figure, as it easily allows to create plots in a loop:

6 of 12 9/10/20, 10:23 AM

03-DA Numpy matplotlib

7 of 12

In [14]: | # create a figure

fig = plt.figure(figsize=(7,7))
for x in range(1l,5):
add subplot and create an axis
ax = fig.add subplot(2,2,x)
plot the histogram in the axis

ax.plot(time, time_series + np.random.normal(0,x/10, len(time)))

customize axis

ax.set title(f'Noise: {x/10}')

file:///home/marie/Documents/github_accounts;/...

Noise: 0.1 Noise: 0.2
10 1 10 |
05 4 05 -
0.0 1 0.0
-0.5 -05
-1.0 1 -1.0 1
0 5 10 15 20 0 5 10 15 20
Noise: 0.3 Noise: 0.4
15
10 A 10 -
05 4 05
0.0 1 0.0
-0.5
-0.5
-1.0
-1.0 1
-15
0 5 10 15 20 0 5 10 15 20

3.3 Plot types

There is an extensive choice of plot types available in Matplotlib. Here we limit the presentation to the three most common

ones: line plot, histogram and image.

3.3.1 Line plot

We have already seen line plots above, but we didn't customize the plot itself. A 1D array can simply be plotted by using:

In [15]: plt.plot(time_series);

100 A1
0.75 1
0.50 A1
0.25 1
0.00 A1
-0.25 1
-0.50 1

-0.75 1

-1.00 1

o
v
=
o

9/10/20, 10:23 AM

03-DA Numpy matplotlib file:///home/marie/Documents/github_accounts;/...

This generates by default a line plot where the x-axis simply uses the array index and the array itself is plotted as y-axis.
We can explicitly specify the x-axis by passing first x-axis array, here the time array:

In [16]: plt.plot(time, time series);

-0.25 1
-0.50 1
-0.75 1

-1.00 1

T T T T T

0.0 25 5.0 75 100 125 150 175 200

Each Matplotlib plot can be extensively customized. We only give here a few examples of what can be done. For example,
we can change the plot color (for a list of named colors see here (https://matplotlib.org/3.1.0/gallery/color
/named_colors.html)), and add markers (for a list of markers see here (htips:/matplotlib.org/3.1.1/api/markers_api.html)):

In [17]: plt.plot(time, time series, color='red', marker='0');

Conveniently, several of this styling options can be added in a short form. In this example we can specify that we want a
line (-), markers (0) and the colorred (r) using -or :

8 of 12 9/10/20, 10:23 AM

03-DA Numpy matplotlib file:///home/marie/Documents/github_accounts;/...

In [18]: plt.plot(time, time series, '-or');

100 1
0.75 1
0.50 1
0.25 1
0.00 A1
-0.25 1
-0.50 1
-0.75 1
-1.00 1

0.0 25 5.0 75 100 125 150 175 200

Of course if the data are not representing a continuous signal but just a cloud of points, we can skip the line argument to
obtain a scatter plot. You can also directly use the plt.scatter() function:

In [19]: plt.plot(time, time series, '0');
plt.plot(time, time series noisy,

0');

154
10 o ® °®® 0e°
L]
051 @ ° e o
[+)
00] ® ¢ ° O °

-0.5 o o8 o ®

3.3.2 Histogram

To get an idea of the contents of an array, it is very common to plot a histogram of it. This can be done with the
plt.hist() function:

In [20]: plt.hist(time series);

0.
-1.00 -0.75 -050 -0.25 000 025 050 075 100

9o0f12 9/10/20, 10:23 AM

03-DA Numpy matplotlib file:///home/marie/Documents/github_accounts;/...

Matplotlib selects bins for you, but most of the time you'll want to change those. The simplest is just to specify all bins
using np.arange() :

In [21]: plt.hist(time series, bins = np.arange(-1,1,0.1));

0.
-100 -0.75 -050 -025 000 025 050 075

Just like for line plots, you can superpose histograms. However they will overlap, so you may want to fix the transparency
of the additional layers with the alpha parameter:

In [22]: plt.hist(time series, bins = np.arange(-1,1,0.25));
plt.hist(time series noisy, bins = np.arange(-1,1,0.25), alpha = 0.5);

0_
-100 -075 -050 -025 000 025 050 0.75

And also as demonstrated before you can adjust the settings of your figure, by creating figure and axis objects:

10 of 12 9/10/20, 10:23 AM

03-DA Numpy matplotlib file:///home/marie/Documents/github_accounts;/...

In [23]: fig, ax = plt.subplots()
ax.hist(time_series, bins = np.arange(-1,1,0.25));
ax.hist(time series noisy, bins = np.arange(-1,1,0.25), alpha = 0.5);
ax.set xlabel('Value')
ax.set ylabel('Counts');
ax.set title('Sine function');

Sine function

Counts

0.
-100 -0.75 -050 -025 000 0.25 0.50 0.75
Value

3.3.4 Image plot

Finally, we often need to look at 2D arrays. These can of course be 2D functions but most of the time they are images. We
can again create synthetic data with Numpy. First we create a two 2D grids that contain the x,y indices of each element:

In [24]: xindices, yindices = np.meshgrid(np.arange(20), np.arange(20))

Then we can crete an array that contains the euclidian distance from a given pointd = ((z — z0)? + (y — v0)?)"/?

In [25]: centerpoint = [5,8]
dist = ((xindices - centerpoint[0])**2 + (yindices - centerpoint[1])**2)**0.
5

If we want to visualize this array, we can then use plt.imshow() :

In [26]: plt.imshow(dist);

0.0
25
5.0
75
10.0
125

150

11 of 12 9/10/20, 10:23 AM

03-DA Numpy matplotlib file:///home/marie/Documents/github_accounts;/...

Like the other functions plt.imshow() has numerous options to adjust the image aspect. For example one can change
the default colormap, or the aspect ratio of the image:

In [27]: plt.imshow(dist, cmap='Reds', aspect=0.7);

0.0
25
50
75
10.0
125

15.0

0.0 25 5.0 75 100 125 150 175

Finally, one can mix different types of plot. We can for example add our line plot from the beginning on top of the image:

In [28]: plt.imshow(dist)
plt.plot(time, time series, color = 'r')

Out[28]: [<matplotlib.lines.Line2D at 0x113adel00>]

0.0
25
5.0
75
10.0
125
150

12 of 12 9/10/20, 10:23 AM

04-DA Numpy indexing file:///home/marie/Documents/github_accounts;/...

4. Indexing, slicing

Each element of an array can be located by its position in each dimension. Numpy offers multiple ways to access single
elements or groups of elements in very efficient ways. We will illustrate these concepts both with small simple matrices as
well as a regular image, in order to illustrate them.

In [1]: dimport numpy as np
import matplotlib.pyplot as plt
plt.gray();
import skimage

<Figure size 432x288 with 0 Axes>

We first load an image included in the scikit-image package:

In [2]: image = skimage.data.chelsea()
plt.imshow(image);

0
50
100
150
200

250

We can check the dimensions of the image and see that it is an RGB image with 3 channels:

In [3]: image.shape

Out[3]: (300, 451, 3)

4.1 Accessing single values

We create a small 2D array to use as an example:

In [4]: normal array = np.random.normal(10, 2, (3,4))
normal_array

Out[4]: array([[12.99205086, 7.7157832 , 14.66021898, 8.21412356],
[9.19391119, 7.92142871, 13.31222213, 8.19957688],
[11.08009573, 8.54243953, 12.71096417, 10.096377611])

It is very easy to access an array's values. One can just pass an index for each dimensions. For example to recover the
value on the last row and second column of the normal_array array we just write (remember counting starts at 0):

10f10 9/10/20, 10:24 AM

04-DA Numpy indexing

In [5]: single value = normal array[2,1]
single value

Out[5]: 8.542439525354693

What is returned in that case is a single number that we can re-use:
In [6]: single value += 10
single value

Out[6]: 18.542439525354695

And that change doesn't affect the original value in the array:

In [7]: normal_array

Out[7]: array([[12.99205086, 7.7157832 , 14.66021898, 8.21412356],
[9.19391119, 7.92142871, 13.31222213, 8.19957688],
[11.08009573, 8.54243953, 12.71096417, 10.09637761]1)

However we can also directly change the value in an array:
In [8]: normal array[2,1] = 23

In [9]: normal_array

Out[9]: array([[12.99205086, 7.7157832 , 14.66021898, 8.21412356],
[9.19391119, 7.92142871, 13.31222213, 8.19957688],
[11.08009573, 23. , 12.71096417, 10.096377611])

4.2 Accessing part of an array with indices: slicing

4.2.1 Selecting a range of elements

One can also select multiple elements in each dimension (e.g. multiple rows and columns in 2D) by using the
start:end:step syntax. By default, if omitted, start=0, end=last element and step=1 . For example to
select the first and second rows of the first column, we can write:

In [10]: normal array[0:2,0]
Out[10]: array([12.99205086, 9.19391119])

Note that the end element is not included. One can use the same notation for all dimensions:

In [11]: normal_array[0:2,2:4]

Out[11]: array([[14.66021898, 8.21412356],
[13.31222213, 8.19957688]1])

In [12]: normal array[l:,2:4]

Out[12]: array([[13.31222213, 8.19957688],
[12.71096417, 10.09637761]1])

file:///home/marie/Documents/github_accounts/...

9/10/20, 10:24 AM

04-DA Numpy indexing file:///home/marie/Documents/github_accounts/...

4.2.2 Selecting all elements

If we only specify : , it means we want to recover all elements in that dimension:
In [13]: normal array[:,2:4]
Out[13]: array([[14.66021898, 8.21412356],

[13.31222213, 8.19957688],
[12.71096417, 10.096377611])

Also in general, if you only specify the value for a single axis, this will take the first element of the first dimension:
In [14]: normal_array
Out[14]: array([[12.99205086, 7.7157832 , 14.66021898, 8.21412356],

[9.19391119, 7.92142871, 13.31222213, 8.19957688],
[11.08009573, 23. , 12.71096417, 10.096377611])

In [15]: normal _array[1]
Out[15]: array([9.19391119, 7.92142871, 13.31222213, 8.19957688])

Finally note that if you want to recover only one element along a dimension (single row, column etc), you can do that in two
ways:

In [16]: normal array[O,:]
Out[16]: array([12.99205086, 7.7157832 , 14.66021898, 8.21412356])

This returns a one-dimensional array containing a single row from the original array:

In [17]: normal _array[0,:].shape
Out[17]: (4,)

Instead, if you specify actual boundaries that still return only a single row:

In [18]: normal array[0:1,:]
Out[18]: array([[12.99205086, 7.7157832 , 14.66021898, 8.21412356]])

In [19]: normal _array[0:1,:].shape
Out[19]: (1, 4)

you recover a tow dimensional array where one of the dimensions has a size of 1.

4.2.3 lllustration on an image

We can for example only select half the rows of the image but all columns and channels:

30f10 9/10/20, 10:24 AM

04-DA Numpy indexing file:///home/marie/Documents/github_accounts;/...

In [20]: image.shape
Out[20]: (300, 451, 3)

In [21]: sub_image = image[0:150,:,:]
plt.imshow(sub _image);

Or we can take every fith column and row from a single channel, which returns a pixelated version of the original image:

In [22]: plt.imshow(image[::5,::5,0]);

4.3 Sub-arrays are not copies!

As often with Python when you create a new variable using a sub-array, that variable is not independent from the original
variable:

In [23]: sub _array = normal_array[:,2:4]
In [24]: sub array
Out[24]: array([[14.66021898, 8.21412356],

[13.31222213, 8.19957688],
[12.71096417, 10.09637761]1])

In [25]: normal_array
Out[25]: array([[12.99205086, 7.7157832 , 14.66021898, 8.21412356],

[9.19391119, 7.92142871, 13.31222213, 8.19957688],
[11.08009573, 23. , 12.71096417, 10.09637761]1])

If for example we modify normal_array , this is going to be reflected in sub_array too:

In [26]: normal_array[0,2] = 100

40f10 9/10/20, 10:24 AM

04-DA Numpy indexing

file:///home/marie/Documents/github_accounts/...

In [27]: normal_array

Out[27]: array([[12.99205086, 7.7157832 , 100. , 8.21412356],
[9.19391119, 7.92142871, 13.31222213, 8.19957688],
[11.08009573, 23. , 12.71096417, 10.09637761]1])

In [28]: sub_array

Out[28]: array([[100. , 8.21412356],

[13.31222213,
[12.71096417,

The converse is also true:

8.19957688],
10.0963776111])

In [29]: sub_array[0,1] = 50

In [30]: sub array

Out[30]: array([[160. , 50. 1,
[13.31222213, 8.199576881,
[12.71096417, 10.0963776111])

In [31]: normal _array

Out[31]: array([[12.99205086, 7.7157832 , 100. , 50. 1,
[9.19391119, 7.92142871, 13.31222213, 8.19957688],
[11.08009573, 23. , 12.71096417, 10.09637761]11])

If you want your sub-array to be an independent copy of the original, you have to use the .copy() method:

In [32]: sub _array copy = normal array[1:3,:].copy()

In [33]: sub_array copy

Out[33]: array([[9.19391119, 7.92142871, 13.31222213, 8.19957688],
[11.08009573, 23. , 12.71096417, 10.09637761]11])

In [34]: sub array copy[0,0] = 500

In [35]: sub_array copy

Out[35]: array([[500. , 7.92142871, 13.31222213, 8.19957688],
[11.08009573, 23. , 12.71096417, 10.096377611])

In [36]: normal_array

Out[36]: array([[12.99205086, 7.7157832 , 100. , 50. 1,
[9.19391119, 7.92142871, 13.31222213, 8.19957688],
[11.08009573, 23. , 12.71096417, 10.09637761]1])

4.4. Accessing parts of an array with coordinates

In the above case, we are limited to select rectangular sub-regions of the array. But sometimes we want to recover a series
of specific elements for example the elements (row=0, column=3) and (row=2, column=2). To achieve that we can simply
index the array with a list containing row indices and another with columns indices:

50f10 9/10/20, 10:24 AM

04-DA Numpy indexing

6 0of 10

[0,2]
[3.2]

In [37]: row indices
col _indices

normal array[row indices, col indices]

Out[37]: array([50. , 12.71096417])

In [38]: normal_array

Out[38]: array([[12.99205086, 7.7157832 , 100. , 50. 1,
[9.19391119, 7.92142871, 13.31222213, 8.19957688],
[11.08009573, 23. , 12.71096417, 10.09637761]1])

In [39]: selected elements = normal_array[row indices, col indices]

In [40]: selected elements

Out[40]: array([50. , 12.71096417])

4.5 Logical indexing

The last way of extracting elements from an array is to use a boolean array of same shape. For example let's create a
boolean array by comparing our original matrix to a threshold:

In [41]: bool array = normal_array > 40
bool array

Out[41]: array([[False, False, True, True],
[False, False, False, False],
[False, False, False, Falsell)

We see that we only have two elements which are above the threshold. Now we can use this logical array to index the

original array. Imagine that the logical array is a mask with holes only in True positions and that we superpose it to the

original array. Then we just take all the values visible in the holes:

In [42]: normal_array[bool array]

Out[42]: array([100., 50.])

Coming back to our real image, we can for example first create an image that contains a single channel and then find
bright regions in it:

9/10/20, 10:24 AM

file:///home/marie/Documents/github_accounts/...

04-DA Numpy indexing file:///home/marie/Documents/github_accounts/...

In [43]: single channel = imagel[:,:,0]
mask = single_channel > 150
plt.imshow(mask);

50
100
150
200

250

And now we can recover all the pixels that are "selected" by this mask:

In [44]: single channel[mask]
Out[44]: array([152, 152, 154, ..., 161, 161, 162], dtype=uint8)

4.6 Reshaping arrays

Often it is necessary to reshape arrays, i.e. keep elements unchanged but change their position. There are multiple
functions that allow one to do this. The main one is of course reshape .

4.6.1 reshape
Given an array of Mz N elements, one can reshape it with a shape Ox P aslongas M * N = O x P.
In [45]: reshaped = np.reshape(normal _array,(2,6))
reshaped
Out[45]: array([[12.99205086, 7.7157832 , 100. , 50. ,
9.19391119, 7.92142871],

[13.31222213, 8.19957688, 11.08009573, 23. ,
12.71096417, 10.09637761]1])

In [46]: reshaped.shape
Out[46]: (2, 6)

In [47]: 300*451/150
Qut[47]: 902.0

With the image as example, we can reshape the array from 300245123 to 1502902x3:

7 of 10 9/10/20, 10:24 AM

04-DA Numpy indexing file:///home/marie/Documents/github_accounts;/...

In [48]: plt.imshow(np.reshape(image, (150,902,3)))
Out[48]: <matplotlib.image.AxesImage at 0x11a925d60>

4.6.2 Flattening

It's also possible to simply flatten an array i.e. remove all dimensions to create a 1D array. This can be useful for example
to create a histogram of a high-dimensional array.

In [49]: flattened = np.ravel(normal array)

flattened
Out[49]: array([12.99205086, 7.7157832 , 100. , 50, ,
9.19391119, 7.92142871, 13.31222213, 8.19957688,
11.08009573, 23. , 12.71096417, 10.096377611])

In [50]: flattened.shape
Out[50]: (12,)

4.6.3 Dimension collapse

Another common way that leads to reshaping is projection. Let's consider again our normal_array :

In [51]: normal_array

Out[51]: array([[12.99205086, 7.7157832 , 100. , 50. 1,
[9.19391119, 7.92142871, 13.31222213, 8.199576881,
[11.08009573, 23. , 12.71096417, 10.09637761]1])

We can project all values along the first or second axis, to recover for each row/column the largest value:
In [52]: proj0® = np.max(normal array, axis = 0)
projo
Out[52]: array([12.99205086, 23. , 100. , 50. 1)
In [53]: proj0.shape

Out[53]: (4,)

We see that our projected array has lost a dimension, the one along which we performed the projection. With the image,
we could project all channels along the third dimension:

8 of 10 9/10/20, 10:24 AM

04-DA Numpy indexing file:///home/marie/Documents/github_accounts;/...

In [54]: plt.imshow(image.max(axis=2));

100
150
200

250

4.6.4 Swaping dimensions

We can also simply exchange the position of dimensions. This can be achieved in different ways. For example we can
np.roll dimensions, i.e. circularly shift dimensions. This conserves the relative oder of all axes:

In [55]: array3D = np.ones((4, 10, 20))
array3D.shape

Out[55]: (4, 10, 20)

In [56]: array_rolled = np.rollaxis(array3D, axis=1, start=0)
array_rolled.shape

Out[56]: (10, 4, 20)

Alternatively you can swap two axes. This doesn't preserver their relative positions:
In [57]: array_swapped = np.swapaxes(array3D, 0,2)
array_swapped.shape

Out[57]: (20, 10, 4)

With the image, we can for example swap the two first axes:
In [58]: plt.imshow(np.swapaxes(image, 0, 1));
0 —
100
200

300

400

90f 10 9/10/20, 10:24 AM

04-DA Numpy indexing file:///home/marie/Documents/github_accounts;/...

4.6.5 Change positions

Finally, we can also change the position of elements without changing the shape of the array. For example if we have an

array with two columns, we can swap them:

In [59]: array2D = np.random.normal(0,1,(4,2))
array2D

Out[59]: array([[1.69380702, 0.45317243],
[6.97985485, -1.10186616],
[2.16001609, 0.29160533],
[-0.29204481, -0.80523649]1])

In [60]: np.fliplr(array2D)

Out[60]: array([[0.45317243, 1.69380702],
[-1.10186616, 0.97985485],
[0.29160533, 2.16001609],
[-0.80523649, -0.29204481]1])

Similarly, if we have two rows:

In [61]: array2D = np.random.normal(0,1,(2,4))
array2D

Out[61]: array([[-0.00285876, 0.76241924, 1.18546015, -0.13881594],
[-1.42554951, 0.36561497, 0.73252833, -1.43307846]])

In [62]: np.flipud(array2D)

Out[62]: array([[-1.42554951, 0.36561497, 0.73252833, -1.43307846],
[-0.00285876, 0.76241924, 1.18546015, -0.13881594]1])

For more complex cases you can also use the more general np.flip() function.

With the image, flipping a dimension just mirrors the picture. To do that we select a single channel:

In [63]: plt.imshow(np.flipud(image[:,:,0]1));

10 of 10

9/10/20, 10:24 AM

05-DA Numpy combining arrays file:///home/marie/Documents/github_accounts/...

5. Combining arrays

We have already seen how to create arrays and how to modify their dimensions. One last operation we can do is to
combine multiple arrays. There are two ways to do that: by assembling arrays of same dimensions (concatenation,
stacking etc.) or by combining arrays of different dimensions using broadcasting. Like in the previous chapter, we illustrate
with small arrays and a real image.

In [1]: import numpy as np
import matplotlib.pyplot as plt
import skimage
plt.gray();
image = skimage.data.chelsea()

<Figure size 432x288 with 0 Axes>

5.1 Arrays of same dimensions
Let's start by creating a few two 2D arrays:
In [2]: arrayl

array2
array3

np.ones((10,5))
2*np.ones((10,3))
3*np.ones((10,5))

5.1.1 Concatenation

The first operation we can perform is concatenation, i.e. assembling the two 2D arrays into a larger 2D array. Of course we

have to be careful with the size of each dimension. For example if we try to concatenate arrayl and array2 along
the first dimension, we get:

In [3]: np.concatenate([arrayl, array2])

ValueError Traceback (most recent call last)
<ipython-input-3-580de54a6ac0> in <module>

----> 1 np.concatenate([arrayl, array2])

< array function_ _ internals> in concatenate(*args, **kwargs)

ValueError: all the input array dimensions for the concatenation axis must ma

tch exactly, but along dimension 1, the array at index 0 has size 5 and the a
rray at index 1 has size 3

Both array have 10 lines, but one has 3 and the other 5 columns. We can therefore only concatenate them along the
second dimensions:

In [4]: array conc = np.concatenate([arrayl, array2], axis = 1)

In [5]: array_conc.shape

Out[5]: (10, 8)

1o0f8 9/10/20, 10:21 AM

05-DA Numpy combining arrays file:///home/marie/Documents/github_accounts;/...

In [6]: plt.imshow(array conc, cmap = 'gray');

If we now use our example of real image, we can for example concatenate the two first channels of our RGB image:

In [7]: plt.imshow(np.concatenate([image[:,:,0], imagel:,:,1]11));

In [8]: plt.imshow(np.concatenate([image[:,:,0], image[:,:,1]], axis=1l));

5.1.2 Stacking

If we have several arrays with exact same sizes, we can also stack them, i.e. assemble them along a new dimension. For
example we can create a 3D stack out of two 2D arrays:

In [9]: array_stack = np.stack([arrayl, array3])

In [10]: array_stack.shape
OQut[10]: (2, 10, 5)

20f8 9/10/20, 10:21 AM

05-DA Numpy combining arrays file:///home/marie/Documents/github_accounts;/...

We can select the dimension along which to stack, again by using the axis keyword. For example if we want our new
dimensions to be the third axis we can write:

In [11]: array_stack = np.stack([arrayl, array3], axis = 2)

In [12]: array_stack.shape
Out[12]: (10, 5, 2)

With our real image, we can for example stack the different channels in a new order (note that one could do that easily
with np.swapaxis):

In [13]: image stack = np.stack([image[:,:,2], image[:,:,0], image[:,:,1]], axis=2)
In [14]: plt.imshow(image_stack);

0

50

100

150

200

250

As we placed the red channel, which has the highest intensity, at the position of the green one (second position) our image
now is dominated by green tones.

5.2 Arrays of different dimensions

5.2.1 Broadcasting

Numpy has a powerful feature called broadcasting. This is the feature that for example allows you to write:

In [15]: 2 * arrayl

Out[15]: array([[2.
[2.
[2.
[2.
[2.
[2.
[2.
[2.
[2.
[2.

MuNERN NS
MuNENN NS
MuNpNN NS
eIty

—_~s v~ s s~ S~ N~ 0~~~

30f8 9/10/20, 10:21 AM

05-DA Numpy combining arrays file:///home/marie/Documents/github_accounts/...

Here we just combined a single number with an array and Numpy re-used or broadcasted the element with less
dimensions (the number 2) across the entire arrayl . This does not only work with single numbers but also with arrays
of different dimensions. Broadcasting can become very complex, so we limit ourselves here to a few common examples.

The general rule is that in an operation with arrays of different dimensions, missing dimensions or dimensions of size 1
get repeated to create two arrays of same size. Note that comparisons of dimension size start from the last dimensions.
For example if we have a 1D array and a 2D array:

In [16]: arraylD = np.arange(4)
arraylD

Out[16]: array([0, 1, 2, 3])

In [17]: array2D = np.ones((6,4))
array2D

Out[17]: array([[1.
[1.
[1.
[1.
[1.
[1.

R
N
< <~ o~ o~ o~
[
P
. o~ o~ <~ o~

In [18]: arraylD * array2D

Out[18]: array([[O.
[0.
[0.
[0.
[0.
[0.

R
NNNNNN
wWwwwww
e e e e e

Here arraylD which has a single line got broadcasted over each line of the 2D array array2D . Note the the size of
each dimension is important. If arraylD had for example more columns, that broadcasting could not work:

In [19]: arraylD = np.arange(3)
arraylD
Out[19]: array([6, 1, 2])

In [20]: arraylD * array2D

ValueError Traceback (most recent call last)
<ipython-input-20-30434b67efb8> in <module>
----> 1 arraylD * array2D

ValueError: operands could not be broadcast together with shapes (3,) (6,4)

As mentioned above, dimension sizes comparison start from the last dimension, so for example if arraylD had a length
of 6, like the first dimension of array2D , broadcasting would fail:

In [21]: arraylD = np.arange(6)
arraylD.shape

out[211: (6,)

40f8 9/10/20, 10:21 AM

05-DA Numpy combining arrays file:///home/marie/Documents/github_accounts/...

In [22]: array2D.shape
out[22]: (6, 4)

In [23]: arraylD * array2D

ValueError Traceback (most recent call last)
<ipython-input-23-30434b67efb8> in <module>
----> 1 arraylD * array2D

ValueError: operands could not be broadcast together with shapes (6,) (6,4)

5.2.2 Higher dimensions

Broadcasting can be done in higher dimensional cases. Imagine for example that you have an RGB image with
dimensions Nz M z3. If you want to modify each channel independently, for example to rescale them, you can use
broadcasting. We can use again our real image:

In [24]: image.shape
Out[24]: (300, 451, 3)

In [25]: scale factor = np.array([0.5, 0.1, 11)
scale factor

Out[25]: array([0.5, 0.1, 1. 1)

50f8 9/10/20, 10:21 AM

05-DA Numpy combining arrays file:///home/marie/Documents/github_accounts/...

In [26]: rescaled image = scale factor * image
rescaled image

Out[26]: array([[[71.5, 12. , 104.
[71.5, 12. , 104.
[70.5, 11.8, 102.

[EN—

[22.5, 2.7, 13.
[22.5, 2.7, 13.

—_— e —
_— o~

[22.5 2.7, 13.

[t 73. , 12.3, 107. 1,
[72.5, 12.2, 166.],
[71.5, 12. , 104. 1,
[23. , 2.9, 13. 1],
[22.5, 2.9, 13. 1],
[23.5, 3., 14. 11,

[[74. , 12.6, 112.],
[73.5, 12.5, 111.],
[73. , 12.2, 109.],
i.éé. , 2.8, 17. 1],
[24.5, 2.9, 18. 1],
[25. , 3., 19. 11,

[[46. , 5.8, 30. 1,
[52.5, 7.1, 43. 1],
[66. , 9.8, 71.],
[86. , 14.5, 138. 1],
[86. , 14.5, 138.],
[86. , 14.5, 138. 11,

([64. , 9.2, 60.],
[69.5, 10.3, 71. 1],
[67. , 9.5, 64. 1],
[83. , 14.2, 132. 1,
[83. , 14.2, 132.],
[83.5, 14.3, 133. 1],

[[69.5, 10.3, 71. 1,
[63.5, 8.8, 57. 1,
[62.5, 8.6, 53. 1,
[80.5, 13.7, 127. 1,
[80.5, 13.7, 127. 1,
[81. , 13.8, 128.]11)

6 of 8 9/10/20, 10:21 AM

05-DA Numpy combining arrays file:///home/marie/Documents/github_accounts/...

In [27]: plt.imshow(rescaled image.astype(int))
Out[27]: <matplotlib.image.AxesImage at Ox1lleabbcd0>

0

50
100
150
200

250

Note that if we the image has the dimensions 3Nz M (RGB planes in the first dimension), we encounter the same
problem as before: a mismatch in size for the last dimension:

In [28]: image2 = np.rollaxis(image, axis=2)
image2.shape

Out[28]: (3, 300, 451)

In [29]: scale factor.shape

out[291: (3,)

In [30]: scale factor * image2

ValueError Traceback (most recent call last)
<ipython-input-30-7a7267773c9f> in <module>
----> 1 scale_factor * image2

ValueError: operands could not be broadcast together with shapes (3,) (3,300,
451)

5.2.3 Adding axes

As seen above, if we have a mismatch in dimension size, the broadcasting mechanism doesn't work. To salvage such
cases, we still have the possibility to add empty axes in an array to restore the matching of the non-empty dimension.

In the above example our arrays have the following shapes:

In [31]: image2.shape
Out[31]: (3, 300, 451)

In [32]: scale factor.shape

out[32]: (3,)

So we need to add two "empty" axes after the single dimension of scale factor :

7 of 8 9/10/20, 10:21 AM

05-DA Numpy combining arrays file:///home/marie/Documents/github_accounts/...

In [33]: scale factor corr = scale factor[:, np.newaxis, np.newaxis]

In [34]: scale factor corr.shape

Out[34]: (3, 1, 1)

In [35]: image2 rescaled = scale factor_corr * image2

8 of 8 9/10/20, 10:21 AM

06-DA Pandas_introduction file:///home/marie/Documents/github_accounts/...

6. Pandas Introduction

In the previous chapters, we have learned how to handle Numpy arrays that can be used to efficiently perform numerical
calculations. Those arrays are however homogeneous structures i.e. they can only contain one type of data. Also, even if
we have a single type of data, the different rows or columns of an array do not have labels, making it difficult to track what
they contain. For such cases, we need a structure closer to a table as can be found in Excel, and these structures are
implemented by the package Pandas.

But why can't we simply use Excel then? While Excel is practical to browse through data, it is very cumbersome to use to
combine, re-arrange and thoroughly analyze data: code is hidden and difficult to share, there's no version control, it's
difficult to automate tasks, the manual clicking around leads to mistakes etc.

In the next chapters, you will learn how to handle tabular data with Pandas, a Python package widely used in the scientific
and data science areas. You will learn how to create and import tables, how to combine them, modify them, do statistical
analysis on them and finally how to use them to easily create complex visualizations.

So that you see where this leads, we start with a short example of how Pandas can be used in a project. We look here at
data provided openly by the Swiss National Science Foundation about grants attributed since 1975.

In [1]: import numpy as np
import pandas as pd
import seaborn as sns

6.1 Importing data

people-and-publications). We can either manually download them and then use the path to read the data or directly use
the url. The latter has the advantage that if you have an evolving source of data, these will always be up to date:

In [2]: | # local import
projects = pd.read csv('Data/P3 GrantExport.csv',sep = ';")

import from url

#projects = pd.read csv('http://p3.snf.ch/P3Export/P3 GrantExport.csv',sep =
l’, :)

Then we can have a brief look at the table itself that Jupyter displays in a formated way and limit the view to the 5 first rows
using head() :

1of6 9/10/20, 10:24 AM

06-DA Pandas_introduction file:///home/marie/Documents/github_accounts/...

In [3]: projects.head(5)

Out[3]:
. Project Project . . Funding
NT::S:: Number Project Title Title Reipor';is(::l!‘c-tz Inslt::junr:::g Instrument
String English pp Hierarchy
Schlussband (Bd. Project Proiect
0 1 1000-000001 VI) der Jacob NaN Kaegi Werner funding funéin
Burckhardt-Biog... (Div. I-111) 9
Batterie de tests Project Proiect
1 4 1000-000004 a l'usage des NaN Massarenti Léonard funding J. Psyct
) . funding f
enseignants po... (Div. I-111) Scier
Kritische Kommission flrr das Project Komm
2 5 1000-000005 ,Crstausgabeder o\ Corpus ¢ ing Project
Evidentiae contra philosophorum medii (Div. IIll funding philosoj
D... ’
Kaziaall‘t)igr?:r: Project Project
3 6 1000-000006 . f NaN Burckhardt Max funding) Hanc
Handschriften in h funding
(Div. I-111) Alte Dr
der Sch...
Wissenschaftliche Project
4 7 1000-000007 Mitarbeitam Schweiz. ¢\ ing Project
Thesaurus Thesauruskommission (Div. I-I1l) funding Thesaurt

Lingu...

6.2 Exploring data

Pandas offers a variety of tools to compile information about data, and that compilation can be done very efficiently without
the need for loops, conditionals etc.

For example we can quickly count how many times each University appear in that table. We just use the
value counts() method for that:

In [4]: projects['University'].value counts().head(10)

Out[4]: Institution abroad - IACH 13348
University of Zurich - ZH 8170
University of Geneva - GE 7385
ETH Zurich - ETHZ 7278
University of Berne - BE 6445
University of Basel - BS 5560
EPF Lausanne - EPFL 5174
University of Lausanne - LA 4944
Unassignable - NA 2642
University of Fribourg - FR 2535

Name: University, dtype: int64
Then we can very easily plot the resulting information, either using directly Pandas or a more advanced library like

Seaborn, plotnine or Altair.

Here first with plain Pandas (using Matplotlib under the hood):

20f6 9/10/20, 10:24 AM

06-DA Pandas_introduction file:///home/marie/Documents/github_accounts/...

In [5]: projects['University'].value counts().head(10).plot(kind="bar")

Out[5]: <matplotlib.axes. subplots.AxesSubplot at 0x104df7040>

14000

12000 H

10000 H

8000

6000 A

4000

2000 A

0-

Institution abroad - IACH
University of Zurich - ZH
University of Geneva - GE
ETH Zurich - ETHZ
University of Beme - BE
University of Basel - BS

EPF Lausanne - EPFL
University of Lausanne - LA
Unassignable - NA
University of Fribourg - FR

6.3 Handling different data types

Unlike Numpy arrays, Pandas can handle a variety of different data types in a dataframe. For example it is very efficient at
dealing with dates. We see that our table contains e.g. a Start Date . We can turn this string into an actual date:

In [6]: projects['start'] = pd.to _datetime(projects['Start Date'])
projects['year'] = projects.start.apply(lambda x: x.year)

In [7]: projects.loc[0].start

Out[7]: Timestamp('1975-01-10 00:00:00')

In [8]: projects.loc[0].year
Out[8]: 1975.0

6.4 Data wrangling, aggregation and statistics

Pandas is very efficient at wrangling and aggregating data, i.e. grouping several elements of a table to calculate statistics
on them. For example we first need here to convert the Approved Amount to a numeric value. Certain rows contain
text (e.g. "not applicable") and we force the conversion:

In [9]: projects['Approved Amount'] = pd.to numeric(projects['Approved Amount'], err
ors = 'coerce')

Then we want to extract the type of filed without subfields e.g. "Humanities" instead of "Humanities and Social
Sciences;Theology & religion". For that we can create a custom function and apply it to an entire column:

30f6 9/10/20, 10:24 AM

06-DA Pandas_introduction file:///home/marie/Documents/github_accounts/...

In [10]: science types = ['Humanities', 'Mathematics', 'Biology']
projects['Field'] = projects['Discipline Name Hierarchy'].apply(
lambda el: next((y for y in [x for x in science types if x in el] if y i
s not None),None) if not pd.isna(el) else el)

Then we group the data by discipline and year, and calculate the mean of each group:

In [11]: aggregated = projects.groupby(['Institution Country', 'year',6 'Field'], as_in
dex=False) .mean()

Finally we can use Seaborn to plot the data by "Field" using just keywords to indicate what the axes and colours should
mean (following some principles of the grammar of graphics):

In [12]: sns.lineplot(data = aggregated, x = 'year',6 y='Approved Amount', hue='Field
")

Field
800000 1 —— Humanities
Mathematics
——— Biology
€ 600000 4
3
o
£
<
T 400000 -
e
(=%
=}
<
200000 A
0.
1980 1990 2000 2010 2020
year

Note that here, axis labelling, colorouring, legend, interval of confidence have been done automatically based on the
content of the dataframe.

We see a drastic augmentation around 2010: let's have a closer look. We can here again group data by year and funding
type and calculate the total funding:

In [13]: grouped = projects.groupby(['year', 'Funding Instrument Hierarchy']).agg(
total sum=pd.NamedAgg(column="'Approved Amount', aggfunc='sum')).reset in
dex()

40f6 9/10/20, 10:24 AM

06-DA Pandas_introduction

In [14]: grouped

file:///home/marie/Documents/github_accounts/...

OQut[14]:

year Funding Instrument Hierarchy total_sum

0 1975.0 Project funding 32124534.0

1 1975.0 Science communication 44600.0

2 1976.0 Programmes;National Research Programmes (NRPs) 268812.0

3 1976.0 Project funding 96620284.0

4 1976.0 Science communication 126939.0
378 2020.0 Programmes;rdd (Swiss Programme for Research o... 195910.0
379 2020.0 Project funding 193568294.0
380 2020.0 Project funding;Project funding (special) 19239681.0
381 2020.0 Science communication 3451740.0
382 2021.0 Science communication 55200.0

383 rows x 3 columns

Now, for each year we keep only the 5 largest funding types to be able to plot them:

In [15]: group_sorted = grouped.groupby('year',as index=False).apply(lambda x: (x.gro
upby('Funding Instrument Hierarchy')

lse))

.sum()

.sort_values('total sum', ascending=Fa

.head(5)).reset index()

Finally, we only keep year in the 2000's:

In [16]: instruments_by year = group_sorted[(group_sorted.year > 2005) & (group_sorte
d.year < 2012)]

50f6

9/10/20, 10:24 AM

06-DA Pandas_introduction file:///home/marie/Documents/github_accounts;/...

In [17]: import matplotlib.pyplot as plt
plt.figure(figsize=(10,10))
sns.barplot(data=instruments by year,
x="year', y='total sum', hue='Funding Instrument Hierarchy')

Out[17]: <matplotlib.axes. subplots.AxesSubplot at 0x105e35670>

1e8
35 Funding Instrument Hierarchy
EEm Project funding
N Careers
BN Programmes
EEN |nfrastructure
30 ™ Programmes;National Research Programmes (NRPs)
EEm Project funding;Project funding (special)
251
20 1
3
3
i
8
8
15
10 A
05 1
0.0 -
2006.0 2007.0 2008.0 2009.0 2010.0 20110

year

We see that the main change, is the sudden increase in funding for national research programs.

In []:

6 of 6 9/10/20, 10:24 AM

07-DA Pandas_structures file:///home/marie/Documents/github_accounts/...

7. Pandas objects

In [1]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

Python has a series of data containers (list, dicts etc.) and Numpy offers multi-dimensional arrays, however none of these
structures offers a simple way neither to handle tabular data, nor to easily do standard database operations. This is why
Pandas exists: it offers a complete ecosystem of structures and functions dedicated to handle large tables with
inhomogeneous contents.

In this first chapter, we are going to learn about the two main structures of Pandas: Series and Dataframes.

7.1 Series

7.1.1 Simple series

Series are a the Pandas version of 1-D Numpy arrays. We are rarely going to use them directly, but they often appear
implicitly when handling data from the more general Dataframe structure. We therefore only give here basics.

To understand Series' specificities, let's create one. Usually Pandas structures (Series and Dataframes) are created from
other simpler structures like Numpy arrays or dictionaries:

In [2]: numpy array = np.array([4,8,38,1,6])

The function pd.Series() allows us to convert objects into Series:

In [3]: pd_series = pd.Series(numpy array)
pd series

Out[3]: 4

0

1 8

2 38

3 1

4 6
dtype: int64

The underlying structure can be recovered with the .values attribute:

In [4]: pd_series.values

Out[4]: array([4, 8, 38, 1, 6])

Otherwise, indexing works as for regular arrays:

In [5]: pd_series[1]
Out[5]: 8

1of6 9/10/20, 10:21 AM

07-DA Pandas_structures file:///home/marie/Documents/github_accounts/...

7.1.2 Indexing

On top of accessing values in a series by regular indexing, one can create custom indices for each element in the series:
In [6]: pd_series2 = pd.Series(numpy array, index=['a', 'b', 'c', 'd','e'])

In [7]: pd_series2

Out[7]: 4

a
b 8
C 38
d 1
e 6
dtype: int64

Now a given element can be accessed either by using its regular index:
In [8]: pd_series2[1]
Out[8]: 8
or its chosen index:
In [9]: pd_series2['b']
Out[9]: 8
A more direct way to create specific indexes is to transform as dictionary into a Series:

In [10]: composer birth = {'Mahler': 1860, 'Beethoven': 1770, 'Puccini': 1858, 'Shost
akovich': 1906}

In [11]: pd_composer birth = pd.Series(composer birth)
pd_composer_birth

OQut[11l]: Mahler 1860
Beethoven 1770
Puccini 1858

Shostakovich 1906
dtype: int64

In [12]: pd_composer birth['Puccini']
Out[12]: 1858

7.2 Dataframes

In most cases, one has to deal with more than just one variable, e.g. one has the birth year and the death year of a list of
composers. Also one might have different types of information, e.g. in addition to numerical variables (year) one might
have string variables like the city of birth. The Pandas structure that allow one to deal with such complex data is called a
Dataframe, which can somehow be seen as an aggregation of Series with a common index.

20f6 9/10/20, 10:21 AM

07-DA Pandas_structures file:///home/marie/Documents/github_accounts/...

7.2.1 Creating a Dataframe

To see how to construct such a Dataframe, let's create some more information about composers:

In [13]: composer _death = pd.Series({'Mahler': 1911, 'Beethoven': 1827, 'Puccini': 19
24, 'Shostakovich': 1975})
composer_city birth = pd.Series({'Mahler': 'Kaliste', 'Beethoven': 'Bonn', '
Puccini': 'Lucques', 'Shostakovich': 'Saint-Petersburg'})

Now we can combine multiple series into a Dataframe by precising a variable name for each series. Note that all our
series need to have the same indices (here the composers' name):

In [14]: composers df = pd.DataFrame({'birth': pd_composer birth, 'death': composer d
eath, 'city': composer _city birth})
composers_df

Out[14]:
birth death city
Mahler 1860 1911 Kaliste
Beethoven 1770 1827 Bonn
Puccini 1858 1924 Lucques

Shostakovich 1906 1975 Saint-Petersburg

A more common way of creating a Dataframe is to construct it directly from a dictionary of lists where each element of the
dictionary turns into a column:

In [15]: dict of list = {'birth': [1860, 1770, 1858, 1906], 'death':[1911, 1827, 192
4, 19751,
'city':['Kaliste', 'Bonn', 'Lucques', 'Saint-Petersburg']}

In [16]: pd.DataFrame(dict of list)

Qut[16]:
birth death city
0 1860 1911 Kaliste
1 1770 1827 Bonn
2 1858 1924 Lucques

3 1906 1975 Saint-Petersburg

However we now lost the composers name. We can enforce it by providing, as we did before for the Series, a list of
indices:

30f6 9/10/20, 10:21 AM

07-DA Pandas_structures file:///home/marie/Documents/github_accounts/...

In [17]: pd.DataFrame(dict of list, index=['Mahler', 'Beethoven', 'Puccini', ‘'Shostak

ovich'l])
Out[17]:
birth death city
Mahler 1860 1911 Kaliste
Beethoven 1770 1827 Bonn
Puccini 1858 1924 Lucques

Shostakovich 1906 1975 Saint-Petersburg

7.2.2 Accessing values

There are multiple ways of accessing values or series of values in a Dataframe. Unlike in Series, a simple bracket gives
access to a column and not an index, for example:

In [18]: composers df['city']

Out[18]: Mahler Kaliste
Beethoven Bonn
Puccini Lucques
Shostakovich Saint-Petersburg

Name: city, dtype: object

returns a Series. Alternatively one can also use the attributes synthax and access columns by using:

In [19]: composers df.city

Out[19]: Mahler Kaliste
Beethoven Bonn
Puccini Lucques
Shostakovich Saint-Petersburg

Name: city, dtype: object

The attributes synthax has some limitations, so in case something does not work as expected, revert to the brackets
notation.

When specifiying multiple columns, a DataFrame is returned:

In [20]: composers df[['city', 'birth']]

Out[20]:
city birth
Mahler Kaliste 1860
Beethoven Bonn 1770
Puccini Lucques 1858

Shostakovich Saint-Petersburg 1906

One of the important differences with a regular Numpy array is that here, regular indexing doesn't work:

In [21]: | #composers df[0,0]

40f6 9/10/20, 10:21 AM

07-DA Pandas_structures file:///home/marie/Documents/github_accounts/...

Instead one has to use either the .iloc[] orthe .loc[] method. .iloc[] can be used to recover the regular
indexing:

In [22]: composers df.iloc[0,1]
Out[22]: 1911
While .loc[] allows one to recover elements by using the explicit index, on our case the composers name:
In [23]: composers df.loc['Mahler', 'death']
Out[23]: 1911
Remember that loc and “iloc™" use brackets [] and not parenthesis ().
Numpy style indexing works here too
In [24]: composers df.iloc[1:3,:]

Qut[24]:
birth death city

Beethoven 1770 1827 Bonn

Puccini 1858 1924 Lucques

If you are working with a large table, it might be useful to sometimes have a list of all the columns. This is given by the
.keys () attribute:

In [25]: composers df.keys()
Out[25]: Index(['birth', 'death', 'city'], dtype='object')

7.2.3 Adding columns

It is very simple to add a column to a Dataframe. One can e.g. just create a column a give it a default value that we can
change later:

In [26]: composers df['country'] = 'default'

In [27]: composers df

Out[27]:
birth death city country
Mahler 1860 1911 Kaliste default
Beethoven 1770 1827 Bonn default
Puccini 1858 1924 Lucques default

Shostakovich 1906 1975 Saint-Petersburg default

Or one can use an existing list:

50f6 9/10/20, 10:21 AM

07-DA Pandas_structures

In [28]: country = ['Austria','Germany', 'Italy', 'Russia']

file:///home/marie/Documents/github_accounts/...

In [29]: composers df['country2'] = country

In [30]: composers df

Out[30]:
birth death city country country2
Mahler 1860 1911 Kaliste default Austria
Beethoven 1770 1827 Bonn default Germany
Puccini 1858 1924 Lucques default Italy
Shostakovich 1906 1975 Saint-Petersburg default Russia

6 of 6

9/10/20, 10:21 AM

08-DA Pandas import plotting file:///home/marie/Documents/github_accounts/...

8. Importing/export, basic plotting

In [1]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

We have seen in the previous chapter what structures are offered by Pandas and how to create them. Another very
common way of "creating" a Pandas Dataframe is by importing a table from another format like CSV or Excel.

8.1 Simple import

An Excel table containing the same information as we had in Chapter 1 (01-Pandas_structures.ipynb) is provided in
composers.xlsx (composers.xlsx) and can be read with the read excel function. There are many more readers for
other types of data (csv, json, html etc.) but we focus here on Excel.

In [2]: pd.read excel('Data/composers.xlsx")

OQut[2]:
composer birth death city
0 Mahler 1860 1911 Kaliste
1 Beethoven 1770 1827 Bonn
2 Puccini 1858 1924 Lucques

3 Shostakovich 1906 1975 Saint-Petersburg

The reader automatically recognized the heaers of the file. However it created a new index. If needed we can specify
which column to use as header:

In [3]: pd.read excel('Data/composers.xlsx', index_col = 'composer')
Out[3]:
birth death city
composer
Mahler 1860 1911 Kaliste
Beethoven 1770 1827 Bonn
Puccini 1858 1924 Lucques

Shostakovich 1906 1975 Saint-Petersburg

If we open the file in Excel, we see that it is composed of more than one sheet. Clearly, when not specifying anything, the
reader only reads the first sheet. However we can specify a sheet:

In [4]: specific_sheet = pd.read_excel('Data/composers.xlsx', index col = 'composer
',sheet name='Sheet2')

10f10 9/10/20, 10:25 AM

08-DA Pandas import plotting

In [5]: specific_sheet
Out[5]:
birth death city
composer
Mahler 1860.0 1911 Kaliste
Beethoven 1770.0 1827 Bonn
Puccini 1858.0 1924 Lucques
Shostakovich 1906.0 1975 Saint-Petersburg
Sibelius 10.0 unknown unknown
Haydn NaN NaN Réhrau

file:///home/marie/Documents/github_accounts/...

For each reader, there is a long list of options to specify how the file should be read. We can see all these options using
the help (see below). Imagine that our tables contains a title and unnecessary rows: we can use the skiprows
argument. Imagine you have dates in your table: you can use the date_parser argument to specify how to format them

etc.

In [6]:

8.2 Handling unknown values

#use shift+tab within the parenthesis to see optional arguemnts
#pd. read excel()

As you can see above, some information is missing. Some missing values are marked as "unknown" while other are NaN.
NaN is the standard symbol for unknown/missing values and is understood by Pandas while "unknown" is just seen as
text. This is impractical as now we have e.g. columns with a mix of numbers and text which will make later computations
difficult. What we would like to do is to replace all "irrelevant” values with the standard NaN symbol that says "no

information".

Let's first do a regular import:

In [7]:
name='Sheet2")
importl
Out[7]:
birth death city
composer
Mahler 1860.0 1911 Kaliste
Beethoven 1770.0 1827 Bonn
Puccini 1858.0 1924 Lucques
Shostakovich 1906.0 1975 Saint-Petersburg
Sibelius 10.0 unknown unknown
Haydn NaN NaN Réhrau

importl = pd.read _excel('Data/composers.xlsx', index col = 'composer',sheet

If we look now at one column, we can see that columns have been imported in different ways. One column is an object,
i.e. mixed types, the other contains floats:

20f10

9/10/20, 10:25 AM

08-DA Pandas import plotting

In [8]: dimportl.birth

Out[8]: composer
Mahler
Beethoven
Puccini
Shostakovich
Sibelius
Haydn

1860.0
1770.0
1858.0
1906.0

10.0
NaN

Name: birth, dtype: float64

In [9]: importl.death

Out[9]: composer
Mahler
Beethoven
Puccini
Shostakovich
Sibelius
Haydn

1911
1827
1924
1975

unknown

NaN

Name: death, dtype: object

file:///home/marie/Documents/github_accounts/...

If we want to do calculations, for example getting summary information using describe() we have a problem: the

death column is skipped because no calculation can be done with strings:

In [10]: dimportl.describe()

Out[10]:
birth

count 5.000000
mean 1480.800000
std 823.674207
min 10.000000
25% 1770.000000
50% 1858.000000
75% 1860.000000

max 1906.000000

Now we specify that 'unknown' should be a NaN value:

In [11]: dimport2 = pd.read excel('Data/composers.xlsx', index col = 'composer',

sheet name='Sheet2', na_values=['unknown'])

import2
OQut[11]:

birth death city

composer
Mahler 1860.0 1911.0 Kaliste
Beethoven 1770.0 1827.0 Bonn
Puccini 1858.0 1924.0 Lucques
Shostakovich 1906.0 1975.0 Saint-Petersburg
Sibelius 10.0 NaN NaN
Haydn NaN NaN Réhrau

30f10

9/10/20, 10:25 AM

08-DA Pandas import plotting

40f10

file:///home/marie/Documents/github_accounts/...

And now computations are again possible, as Pandas knows how to deal with NaNs:

In [12]: import2.describe()

Out[12]:

birth

death

count
mean
std
min
25%
50%
75%

max

5.000000
1480.800000
823.674207
10.000000
1770.000000
1858.000000
1860.000000
1906.000000

4.000000
1909.250000
61.396933
1827.000000
1890.000000
1917.500000
1936.750000
1975.000000

Handling bad or missing values is a very important part of data science. Taking care of the most common
occurrences at import is a good solution.

8.3 Column types

We see above that the birth column has been "classified" as a float. However we know that this is not the case, it's just an
integer. Here again, we can specify the column type already at import time using the dtype option and a dictionary:

In [13]: import2 = pd.read_excel('Data/composers.xlsx', index col = 'composer',bsheet

name='Sheetl', na values=['unknown'],

dtype={'composer':np.str, 'birth':np.int32, 'death':np.

int32, 'city':np.str})

In [14]: import2.birth

Out[14]: composer
Mahler
Beethoven
Puccini
Shostakovich

Name: birth, dtype: int32

8.4 Modifications after import

1860
1770
1858
1906

Of course we don't have to do all these adjustement at import time. We can also do a default import and check what has to

be corrected afterward.

8.4.1 Create NaNs

If we missed some bad values at import we can just replace all those directly in the dataframe. We can achieve that by
using the replace() method and specifying what should be replaced:

9/10/20, 10:25 AM

08-DA Pandas import plotting file:///home/marie/Documents/github_accounts/...

In [15]: dimportl

OQut[15]:

birth death city

composer
Mahler 1860.0 1911 Kaliste
Beethoven 1770.0 1827 Bonn
Puccini 1858.0 1924 Lucques
Shostakovich 1906.0 1975 Saint-Petersburg
Sibelius 10.0 unknown unknown
Haydn NaN NaN Réhrau

In [16]: import _nans = importl.replace('unknown', np.nan)
import _nans.birth

Out[16]: composer

Mahler 1860.0
Beethoven 1770.0
Puccini 1858.0
Shostakovich 1906.0
Sibelius 10.0
Haydn NaN

Name: birth, dtype: float64

Note that when we fix "bad" values, e.g. here the "unknown" text value with NaNs, Pandas automatically adjust the type of
the column, allowing us for exampel to later do mathemtical operations.

In [17]: importl.death.dtype
Out[17]: dtype('0"')

In [18]: dimport_nans.death.dtype
Out[18]: dtype('float64')

8.4.2 Changing the type

We can also change the type of a column on an existing Dataframe with the same command as in Numpy:

In [19]: dimport2.birth

Out[19]: composer

Mahler 1860
Beethoven 1770
Puccini 1858

Shostakovich 1906
Name: birth, dtype: int32

50f10 9/10/20, 10:25 AM

08-DA Pandas import plotting file:///home/marie/Documents/github_accounts/...

In [20]: dimport2.birth.astype('float')

Out[20]: composer

Mahler 1860.0
Beethoven 1770.0
Puccini 1858.0

Shostakovich 1906.0
Name: birth, dtype: float64

If we look again at import2:

In [21]: dimport2.birth

Out[21]: composer

Mahler 1860
Beethoven 1770
Puccini 1858

Shostakovich 1906
Name: birth, dtype: int32

we see that we didn't actually change the type. Changes on a Dataframe are only effective if we reassign the column:
In [22]: dimport2.birth = import2.birth.astype('float')

In [23]: import2.birth

Out[23]: composer

Mahler 1860.0
Beethoven 1770.0
Puccini 1858.0

Shostakovich 1906.0
Name: birth, dtype: float64

8.5 Export

You can easily export a Dataframe that you worked on. Most commonly you will export it in a common format like CSV:

In [24]: import2.to csv('mydataframe.csv')

If you have a complex dataframe that e.g. contains lists, you can save it as a pickle object, a specific Python format that
allows one to save complex data:

In [25]: import2.to pickle('Data/my dataframe.pkl')

You can reload this type of data via the pickle loading function of Pandas:

In [26]: import3 = pd.read pickle('Data/my dataframe.pkl"')

6 0of 10 9/10/20, 10:25 AM

08-DA Pandas import plotting file:///home/marie/Documents/github_accounts/...

In [27]: dimport3

Qut[27]:
birth death city
composer
Mahler 1860.0 1911 Kaliste
Beethoven 1770.0 1827 Bonn
Puccini 1858.0 1924 Lucques

Shostakovich 1906.0 1975 Saint-Petersburg

8.6 Plotting

We will learn more about plotting later, but let's see here some possibilities offered by Pandas. Pandas builds on top of
Matplotlib but exploits the knowledge included in Dataframes to improve the default output. Let's see with a simple dataset.

In [28]: composers = pd.read _excel('Data/composers.xlsx', sheet name='Sheet5")

We can pass Series to Matplotlib which manages to understand them. Here's a default scatter plot:

In [29]: plt.plot(composers.birth, composers.death, 'o')
plt.show()

2000 . o
1900 - *‘

1800 - g
1700 - LTS
1600 -

1500 1

L]
1400 1500 1600 1700 1800 1900

Now we look at the default Pandas output. Different types of plots are accessible when using the data_frame.plot
function via the kind option. The variables to plot are column names passed as keywords instead of whole series like in
Matplotlib:

7 of 10 9/10/20, 10:25 AM

08-DA Pandas import plotting

file:///home/marie/Documents/github_accounts/...

In [30]: composers.plot(x = 'birth', y = 'death', kind = 'scatter')
plt.show()
o
2000 4 "
o'o‘
*
1900 A
o
)

1800 A ‘e
F =1
3 0.

1700 A *

L] *
L J
1600 A - ?
1500 A
L
1400 1500 1600 1700 1800 1900
birth

We see that the plot automatically gets axis labels. Another gain is that some obvious options like setting a title are directly

accesible when creating the plot:

In [31]: composers.plot(x = 'birth', y = 'death', kind = 'scatter',
title = 'Composer birth and death', grid = True, fontsize =1
5)
plt.show()
Composer birth and death
2000 - .“.'
e
1900 - v
o« ¥
1800 - 24
% .‘ o
%1700 .
1600 1 -d
1500 1 ,
1400 1500 1600 1700 1800 1900
birth

One can add even more information on the plot by using more arguments used in a similar way as a grammar of graphics.
For example we can color the scatter plot by periods:

8 of 10

9/10/20, 10:25 AM

08-DA Pandas import plotting

In [32]: composers.plot(x = 'birth', y = 'death',kind = 'scatter',
C = composers.period.astype('category').cat.codes, colormap =
'Reds', title = 'Composer birth and death', grid = True, fontsize = 15)
plt.show()
Composer birth and death s
2000 -
&
1900 - 2* ¢
v
L
1800 - 3
£
o
$1700 ,
.3
1600 - = .
1500 - 4
. : . ; ; r 0

Here you see already a limitation of the plotting library. To color dots by the peiod category, we had to turn the latter into a
series of numbers. We could then rename those to improve the plot, but it's better to use more specialized packages such
as Seaborn which allow to realize this kind of plot easily:

file:///home/marie/Documents/github_accounts/...

In [33]: sns.scatterplot(data = composers, x = 'birth', y = 'death', hue = 'period')
plt.show()
2000 1 period o
® post-romantic %
e mmantic o 0%’
1500 1 e modern _.‘.".
e dassic .
1800 1 e renaissance ig
£ Y
§ e baroque N
1700 A ‘e
v
ec®
1600 A PR
1500 A
El
1400 1500 1600 1700 1800 1900
birth

Some additional plotting options are available in the plot() module. For example histograms:

90f 10

9/10/20, 10:25 AM

08-DA Pandas_import plotting

10 of 10

In [34]: composers.plot.hist(alpha = 0.5)

plt.show()

16 1

14 4

Frequency
@

o

file:///home/marie/Documents/github accounts/...

5 KB

S birth

0 g
1400

death

1500

1300 2000

Here you see again the gain from using Pandas: without specifying anything, Pandas made a histogram of the two
columns containing numbers, labelled the axis and even added a legend to the plot.

All these features are very nice and very helpful when exploring a dataset. When anaylzing data in depth and creating
complex plots, Pandas's plotting might however be limiting and other options such as Seaborn or Plotnine can be used.

Finally, all plots can be "styled" down to the smallest detail, either by using Matplotlib options or by directly applying a style

e.g.:

In [35]: plt.style.use('ggplot')

In [36]: composers.plot.hist(alpha

plt.show()

16 -
14 -

12 -

—
o

Frequency
[=-]

In [1:

W birth

S death

1400

1500

1900 2000

9/10/20, 10:25 AM

09-DA Pandas operations file:///home/marie/Documents/github_accounts/...

9. Operations with Pandas objects

In [1]: dimport pandas as pd
import numpy as np

One of the great advantages of using Pandas to handle tabular data is how simple it is to extract valuable information from
them. Here we are going to see various types of operations that are available for this.

9.1 Matrix types of operations

The strength of Numpy is its natural way of handling matrix operations, and Pandas reuses a lot of these features. For
example one can use simple mathematical operations to operate at the cell level:

In [2]: compo_pd = pd.read _excel('Data/composers.xlsx")

compo_pd
Out[2]:
composer birth death city
0 Mahler 1860 1911 Kaliste
1 Beethoven 1770 1827 Bonn
2 Puccini 1858 1924 Lucques

3 Shostakovich 1906 1975 Saint-Petersburg

In [3]: compo _pd['birth']*2
Out[3]: 0 3720

1 3540
2 3716
3 3812

Name: birth, dtype: int64

In [4]: np.log(compo pd['birth'])

Out[4]: 0 7.528332
1 7.478735
2 7.527256
3 7.552762
Name: birth, dtype: float64

Here we applied functions only to series. Indeed, since our Dataframe contains e.g. strings, no operation can be done on
it:

In [5]: #compo pd+1

If however we have a homogenous Dataframe, this is possible:

1of7 9/10/20, 10:25 AM

09-DA Pandas operations

20f7

In [6]:
Out[6]:

In [7]:
Out[7]:

compo _pd[['birth', 'death']]

birth
0 1860
1 1770
2 1858
3 1906

compo_pd[['birth', 'death']]*2

birth
0 3720
1 3540
2 3716
3 3812

death
1911
1827
1924
1975

death
3822
3654
3848
3950

9.2 Column operations

file:///home/marie/Documents/github_accounts/...

There are other types of functions whose purpose is to summarize the data. For example the mean or standard deviation.
Pandas by default applies such functions column-wise and returns a series containing e.g. the mean of each column:

In [8]:
Qut[8]:

np.mean(compo_pd)

birth
death
dtype:

1848.50
1909.25
float64

Note that columns for which a mean does not make sense, like the city are discarded. A series of common functions like
mean or standard deviation are directly implemented as methods and can be accessed in the alternative form:

In [9]:
Out[9]:

In [10]:
Out[10]:

compo_pd.describe()

birth death

count 4.000000 4.000000
mean 1848.500000 1909.250000
std 56.836021 61.396933
min 1770.000000 1827.000000
25% 1836.000000 1890.000000
50% 1859.000000 1917.500000
75% 1871.500000 1936.750000
max 1906.000000 1975.000000

compo_pd.std()

birth
death
dtype:

56.836021
61.396933

float64

9/10/20, 10:25 AM

09-DA Pandas operations

3of7

If you need the mean of only a single column you can of course chains operations:

In [11]: compo_pd.birth.mean()
Out[11]: 1848.5

9.3 Operations between Series

We can also do computations with multiple series as we would do with Numpy arrays:

In [12]: compo_pd['death']-compo pd['birth']
Out[12]: @ 51

1 57
2 66
3 69

dtype: int64

We can even use the result of this computation to create a new column in our Dataframe:

In [13]: compo_pd

Out[13]:
composer birth death city
0 Mahler 1860 1911 Kaliste
1 Beethoven 1770 1827 Bonn
2 Puccini 1858 1924 Lucques

3 Shostakovich 1906 1975 Saint-Petersburg

In [14]: compo pd['age'] = compo_pd['death']-compo pd['birth']

In [15]: compo_pd

OQut[15]:
composer birth death city age
0 Mahler 1860 1911 Kaliste 51
1 Beethoven 1770 1827 Bonn 57
2 Puccini 1858 1924 Lucques 66

3 Shostakovich 1906 1975 Saint-Petersburg 69

9.4 Other functions

file:///home/marie/Documents/github_accounts/...

Sometimes one needs to apply to a column a very specific function that is not provided by default. In that case we can use

one of the different apply methods of Pandas.

The simplest case is to apply a function to a column, or Series of a DataFrame. Let's say for example that we want to

define the the age >60 as 'old' and <60 as 'young'. We can define the following general function:

9/10/20, 10:25 AM

09-DA Pandas operations file:///home/marie/Documents/github_accounts/...

In [16]: def define age(x):
if x>60:
return 'old'
else:
return 'young

In [17]: define_age(30)

Out[17]: 'young'
In [18]: define_age(70)
OQut[18]: 'old'
We can now apply this function on an entire Series:

In [19]: compo_pd.age.apply(define age)
Out[19]: o young

1 young
2 old
3 old

Name: age, dtype: object

In [20]: compo_pd.age.apply(lambda x: x**2)
Qut[20]: © 2601

1 3249
2 4356
3 4761

Name: age, dtype: int64

And again, if we want, we can directly use this output to create a new column:

In [21]: compo pd['age def'] = compo pd.age.apply(define age)

compo_pd
OQut[21]:
composer birth death city age age_def
0 Mahler 1860 1911 Kaliste 51 young
1 Beethoven 1770 1827 Bonn 57 young
2 Puccini 1858 1924 Lucques 66 old
3 Shostakovich 1906 1975 Saint-Petersburg 69 old

We can also apply a function to an entire DataFrame. For example we can ask how many composers have birth and death
dates within the XIXth century:

In [22]: def nineteen_century count(x):
return np.sum((x>=1800)&(x<1900))
In [23]: compo pd[['birth','death']].apply(nineteen_century count)

Out[23]: birth 2
death 1
dtype: int64

4 0f7 9/10/20, 10:25 AM

09-DA Pandas operations

5o0f7

The function is applied column-wise and returns a single number for each in the form of a series.

In [24]: def nineteen century true(x):
return (x>=1800)&(x<1900)

In [25]: compo pd[['birth','death']].apply(nineteen _century true)

Out[25]:
birth death

0 True False

1 False True
2 True False

3 False False

file:///home/marie/Documents/github_accounts/...

Here the operation is again applied column-wise but the output is a Series.

There are more combinations of what can be the in- and output of the apply function and in what order (column- or row-
wise) they are applied that cannot be covered here.

9.5 Logical indexing

Just like with Numpy, it is possible to subselect parts of a Dataframe using logical indexing. Let's have a look again at an

example:

In [26]: compo_pd

Out[26]:
composer birth death city age age_def
0 Mahler 1860 1911 Kaliste 51 young
1 Beethoven 1770 1827 Bonn 57 young
2 Puccini 1858 1924 Lucques 66 old
3 Shostakovich 1906 1975 Saint-Petersburg 69 old

If we use a logical comparison on a series, this yields a logical Series:

In [27]: compo pd['birth']

Out[27]: © 1860

1 1770
2 1858
3 1906

Name: birth, dtype: int64

In [28]: compo pd['birth'] > 1859

Out[28]: O True
1 False
2 False
3 True

Name: birth, dtype: bool

9/10/20, 10:25 AM

09-DA Pandas operations file:///home/marie/Documents/github_accounts/...

Just like in Numpy we can use this logical Series as an index to select elements in the Dataframe:

In [29]: log _indexer = compo pd['birth'] > 1859
log indexer

Out[29]: @ True
1 False
2 False
3 True

Name: birth, dtype: bool

In [30]: compo_pd

OQut[30]:
composer birth death city age age_def
0 Mahler 1860 1911 Kaliste 51 young
1 Beethoven 1770 1827 Bonn 57 young
2 Puccini 1858 1924 Lucques 66 old
3 Shostakovich 1906 1975 Saint-Petersburg 69 old

In [31]: ~log_indexer

Qut[31]: o False
1 True
2 True
3 False
Name: birth, dtype: bool

In [32]: compo_pd[~log indexer]

Out[32]:
composer birth death city age age_def

1 Beethoven 1770 1827 Bonn 57 young
2 Puccini 1858 1924 Lucques 66 old
We can also create more complex logical indexings:

In [33]: (compo pd['birth'] > 1859)&(compo pd['age']>60)
Qut[33]: © False

1 False
2 False
3 True
dtype: bool

In [34]: compo pd[(compo pd['birth'] > 1859)&(compo_pd['age']>60)]

Out[34]:
composer birth death city age age_def

3 Shostakovich 1906 1975 Saint-Petersburg 69 old

And we can create new arrays containing only these subselections:

In [35]: compos sub = compo pd[compo pd['birth'] > 1859]

6 of 7

9/10/20, 10:25 AM

09-DA Pandas operations file:///home/marie/Documents/github_accounts/...

In [36]: compos_sub

Out[36]:
composer birth death city age age_def
0 Mahler 1860 1911 Kaliste 51 young
3 Shostakovich 1906 1975 Saint-Petersburg 69 old

We can then modify the new array:

In [37]: compos sub.loc[0,'birth'] = 3000

/Users/gwl8g940/miniconda3/envs/danalytics/1ib/python3.8/site-packages/pandas

/core/indexing.py:966: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row _indexer,col indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/s

table/user guide/indexing.html#returning-a-view-versus-a-copy

self.obj[item] = s

Note that we get this SettingWithCopyWarning warning. This is a very common problem hand has to do with how new
arrays are created when making subselections. Simply stated, did we create an entirely new array or a "view" of the old
one? This will be very case-dependent and to avoid this, if we want to create a new array we can just enforce it using the

copy () method (for more information on the topic see for example this explanation (https:/www.dataquest.io

In [38]: compos sub2 = compo pd[compo pd['birth'] > 1859].copy()

compos_sub2.loc[0, 'birth'] = 3000

In [39]: compos_ sub2

Out[39]:
composer birth death city age age_def
0 Mahler 3000 1911 Kaliste 51 young
3 Shostakovich 1906 1975 Saint-Petersburg 69 old

7 of 7

9/10/20, 10:25 AM

10-DA Pandas combine file:///home/marie/Documents/github_accounts/...

10. Combining information in Pandas

In [1]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

Often information is comming from different sources and it is necessary to combine it into one object. We are going to see
the different ways in which information contained within separate Dataframes can be combined in a meaningful way.

10.1 Concatenation

The simplest way we can combine two Dataframes is simply to "paste” them together:

In [2]: composersl = pd.read excel('Data/composers.xlsx', index col='composer',sheet
__name="'Sheetl"')

composersl
Out[2]:
birth death city
composer
Mahler 1860 1911 Kaliste
Beethoven 1770 1827 Bonn
Puccini 1858 1924 Lucques

Shostakovich 1906 1975 Saint-Petersburg

In [3]: composers2 = pd.read excel('Data/composers.xlsx', index col='composer', sheet
_name="'Sheet3")

composers?2
Out[3]:
birth death city
composer
Verdi 1813 1901 Roncole

Dvorak 1841 1904 Nelahozeves
Schumann 1810 1856 Zwickau
Stravinsky 1882 1971 Oranienbaum

Mahler 1860 1911 Kaliste

To be concatenated, Dataframes need to be provided as a list:

In [4]: all _composers = pd.concat([composersl,composers2])

1of7 9/10/20, 10:22 AM

10-DA Pandas combine file:///home/marie/Documents/github_accounts/...

In [5]: all composers

Out[5]:
birth death city
composer
Mahler 1860 1911 Kaliste
Beethoven 1770 1827 Bonn
Puccini 1858 1924 Lucques

Shostakovich 1906 1975 Saint-Petersburg
Verdi 1813 1901 Roncole

Dvorak 1841 1904 Nelahozeves
Schumann 1810 1856 Zwickau
Stravinsky 1882 1971 Oranienbaum

Mahler 1860 1911 Kaliste

One potential problem is that two tables contain duplicated information:

In [6]: all composers.loc['Mahler']

Out[6]:
birth death city

composer

Mahler 1860 1911 Kaliste

Mahler 1860 1911 Kaliste

It is very easy to get rid of it using. duplicated() gives us a boolean series of duplications and we can just selected
non-duplicated rows:

In [7]: all _composers.duplicated()

Out[7]: composer

Mahler False
Beethoven False
Puccini False
Shostakovich False
Verdi False
Dvorak False
Schumann False
Stravinsky False
Mahler True
dtype: bool

2 0f 7 9/10/20, 10:22 AM

10-DA Pandas combine file:///home/marie/Documents/github_accounts/...

In [8]: all composers[~all composers.duplicated()]

Out([8]:
birth death city
composer
Mahler 1860 1911 Kaliste
Beethoven 1770 1827 Bonn
Puccini 1858 1924 Lucques

Shostakovich 1906 1975 Saint-Petersburg
Verdi 1813 1901 Roncole

Dvorak 1841 1904 Nelahozeves
Schumann 1810 1856 Zwickau

Stravinsky 1882 1971 Oranienbaum

10.2 Joining two tables

An other classical case is that of two list with similar index but containing different information, e.g.

In [9]: composersl = pd.read excel('Data/composers.xlsx', index col='composer',sheet
__name="'Sheetl"')

composersl
Out[9]:
birth death city
composer
Mahler 1860 1911 Kaliste
Beethoven 1770 1827 Bonn
Puccini 1858 1924 Lucques

Shostakovich 1906 1975 Saint-Petersburg

In [10]: composers2 = pd.read excel('Data/composers.xlsx', index col='composer', sheet
_name="'Sheet4"')

composers?2
Out[10]:
first name
composer
Mahler Gustav

Beethoven Ludwig van
Puccini Giacomo

Brahms Johannes

If we we use again simple concatenation, this doesn't help us much. We just end up with a large matrix with lots of NaN's:

3of7 9/10/20, 10:22 AM

10-DA Pandas combine file:///home/marie/Documents/github_accounts/...

In [11]: pd.concat([composersl, composers2])

OQut[11]:

birth death city first name

composer
Mahler 1860.0 1911.0 Kaliste NaN
Beethoven 1770.0 1827.0 Bonn NaN
Puccini 1858.0 1924.0 Lucques NaN
Shostakovich 1906.0 1975.0 Saint-Petersburg NaN
Mahler NaN NaN NaN Gustav
Beethoven NaN NaN NaN Ludwig van
Puccini NaN NaN NaN Giacomo
Brahms NaN NaN NaN Johannes

The better way of doing this is to join the tables. This is a classical database concept available in Pandas.

join() operates on two tables: the first one is the "left" table which uses join() as a method. The other table is the
"right" one.

Let's try the default join settings:

In [12]: composersl

Out[12]:
birth death city
composer
Mahler 1860 1911 Kaliste
Beethoven 1770 1827 Bonn
Puccini 1858 1924 Lucques

Shostakovich 1906 1975 Saint-Petersburg

In [13]: composers?2

Out[13]:

first name

composer

Mahler Gustav
Beethoven Ludwig van
Puccini Giacomo

Brahms Johannes

4 0f7 9/10/20, 10:22 AM

10-DA Pandas combine

In [14]: composersl

file:///home/marie/Documents/github_accounts/...

.join(composers?2)

OQut[14]:
birth death city first name
composer
Mahler 1860 1911 Kaliste Gustav
Beethoven 1770 1827 Bonn Ludwig van
Puccini 1858 1924 Lucques Giacomo
Shostakovich 1906 1975 Saint-Petersburg NaN

We see that Pandas was smart enough to notice that the two tables had a index name and used it to combine the tables.
We also see that one element from the second table (Brahms) is missing. The reason for this is the way indices not
present in both tables are handled. There are four ways of doing this with two tables called here the "left" and "right" table.

10.2.1. Join left

Here "left" and "right" just represent two Dataframes that should be merged. They have a common index, but not
necessarily the same items. For example here Shostakovich is missing in the second table, while Brahms is missing in the
first one. When using the "right" join, we use the first Dataframe as basis and only use the indices that appear there.

In [15]: composersl.join(composers2, how = 'left')
OQut[15]:
birth death city first name
composer
Mahler 1860 1911 Kaliste Gustav
Beethoven 1770 1827 Bonn Ludwig van
Puccini 1858 1924 Lucques Giacomo
Shostakovich 1906 1975 Saint-Petersburg NaN

Hence Brahms is left out.

10.2.2. Join right

We can do the the opposite and use the indices of the second Dataframe as basis:

In [16]: composersl.join(composers2, how = 'right'")

Out[16]:

composer

birth

death city first name

Mahler 1860.0

Beethoven 1770.0

Puccini 1858.0

Brahms

5o0f7

NaN

1911.0 Kaliste Gustav
1827.0 Bonn Ludwig van
1924.0 Lucques Giacomo

NaN NaN Johannes

9/10/20, 10:22 AM

10-DA Pandas combine file:///home/marie/Documents/github_accounts/...

Here we have Brahms but not Shostakovich.

10.2.3. Inner, outer

Finally, we can just say that we want to recover eihter only the items that appaer in both Dataframes (inner, like in a Venn
diagram) or all the items (outer).

In [17]: composersl.join(composers2, how = 'inner')
Qut[17]:
birth death city first name
composer
Mahler 1860 1911 Kaliste Gustav

Beethoven 1770 1827 Bonn Ludwig van

Puccini 1858 1924 Lucques Giacomo

In [18]: composersl.join(composers2, how = 'outer')
OQut[18]:
birth death city first name
composer
Beethoven 1770.0 1827.0 Bonn Ludwig van
Brahms NaN NaN NaN Johannes
Mahler 1860.0 1911.0 Kaliste Gustav
Puccini 1858.0 1924.0 Lucques Giacomo
Shostakovich 1906.0 1975.0 Saint-Petersburg NaN

10.3.4 Joining on columns : merge

Above we have used join to join based on indices. However sometimes tables don't have the same indices but similar
contents that we want to merge. For example let's imagine whe have the two Dataframes below:

In [19]: composersl
composers?

pd.read_excel('Data/composers.xlsx', sheet name='Sheetl')
pd.read excel('Data/composers.xlsx', sheet name='Sheet6')

In [20]: composersl

Qut[20]:
composer birth death city
0 Mahler 1860 1911 Kaliste
1 Beethoven 1770 1827 Bonn
2 Puccini 1858 1924 Lucques

3 Shostakovich 1906 1975 Saint-Petersburg

6 of 7 9/10/20, 10:22 AM

10-DA Pandas combine file:///home/marie/Documents/github_accounts/...

In [21]: composers2

Out[21]:
last name first name

0 Puccini Giacomo
1 Beethoven Ludwig van
2 Brahms Johannes

3 Mahler Gustav

The indices don't match and are not the composer name. In addition the columns containing the composer names have
different labels. Here we can use merge () and specify which columns we want to use for merging, and what type of
merging we need (inner, left etc.)

In [22]: pd.merge(composersl, composers2, left on='composer', right on='last name')

Out[22]:
composer birth death city last name first name

0 Mahler 1860 1911 Kaliste Mahler Gustav
1 Beethoven 1770 1827 Bonn Beethoven Ludwig van
2 Puccini 1858 1924 Lucques Puccini Giacomo

Again we can use another variety of join than the default inner:

In [23]: pd.merge(composersl, composers2, left on='composer', right on='last name',ho

w = 'outer'")
Out[23]:

composer birth death city lastname first name
0 Mahler 1860.0 1911.0 Kaliste Mahler Gustav
1 Beethoven 1770.0 1827.0 Bonn Beethoven Ludwig van
2 Puccini 1858.0 1924.0 Lucques Puccini Giacomo
3 Shostakovich 1906.0 1975.0 Saint-Petersburg NaN NaN
4 NaN NaN NaN NaN Brahms Johannes

In [24]: pd.merge(composersl, composers2, left on='composer', right on='last name',ho
w = 'right')

Out[24]:
composer birth death city last name first name

0 Mahler 1860.0 1911.0 Kaliste Mahler Gustav
1 Beethoven 1770.0 1827.0 Bonn Beethoven Ludwig van
2 Puccini 1858.0 1924.0 Lucques Puccini Giacomo

3 NaN NaN NaN NaN Brahms Johannes

7 of 7 9/10/20, 10:22 AM

11-DA Pandas_splitting file:///home/marie/Documents/github_accounts/...

11. Splitting data

Often one has tables that mix regular variables (e.g. the size of cells in microscopy images) with categorical variables (e.g.
the type of cell to which they belong). In that case, it is quite usual to split the data by categories or groups to do
computations. Pandas allows to do this very easily.

In [1]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

11.1 Grouping

Let's import some data and have a look at them:

In [2]: composers = pd.read excel('Data/composers.xlsx', sheet name='Sheet5")

In [3]: composers.head()

Out[3]:
composer birth death period country
0 Mahler 1860 1911.0 post-romantic Austria
1 Beethoven 1770 1827.0 romantic Germany
2 Puccini 1858 1924.0 post-romantic Italy
3 Shostakovich 1906 1975.0 modern Russia
4 Verdi 1813 1901.0 romantic Italy

We also add a column here to calculate the composers' age:

In [4]: composers['age'] = composers.death - composers.birth

11.1.1 Single level

What if we want now to count how many composers we have in a certain category like the period or country? In classical
computing we would maybe do a for loop to count occurrences. Pandas simplifies this with the groupby () function,
which actually groups elements by a certain criteria, e.g. a categorical variable like the period:

In [5]: composer _grouped = composers.groupby('period')
composer_grouped

Out[5]: <pandas.core.groupby.generic.DataFrameGroupBy object at 0x11d2fc850>

The output is a bit cryptic. What we actually have is a new object called a group which has a lot of handy properties. First
let's see what the groups actually are. We can find all groups with groups :

1of11 9/10/20, 10:22 AM

11-DA Pandas_splitting file:///home/marie/Documents/github_accounts/...

In [6]: composer grouped.groups

Out[6]: {'baroque': Int64Index([14, 16, 17, 20, 21, 28, 29, 30, 31, 47], dtype='int64

I)I

'classic': Int64Index([9, 10, 32, 40, 51], dtype='int64'),

'modern': Int64Index([3, 7, 11, 12, 19, 25, 45, 46, 50, 53, 54, 55, 56], dty
pe='int64'),

'post-romantic': Int64Index([0, 2, 8, 18, 49], dtype='int64'),

'renaissance': Int64Index([13, 26, 27, 36, 37, 43, 44], dtype='int64'),

'romantic': Int64Index([1, 4, 5, 6, 15, 22, 23, 24, 33, 34, 35, 38, 39, 41,
42, 48, 521, dtype='int64')}

We have a dictionary, where each period that appears in the Dataframe is a key and each key contains a list of dataframe
indices of rows with those periods. We will rarely directly use those indices, as most operations on groups only use those
"behind the scene".

For example we can use describe() on a group object, just like we did it before for a Dataframe:

In [7]: composer grouped.describe()#. loc['Austria’, 'birth']

Out[7]:
birth death

count mean std min 25% 50% 75% max count mean

period

baroque 10.0 1663.300000 36.009412 1587.0 1647.0 1676.5 1685.0 1710.0 10.0 1720.200000
classic 5.0 1744.400000 12.054045 1731.0 1732.0 1749.0 1754.0 1756.0 5.0 1801.200000
modern 13.0 1905.692308 28.595992 1854.0 1891.0 1902.0 1918.0 1971.0 11.0 1974.090909

post-

. 5.0 1854.200000 17.123084 1824.0 1858.0 1860.0 1864.0 1865.0 5.0 1927.400000
romantic

renaissance 7.0 1527.142857 59.881629 1397.0 1528.5 1540.0 1564.5 1567.0 7.0 1595.285714
romantic 17.0 1824.823529 25.468695 1770.0 1810.0 1824.0 1841.0 1867.0 17.0 1883.588235

6 rows x 24 columns

We see here that the statistical analysis has been done for each group, the index of each row being the group name (or
key in the dictionary). If we are interested in a specific group we can also easily recover it:

In [8]: composer grouped.get group('classic')

Out[8]:
composer birth death period country age

9 Haydn 1732 1809.0 classic Austria 77.0

10 Mozart 1756 1791.0 classic Austria 35.0

32 Cimarosa 1749 1801.0 classic ltaly 52.0
40 Soler 1754 1806.0 classic Spain 52.0
51 Dusek 1731 1799.0 classic Czechia 68.0

We see that this returns a sub-group from the original table. Effectively it is almost equivalent to:

20f11 9/10/20, 10:22 AM

11-DA Pandas_splitting

In [9]:
Out[9]:

11.1.2 Multi-level

composers[composers.period == 'classic']
composer birth death period country age
9 Haydn 1732 1809.0 classic Austria 77.0
10 Mozart 1756 1791.0 classic Austria 35.0
32 Cimarosa 1749 1801.0 classic Italy 52.0
40 Soler 1754 1806.0 classic Spain 52.0
51 Dusek 1731 1799.0 classic Czechia 68.0

file:///home/marie/Documents/github_accounts/...

If one has multiple categorical variables, one can also do a grouping on several levels. For example here we want to
classify composers both by period and country. For this we just give two column names to the groupby () function:

3ofll

9/10/20, 10:22 AM

11-DA Pandas_splitting file:///home/marie/Documents/github_accounts/...

In [10]: composer grouped = composers.groupby(['period', 'country'])
composer_grouped.describe()

Out[1l0]:
birth death
count mean std min 25% 50% 75% max count m
period country
baroque England 1.0 1659.000000 NaN 1659.0 1659.00 1659.0 1659.00 1659.0 1.0 1

France 3.0 1650.666667 29.263174 1626.0 1634.50 1643.0 1663.00 1683.0 30 1

Germany 2.0 1685.000000 0.000000 1685.0 1685.00 1685.0 1685.00 1685.0 20 1

Italy 4.0 1663.000000 53.285395 1587.0 1649.25 1677.5 1691.25 1710.0 40 1

classic Austria 2.0 1744.000000 16.970563 1732.0 1738.00 1744.0 1750.00 1756.0 20 1

Czechia 1.0 1731.000000 NaN 1731.0 1731.00 1731.0 1731.00 1731.0 1.0 1

Italy 1.0 1749.000000 NaN 1749.0 1749.00 1749.0 1749.00 1749.0 1.0 1

Spain 1.0 1754.000000 NaN 1754.0 1754.00 1754.0 1754.00 1754.0 1.0 1

modern Austria 1.0 1885.000000 NaN 1885.0 1885.00 1885.0 1885.00 1885.0 1.0 1
Czechia 1.0 1854.000000 NaN 1854.0 1854.00 1854.0 1854.00 1854.0 1.0 1

England 2.0 1936.500000 48.790368 1902.0 1919.25 1936.5 1953.75 1971.0 1.0 1

France 2.0 1916.500000 12.020815 1908.0 1912.25 1916.5 1920.75 1925.0 20 2
Germany 1.0 1895.000000 NaN 1895.0 1895.00 1895.0 1895.00 1895.0 1.0 1
RUssia 1.0 1891.000000 NaN 1891.0 1891.00 1891.0 1891.00 1891.0 1.0 1

Russia 2.0 1894.000000 16.970563 1882.0 1888.00 1894.0 1900.00 1906.0 20 1

USA 3.0 1918.333333 18.502252 1900.0 1909.00 1918.0 1927.50 1937.0 20 1

post- Austria 2.0 1842.000000 25.455844 1824.0 1833.00 1842.0 1851.00 1860.0 20 1

romantic
Finland 1.0 1865.000000 NaN 1865.0 1865.00 1865.0 1865.00 1865.0 1.0 1!
Germany 1.0 1864.000000 NaN 1864.0 1864.00 1864.0 1864.00 1864.0 1.0 1!
Italy 1.0 1858.000000 NaN 1858.0 1858.00 1858.0 1858.00 1858.0 1.0 1!

renaissance Belgium 2.0 1464.500000 95.459415 1397.0 1430.75 1464.5 1498.25 1532.0 20 1!
England 2.0 1551.500000 16.263456 1540.0 1545.75 15515 1557.25 1563.0 20 1

Italy 3.0 1552.666667 23.965253 1525.0 1545.50 1566.0 1566.50 1567.0 3.0 1

romantic Czechia 2.0 1832.500000 12.020815 1824.0 1828.25 1832.5 1836.75 1841.0 20 Tt
France 3.0 1821.000000 19.672316 1803.0 1810.50 1818.0 1830.00 1842.0 3.0 T

Germany 4.0 1806.500000 26.388129 1770.0 1800.00 1811.5 1818.00 1833.0 4.0 1

Italy 4.0 1817.250000 28.004464 1797.0 1800.00 1807.0 1824.25 1858.0 4.0 1

Russia 2.0 1836.000000 4.242641 1833.0 1834.50 1836.0 1837.50 1839.0 20 i

Spain 2.0 1863.500000 4.949747 1860.0 1861.75 1863.5 1865.25 1867.0 20 1

29 rows x 24 columns

In [11]: composer grouped.get group(('baroque','Germany'))

Out[1l1]:
composer birth death period country age

14 Haendel 1685 1759.0 baroque Germany 74.0
47 Bach 1685 1750.0 baroque Germany 65.0

4 of 11 9/10/20, 10:22 AM

11-DA Pandas_splitting

11.2 Operations on groups

file:///home/marie/Documents/github_accounts/...

The main advantage of this Group object is that it allows us to do very quickly both computations and plotting without
having to loop through different categories. Indeed Pandas makes all the work for us: it applies functions on each group

and then reassembles the results into a Dataframe (or Series depending on the operation).

For example we can apply most functions we used for Dataframes (mean, sum etc.) on groups as well and Pandas

seamlessly does the work for us:

In [12]: composer_grouped.mean()

Out[12]:

period country

birth

death

age

baroque England
France

Germany

Italy

classic Austria
Czechia

Italy

Spain

modern Austria
Czechia

England

France

Germany

RUssia

Russia

USA
post-romantic Austria
Finland

Germany

Italy

renaissance Belgium
England

Italy

romantic Czechia
France

Germany

Italy

Russia

Spain

50f11

1659.000000
1650.666667
1685.000000
1663.000000
1744.000000
1731.000000
1749.000000
1754.000000
1885.000000
1854.000000
1936.500000
1916.500000
1895.000000
1891.000000
1894.000000
1918.333333
1842.000000
1865.000000
1864.000000
1858.000000
1464.500000
1551.500000
1552.666667
1832.500000
1821.000000
1806.500000
1817.250000
1836.000000

1863.500000

1695.000000
1709.666667
1754.500000
1717.250000
1800.000000
1799.000000
1801.000000
1806.000000
1935.000000
1928.000000
1983.000000
2004.000000
1982.000000
1953.000000
1973.000000
1990.000000
1903.500000
1957.000000
1949.000000
1924.000000
1534.000000
1624.500000
1616.666667
1894.000000
1891.333333
1865.750000
1875.750000
1884.000000

1912.500000

36.000000
59.000000
69.500000
54.250000
56.000000
68.000000
52.000000
52.000000
50.000000
74.000000
81.000000
87.500000
87.000000
62.000000
79.000000
81.000000
61.500000
92.000000
85.000000
66.000000
69.500000
73.000000
64.000000
61.500000
70.333333
59.250000
58.500000
48.000000

49.000000

9/10/20, 10:22 AM

11-DA Pandas_splitting file:///home/marie/Documents/github_accounts/...

In [13]: composer grouped.count()

Out[13]:
composer birth death age

period country

baroque England 1 1 1 1
France 3 3 3 3

Germany 2 2 2 2

Italy 4 4 4 4

classic Austria 2 2 2 2
Czechia 1 1 1 1

Italy 1 1 1 1

Spain 1 1 1 1

modern Austria 1 1 1 1
Czechia 1 1 1 1

England 2 2 1 1

France 2 2 2 2

Germany 1 1 1 1

RUssia 1 1 1 1

Russia 2 2 2 2

USA 3 3 2 2
post-romantic Austria 2 2 2 2
Finland 1 1 1 1

Germany 1 1 1 1

Italy 1 1 11

renaissance Belgium 2 2 2 2
England 2 2 2 2

Italy 3 3 3 3

romantic Czechia 2 2 2 2
France 3 3 3 3

Germany 4 4 4 4

Italy 4 4 4 4

Russia 2 2 2 2

Spain 2 2 2 2

We can also design specific functions (again, like in the case of Dataframes) and apply them on groups:

In [14]: def mult(myseries):
return myseries.max() * 3

60f11 9/10/20, 10:22 AM

11-DA Pandas_splitting

file:///home/marie/Documents/github_accounts/...

In [15]: composer grouped.apply(mult)
OQut[15]:
composer birth death period
period country
baroque England PurcellPurcellPurcell 4977 5085.0 baroquebaroquebaroque
France RameauRameauRameau 5049 5292.0 baroquebaroquebaroque
Germany HaendelHaendelHaendel 5055 5277.0 baroquebaroquebaroque
Italy ScarlattiScarlattiScarlatti 5130 5271.0 baroquebaroquebaroque
classic Austria MozartMozartMozart 5268 5427.0 classicclassicclassic
Czechia DusekDusekDusek 5193 5397.0 classicclassicclassic
Italy CimarosaCimarosaCimarosa 5247 5403.0 classicclassicclassic
Spain SolerSolerSoler 5262 5418.0 classicclassicclassic
modern Austria BergBergBerg 5655 5805.0 modernmodernmodern
Czechia JanacekJanacekJanacek 5562 5784.0 modernmodernmodern
England WaltonWaltonWalton 5913 5949.0 modernmodernmodern
France MessiaenMessiaenMessiaen 5775 6048.0 modernmodernmodern
Germany OrffOrffOrff 5685 5946.0 modernmodernmodern
RUssia ProkofievProkofievProkofiev 5673 5859.0 modernmodernmodern
Russia StravinskyStravinskyStravinsky 5718 5925.0 modernmodernmodern
USA GlassGlassGlass 5811 5970.0 modernmodernmodern
romngitc; Austria MahlerMahlerMahler 5580 5733.0 pOSt'r°ma”ti°p03t"°magﬁz‘r’1§2
Finland SibeliusSibeliusSibelius 5595 5871.0 ~ Postromanticpost-romanticpost-
romantic
Germany StraussStraussStrauss 5592 5847.0 post—romanticpost—romarrginc;z?];t(;
ltaly PucciniPucciniPuccini 5574 5772.0 post-romanticpost-romarn;iniztr);itc-
renaissance Belgium LassusLassusLassus 4596 4782.0 renaissancerenaissancerenaissance
England DowlandDowlandDowland 4689 4878.0 renaissancerenaissancerenaissance
Italy PalestrinaPalestrinaPalestrina 4701 4929.0 renaissancerenaissancerenaissance
romantic Czechia SmetanaSmetanaSmetana 5523 5712.0 romanticromanticromantic
France MassenetMassenetMassenet 5526 5736.0 romanticromanticromantic
Germany WagnerWagnerWagner 5499 5691.0 romanticromanticromantic
Italy VerdiVerdiVerdi 5574 5757.0 romanticromanticromantic
Russia MussorsgskyMussorsgskyMussorsgsky 5517 5661.0 romanticromanticromantic
Spain GranadosGranadosGranados 5601 5748.0 romanticromanticromantic

11.3 Reshaping dataframes

As we see above, grouping operations can create more or less complex dataframes by adding one or multiple indexing
levels. There are multiple ways to "reshape" such dataframes in order to make thm usable e.g. for plotting. Typically,
plotting software based on a grammar of graphics expect a simple 2D dataframe where each line is an observation with

several properties.

7o0f11

9/10/20, 10:22 AM

11-DA Pandas_splitting file:///home/marie/Documents/github_accounts/...

11.3.1 re-indexing, unstacking

One of the most common "reshaping"” is to reset the index. In its simplest form, it will create a new dataframe, where each
row corresponds to one observation. For example in the case of a dataframe with multi-indices, it will re-cast these indices
as columns:

In [16]: composer grouped = composers.groupby(['period', 'country']).mean()
composer_grouped.head(10)

Out[16]:
birth death age

period country

baroque England 1659.000000 1695.000000 36.00
France 1650.666667 1709.666667 59.00

Germany 1685.000000 1754.500000 69.50

Italy 1663.000000 1717.250000 54.25

classic Austria 1744.000000 1800.000000 56.00
Czechia 1731.000000 1799.000000 68.00

Italy 1749.000000 1801.000000 52.00

Spain 1754.000000 1806.000000 52.00

modern Austria 1885.000000 1935.000000 50.00
Czechia 1854.000000 1928.000000 74.00

In [17]: composer grouped.reset index().head(5)

Qut[17]:
period country birth death age

0 baroque England 1659.000000 1695.000000 36.00
1 baroque France 1650.666667 1709.666667 59.00
baroque Germany 1685.000000 1754.500000 69.50
baroque ltaly 1663.000000 1717.250000 54.25

A W N

classic Austria 1744.000000 1800.000000 56.00

One can of course be more specific and reset only specific indices e.g. by level:

In [18]: composer grouped.reset index(level=1l).head(5)

Out[18]:
country birth death age

period

baroque England 1659.000000 1695.000000 36.00
baroque France 1650.666667 1709.666667 59.00
baroque Germany 1685.000000 1754.500000 69.50
baroque ltaly 1663.000000 1717.250000 54.25

classic Austria 1744.000000 1800.000000 56.00

8ofl11 9/10/20, 10:22 AM

11-DA Pandas_splitting file:///home/marie/Documents/github_accounts/...

11.3.2 unstacking

Another way to move indices to columns is to unstack a dataframe, in other words pivot some indices to columns:

In [19]: composer grouped.unstack()

Out[19]:
birth
country Austria Belgium Czechia England Finland France Germany ltaly RUssia F
period

baroque NaN NaN NaN 1659.0 NaN 1650.666667 1685.0 1663.000000 NaN

classic 1744.0 NaN 1731.0 NaN NaN NaN NaN 1749.000000 NaN

modern 1885.0 NaN 1854.0 1936.5 NaN 1916.500000 1895.0 NaN 1891.0

rom':zf‘it 1842.0 NaN NaN NaN 1865.0 NaN 1864.0 1858.000000 NaN

renaissance NaN 1464.5 NaN 1551.5 NaN NaN NaN 1552.666667 NaN

romantic NaN NaN 1832.5 NaN NaN 1821.000000 1806.5 1817.250000 NaN

6 rows x 36 columns

This creates a multi-level column indexing.

11.3.3 Wide to long: melt

A very common operation when handling tables is to switch from wide to long format and vice versa. In our composer
example, let's for example imagine that you want both birth and death dates to be grouped in a single column called
dates . But you still need to know if that data is a birth or date, so you need a new column that indicates that. To achieve
that, we need to specify id vars a list of columns to be used as identifiers e.g. the composer name, and

value_vars , a list of columns that should become rows:

In [20]: composers.head(5)

OQut[20]:
composer birth death period country age
0 Mahler 1860 1911.0 post-romantic Austria 51.0
1 Beethoven 1770 1827.0 romantic Germany 57.0
2 Puccini 1858 1924.0 post-romantic ltaly 66.0
3 Shostakovich 1906 1975.0 modern Russia 69.0
4 Verdi 1813 1901.0 romantic ltaly 88.0

9o0f11 9/10/20, 10:22 AM

11-DA Pandas_splitting

10 of 11

In [21]: pd.melt(composers, id vars=['composer'], value vars=['birth',

OQut[21]:

composer variable value

0 Mahler birth 1860.0

1 Beethoven birth 1770.0

2 Puccini birth 1858.0

3 Shostakovich birth 1906.0

4 Verdi birth 1813.0
109 Smetana death 1884.0
110 Janacek death 1928.0
111 Copland death 1990.0
112 Bernstein death 1990.0
113 Glass death NaN

114 rows x 3 columns

file:///home/marie/Documents/github_accounts/...

'death'])

We can keep more of the original columns as identifiers and also specify names for the variable and value columns:

In [22]: melted = pd.melt(composers, id vars=['composer', 'period', 'age', 'country'], v

alue vars=['birth', 'death'l],
var_name = 'date_type', value name='dates')
melted
Out[22]:

composer period age country date_type dates
0 Mahler post-romantic 51.0 Austria birth 1860.0
1 Beethoven romantic 57.0 Germany birth 1770.0
2 Puccini post-romantic 66.0 Italy birth 1858.0
3 Shostakovich modern 69.0 Russia birth 1906.0
4 Verdi romantic 88.0 Italy birth 1813.0
109 Smetana romantic 60.0 Czechia death 1884.0
110 Janacek modern 74.0 Czechia death 1928.0
111 Copland modern 90.0 USA death 1990.0
112 Bernstein modern 72.0 USA death 1990.0
113 Glass modern NaN USA death NaN

114 rows x 6 columns

11.4 Plotting

9/10/20, 10:22 AM

11-DA Pandas_splitting

11 0f 11

file:///home/marie/Documents/github_accounts;/...

We have seen above that we can create groups and apply functions to them to get some summary of them as new
dataframes or series that could then also be reshaped. The final result of these operations is then ideally suited to be

plotted in a very efficient way.

Here's a simple example: we group composers by periods and then calculate the mean age, resulting in a series where

periods are indices:

In [23]: composers.groupby('period')['age'].mean()

Out[23]: period
baroque
classic
modern

post-romantic

renaissance
romantic

We can just add one more operation to that line to create a bar plot illustrating this:

In [24]: composers.groupby('period')['age'].mean().plot(kind = 'bar');

56.

56

900000

.800000
77.
73.
68.
58.
Name: age, dtype: float64

181818
200000
142857
764706

80 4

70 A

8

20 1

10

baroque

dassic

modern

post-romantic

period

renaissance

romantic

The built-in plotting capabilities of Pandas automatically used the indices to label the bars, and also used the series name

as a general label.

Using more advanced libraries, we can go further than that and use multiple columns to create complex plots. This will be

shown in the next chapter.

9/10/20, 10:22 AM

12-DA Pandas _realworld file:///home/marie/Documents/github_accounts/...

12. A complete example

In [1]: dimport pandas as pd
import numpy as np
import matplotlib.pyplot as plt

import seaborn as sns

We have seen now most of the basic features of Pandas including importing data, combining dataframes, aggregating
information and plotting it. In this chapter, we are going to re-use these concepts with the real data seen in the introduction
chapter (06-DA_Pandas_introduction.ipynb). We are also going to explore some more advanced plotting libraries that
exploit to the maximum dataframe structures.

12.1 Importing data

We are importing here two tables provided openly by the Swiss National Science Foundation. One contains a list of all
projects to which funds have been allocated since 1975. The other table contains a list of all people to which funds have
been awarded during the same period:

In [7]1: | # local import
projects = pd.read csv('Data/P3 GrantExport.csv',sep
persons = pd.read csv('Data/P3 PersonExport.csv',sep ;

import from url

#projects = pd.read csv('http://p3.snf.ch/P3Export/P3 GrantExport.csv',sep
;)

#persons = pd.read csv('http://p3.snf.ch/P3Export/P3 PersonExport.csv',sep
l', l)

We can have a brief look at both tables:

1o0f14 9/10/20, 10:25 AM

12-DA Pandas _realworld file:///home/marie/Documents/github_accounts/...

In [8]: projects.head(5)

Out[8]:
. Project Project . . Funding
NT::S:: Number Project Title Title Reipor';is(::l!‘c-tz Inslt::junr:::g Instrument
String English pp Hierarchy
Schlussband (Bd. Project Proiect
0 1 1000-000001 VI) der Jacob NaN Kaegi Werner funding funéin
Burckhardt-Biog... (Div. I-111) 9
Batterie de tests Project Proiect
1 4 1000-000004 a l'usage des NaN Massarenti Léonard funding If Psyct
) . funding f
enseignants po... (Div. I-111) Scier
Kritische Kommission flrr das . Komm
Erstausgabe der Corpus Project Project
2 5 1000-000005 _ . : NaN . o funding ; .
Evidentiae contra philosophorum medii (Div. IIll funding philosoj
D... ’
Kaziaall‘t)igr?:r: Project Project
3 6 1000-000006 . f NaN Burckhardt Max funding) Hanc
Handschriften in h funding
(Div. I-111) Alte Dr
der Sch...
Wissenschaftliche Project
4 7 1000-000007 Mitarbeitam Schweiz. ¢\ ing Project
Thesaurus Thesauruskommission h funding Thesaurt
Li (Div. I-111)
ingu...
In [9]: persons.head(5)
Out[9]:
. . . Projec
Last First Institute Institute Person Prolects_ as Projects Projects i
Gender ID OCRID responsible as as .
Name Name Name Place : . Practi
SNSF Applicant Applicant Partner P
artn
0 aMarca Davide male NaN NaN 53856 NaN NaN NaN NaN Nz
1 aMarca Andrea male NaN NaN 132628 NaN 67368 NaN NaN Ne
2 A Jafari Golnaz female U""’LeJZS'e‘fr: Luzern 747886 NaN 191432 NaN NaN N
3 Aaberg Johan male NaN NaN 575257 NaN NaN NaN NaN Ne¢
4 Aahman Josefin female NaN NaN 629557 NaN NaN NaN NaN Ne

We see that the persons table gives information such as the role of a person in various projects (applicant, employee
etc.), her/his gender etc. The project table on the other side gives information such as the period of a grant, how much
money was awarded etc.

What if we now wish to know for example:

» How much money is awarded on average depending on gender?
« How long does it typically take for a researcher to go from employee to applicant status on a grant?

We need a way to link the two tables, i.e. create a large table where each row corresponds to a single observation
containing information from the two tables such as: applicant, gender, awarded funds, dates etc. We will now go through
all necessary steps to achieve that goal.

20f 14 9/10/20, 10:25 AM

12-DA Pandas _realworld

3of14

12.2 Merging tables

file:///home/marie/Documents/github_accounts/...

If each row of the persons table contained a single observation with a single person and a single project (the same person
would appear of course multiple times), we could just join the two tables based e.g. on the project ID. Unfortunately, in the
persons table, each line corresponds to a single researcher with all projects IDs lumped together in a list. For example:

In [12]:
Out[12]:

In [13]:
Out[13]:

persons.iloc[10041]

Last Name

Bodenmann

First Name

Guy

Gender

male

Institute Name

er/Jug...

Institute Place

Zirich

Person ID SNSF

47670

OCRID

0964-6409

Projects as responsible Applicant
29627; ...

Projects as Applicant
90;166348

Projects as Partner

NaN

Projects as Practice Partner
NaN

Projects as Employee

62901

Projects as Contact Person
NaN

Name: 10041, dtype: object

Lehrstuhl fir Klinische Psychologie Kind

0000-0003-
46820;56660;62901;109547;115948;128960;1

112141;1220

persons.iloc[10041]['Projects as responsible Applicant']

'46820;56660;62901;109547;115948;128960;129627;129699;133004;146775;147634;17

3270

Therefore the first thing we need to do is to split those strings into actual lists. We can do that by using classic Python
string splitting. We simply apply that function to the relevant columns. We need to take care of rows containing NaNs on
which we cannot use split() . We create two series, one for applicants, one for employees:

In [14]:

projID a = persons['Projects as responsible Applicant'].apply(lambda x: Xx.sp
lit(';"') if not pd.isna(x) else np.nan)
projID e = persons['Projects as Employee'].apply(lambda x: x.split(';') if n

ot pd.isna(x) else np.nan)

9/10/20, 10:25 AM

12-DA Pandas _realworld file:///home/marie/Documents/github_accounts/...

4 0f14

In [15]:
Out[15]:

In [17]:
Out[17]:

projID a

0 NaN
1 [67368]
2 [191432]
3 NaN
4 NaN
110811 [52821, 143769, 147153, 165510, 183584]
110812 NaN
110813 NaN
110814 NaN
110815 NaN

Name: Projects as responsible Applicant, Length: 110816, dtype: object

projID a[l0041]

['46820",
'56660",
'62901",
'109547",
'115948",
'128960",
'129627',
'129699',
'133004',
'146775",
'147634',
'173270"']

Now, to avoid problems later we'll only keep rows that are not NaNs. We first add the two series to the dataframe and then

remove NaNs:

In [18]:
Out[18]:

In [19]:

pd.isna(projID_a)

0 True
1 False
2 False
3 True
4 True
110811 False
110812 True
110813 True
110814 True
110815 True

Name: Projects as responsible Applicant, Length: 110816, dtype: bool

applicants = persons.copy()
applicants['projID'] = projID a
applicants = applicants[~pd.isna(projID a)]

employees = persons.copy()
employees['projID'] = projID e
employees = employees[~pd.isna(projID e)]

Now we want each of these projects to become a single line in the dataframe. Here we use a function that we haven't used

before called explode which turns every element in a list into a row (a good illustration of the variety of available
functions in Pandas):

9/10/20, 10:25 AM

12-DA Pandas _realworld file:///home/marie/Documents/github_accounts/...

In [20]: applicants = applicants.explode('projID')
employees = employees.explode('projID')

In [21]: applicants.head(5)

Out[21]:
Last First Institute Person Projects as Projects Projects
Name Name Gender Institute Name Place ID OCRID responsible as as
SNSF Applicant Applicant Partner
Andrea male NaN NaN 132628 NaN 67368 NaN NaN
Marca
Jafari Golnaz female Universitat Luzern Luzern 747886 NaN 191432 NaN NaN
Clinique de
7 Aapo Ml e Genolier EMIH. oo dier 3268 NaN 8532:9513 8155 NaN
S. Oncologie-
Hématolo...
Clinique de
7 Aapro Mall e CGenolier EMH. o diier 3268 NaN 8532:9513 8155 NaN
S. Oncologie-
Hématolo...
Lehrstuhl far
11 Aas Gregor male Pflanzenphysiologie Bayreuth 36412 NaN 52037 NaN NaN
Universitat ...

So now we have one large table, where each row corresponds to a single applicant and a single project. We can finally do
our merging operation where we combined information on persons and projects. We will do two such operations: one for
applicants using the projID a column for merging and one using the projID e column. We have one last problem
to fix:

In [22]: applicants.loc[1l].projID
Out[22]: '67368'

In [23]: projects.loc[1]['Project Number']
Out[23]: 4

We need the project ID in the persons table to be a number and not a string. We can try to convert but get an error:

50f14 9/10/20, 10:25 AM

12-DA Pandas _realworld file:///home/marie/Documents/github_accounts;/...

In [24]: applicants.projID = applicants.projID.astype(int)
employees.projID = employees.projID.astype(int)

ValueError Traceback (most recent call last)
<ipython-input-24-fca9460daf4e> in <module>
----> 1 applicants.projID = applicants.projID.astype(int)

2 employees.projID = employees.projID.astype(int)

~/miniconda3/envs/danalytics/lib/python3.8/site-packages/pandas/core/generic.
py in astype(self, dtype, copy, errors)

5696 else:
5697 # else, only a single dtype is given
-> 5698 new data = self. data.astype(dtype=dtype, copy=copy, erro
rs=errors)
5699 return self. constructor(new data). finalize (self)
5700

~/miniconda3/envs/danalytics/lib/python3.8/site-packages/pandas/core/internal
s/managers.py in astype(self, dtype, copy, errors)

580

581 def astype(self, dtype, copy: bool = False, errors: str = "rais
ell):
--> 582 return self.apply("astype", dtype=dtype, copy=copy, errors=er
rors)

583

584 def convert(self, **kwargs):

~/miniconda3/envs/danalytics/lib/python3.8/site-packages/pandas/core/internal
s/managers.py in apply(self, f, filter, **kwargs)

440 applied = b.apply(f, **kwargs)
441 else:
--> 442 applied = getattr(b, f)(**kwargs)
443 result blocks = extend blocks(applied, result blocks)
444

~/miniconda3/envs/danalytics/lib/python3.8/site-packages/pandas/core/internal
s/blocks.py in astype(self, dtype, copy, errors)

623 valsld = values.ravel()

624 try:
--> 625 values = astype nansafe(valsld, dtype, copy=True)

626 except (ValueError, TypeError):

627 # e.g. astype nansafe can fail on object-dtype of str
ings

~/miniconda3/envs/danalytics/lib/python3.8/site-packages/pandas/core/dtypes/c
ast.py in astype nansafe(arr, dtype, copy, skipna)

872 # work around NumPy brokenness, #1987

873 if np.issubdtype(dtype.type, np.integer):
--> 874 return lib.astype intsafe(arr.ravel(), dtype).reshape(ar
r.shape)

875

876 # if we have a datetime/timedelta array of objects

pandas/ libs/lib.pyx in pandas. libs.lib.astype intsafe()

ValueError: invalid literal for int() with base 10: ''

It looks like we have a row that doesn't conform to expectation and only contains ". Let's try to figure out what happened.
First we find the location with the issue:

6 of 14 9/10/20, 10:25 AM

12-DA Pandas _realworld file:///home/marie/Documents/github_accounts/...

In [25]: applicants[applicants.projID==""]

Out[25]:
. . . Person Projects as Projects Proj¢
Last Name N';':; Gender Ins'\tlg::z Insglt:éz ID OCRID resplonsible : as :
SNSF Applicant Applicant Pari
Séminaire
de politique
50947 Kleinewefers Henner male économique, Fribourg 10661 NaN 8; NaN !
d'économie
Faculté de
o Psychologie Gendve
62384 Massarenti Léonard male et des 4 11138 NaN 4; NaN !
Sciences de
I'Ed...
Then we look in the original table:
In [26]: persons.loc[50947]
Out[26]: Last Name Kle
inewefers
First Name
Henner
Gender
male
Institute Name Séminaire de politique économique, d'éco
nomie ...
Institute Place
Fribourg
Person ID SNSF
10661
OCRID
NaN
Projects as responsible Applicant
8;
Projects as Applicant
NaN
Projects as Partner
NaN
Projects as Practice Partner
NaN
Projects as Employee
NaN
Projects as Contact Person
NaN

Name: 50947, dtype: object

Unfortunately, as is often the case, we have a misformatting in the original table. The project as applicant entry has a
single number but still contains the ; sign. Therefore when we split the text, we end up with ['8"', ' '] . Can we fix
this? We can for example filter the table and remove rows where projID has length 0:

In [30]: applicants = applicants[applicants.projID.apply(lambda x: len(x) > 0)]
employees = employees[employees.projID.apply(lambda x: len(x) > 0)]

Now we can convert the projID column to integer:

7 of 14 9/10/20, 10:25 AM

12-DA Pandas _realworld file:///home/marie/Documents/github_accounts/...

In [31]: applicants.projID = applicants.projID.astype(int)
employees.projID = employees.projID.astype(int)

Finally we can use merge to combine both tables. We will combine the projects (on 'Project Number') and persons table
(on 'projID_a' and 'projlD_e"):

In [32]: merged appl =
ject Number')
merged_empl =
ect Number')

pd.merge(applicants, projects, left on='projID', right on='Pro

pd.merge(employees, projects, left on='projID', right on='Proj

In [33]: applicants.head(5)

Out[33]:
Last First Institute Person Projects as Projects Projects
Name Name Gender Institute Name Place ID OCRID responsible as as
SNSF Applicant Applicant Partner
1 @ Andrea male NaN NaN 132628 NaN 67368 NaN NaN
Marca
2 Jaf:ri Golnaz female Universitat Luzern Luzern 747886 NaN 191432 NaN NaN
Clinique de
7 Agpro Mg Genolier EMH oo dlier 3268 NaN 85329513 8155 NaN
S. Oncologie-
Hématolo...
Clinique de
7 Aapro Ml g Genolier EMH oo ier 3268 NaN 85329513 8155 NaN
S. Oncologie-
Hématolo...
Lehrstuhl fir
11 Aas Gregor male Pflanzenphysiologie Bayreuth 36412 NaN 52037 NaN NaN

Universitat ...

12.3 Reformatting columns: time

We now have in those tables information on both scientists and projects. Among other things we now when each project of
each scientist has started via the Start Date column:

In [34]: merged empl['Start Date'l]

Out[34]: @ 01.04.1993
1 01.04.1993
2 01.04.1993
3 01.04.1993
4 01.04.1993

127126 01.04.1990
127127 01.04.1991
127128 01.11.1998
127129 01.11.1992
127130 01.10.2008
Name: Start Date, Length: 127131, dtype: object

If we want to do computations with dates (e.g. measuring time spans) we have to change the type of the column. Currently
it is indeed just a string. We could parse that string, but Pandas already offers tools to handle dates. For example we can
use pd.to datetime to transform the string into a Python datetime format. Let's create a new date column:

8 of 14 9/10/20, 10:25 AM

12-DA Pandas _realworld

In [35]:

In [36]:

Out[36]:

In [37]:
Out[37]:

merged _empl['date']
merged _appl['date']

merged empl.iloc[0]['date"]

Timestamp('1993-01-04 00:00:00"')

merged empl.iloc[O]['date'].year

1993

Let's add a year column to our dataframe:

In [38]:

merged _empl['year']
merged _appl['year']

12.4 Completing information

file:///home/marie/Documents/github_accounts/...

pd.to datetime(merged empl['Start Date'])
pd.to datetime(merged appl['Start Date'])

merged_empl.date.apply(lambda x: x.year)
merged_appl.date.apply(lambda x: x.year)

As we did in the introduction, we want to be able to broadly classify projects into three categories. We therefore search for
a specific string ("Humanities', 'Mathematics','Biology') within the 'Discipline Name Hierarchy' column to create a new
column called 'Field":

In [39]:

science types = ['Humanities',

'Mathematics', 'Biology']

merged appl['Field'] = merged appl['Discipline Name Hierarchy'].apply(
lambda el: next((y for y in [x for x in science types if x in el] if y i

s not None),None) if not pd.isna(el) else el)

We will use the amounts awarded in our analysis. Let's look at that column:

In [40]:
Out[40]:

merged _appl['Approved Amount']

0
1
2
3
4

74650
74651
74652
74653
74654

20120
data not included in

211427.
174021.
.00

8865

150524.
346000.
262960.
449517 .
1433628.
Name: Approved Amount, Length:

.00

P3
00
00

00
00
00
00
00

74655, dtype: object

Problem: we have rows that are not numerical. Let's coerce that column to numerical:

In [41]:

9 of 14

merged appl['Approved Amount'] = pd.to numeric(merged appl['Approved Amount
"1, errors='coerce')

9/10/20, 10:25 AM

12-DA Pandas _realworld file:///home/marie/Documents/github_accounts/...

10 of 14

In [42]: merged appl['Approved Amount']

Out[42]: @ 20120.0
1 NaN
2 211427.0
3 174021.0
4 8865.0
74650 150524.0
74651 346000.0
74652 262960.0
74653 449517.0
74654 1433628.0

Name: Approved Amount, Length: 74655, dtype: float64

12.5 Data anaylsis

We are finally done tidying up our tables so that we can do proper data analysis. We can aggregate data to answer some
questions.

12.5.1 Amounts by gender

Let's see for example what is the average amount awarded every year, split by gender. We keep only the 'Project funding'
category to avoid obscuring the results with large funds awarded for specific projects (PNR etc):

In [44]: merged projects = merged applimerged appl['Funding Instrument Hierarchy'] ==
'Project funding'l]

In [45]: grouped gender = merged projects.groupby(['Gender','year'])['Approved Amount
"]l.mean().reset _index()
grouped gender

OQut[45]:
Gender year Approved Amount

0 female 1975.0 101433.200000
1 female 1976.0 145017.750000
2 female 1977.0 177826.157895
3 female 1978.0 141489.857143
4 female 1979.0 218496.904762

87 male 2016.0 429717.055907
88 male 2017.0 507521.397098
89 male 2018.0 582461.020513
90 male 2019.0 624826.387985
91 male 2020.0 617256.523404

92 rows x 3 columns

To generate a plot, we use here Seaborn which uses some elements of a grammar of graphics. For example we can
assign variables to each "aspect” of our plot. Here x and y axis are year and amount while color ('hue’) is the gender. In
one line, we can generate a plot that compiles all the information:

9/10/20, 10:25 AM

12-DA Pandas _realworld

11 of 14

file:///home/marie/Documents/github_accounts/...

In [46]: sns.lineplot(data = grouped gender, x='year', y='Approved Amount', hue='Gend

er')

Out[46]: <matplotlib.axes. subplots.AxesSubplot at 0x122c5d0do>

600000

500000 -

Approved Amount

200000 1

100000 A

There seems to be a small but systematic difference in the average amount awarded.

400000

300000 -

Gender

— female

male

A

19'80

1990

2000 2010
year

20'20

We can now use a plotting library that is essentially a Python port of ggplot to add even more complexity to this plot. For
example, let's split the data also by Field:

In [47]: import plotnine as p9

In [48]: grouped gender field = merged projects.groupby(['Gender', 'year', 'Field'])['A
pproved Amount'].mean().reset index()

In [49]: grouped gender field

Out[49]:

Gender year Field Approved Amount

0 female 1975.0 Biology 95049.000000

1 female 1975.0 Humanities 95451.666667

2 female 1975.0 Mathematics 125762.000000

3 female 1976.0 Biology 183154.200000

4 female 1976.0 Humanities 68590.750000
271 male 2019.0 Humanities 523397.013072
272 male 2019.0 Mathematics 632188.796040
273 male 2020.0 Biology 694705.243590
274 male 2020.0 Humanities 520925.507246
275 male 2020.0 Mathematics 624141.068182

276 rows x 4 columns

9/10/20, 10:25 AM

12-DA Pandas _realworld file:///home/marie/Documents/github_accounts/...

In [50]: (p9.ggplot(grouped gender field, p9.aes('year', 'Approved Amount', color='Ge
nder'))
+ p9.geom_point()
+ p9.geom line()
+ p9.facet wrap('~Field'))

Biology Humanities Mathematics
A
i
600000 - #
® o ,'
‘ !1 '|P1
{ . o
! 3
I= | I |
3 b | '
£ g i 4
< 400000 - [° ¢ I ‘ Gender
kA ? t! . —o— female
g o) ‘ \ male
2 i bRy 3
o 8 N q !
Q. ﬂ\ u"b X‘” é I 3) z‘ | 27
< J [i X W
" (P‘ .* *‘l‘l } I\t v‘ an'h ”,
200000 - ZHH 1 N A 8%
’ ’H . I |1/ &4 |‘1 ’
a (da LR
ks :
| » x% l
T ‘,m‘\ '
o8|/

1980 1990 2000 20102020 1980 1990 20002010 2020 1980 1990 2000 2010 2020
year

Out[50]: <ggplot: (305412337)>

12.5.2 From employee to applicant

One of the questions we wanted to answer above was how much time goes by between the first time a scientist is
mentioned as "employee" on an application and the first time he applies as main applicant. We have therefore to:

1. Find all rows corresponding to a specific scientist
2. Find the earliest date of project

For (1) we can use groupby and use the Person ID SNSF ID which is a unique ID assigned to each researcher.
Once this aggregation is done, we can summarize each group by looking for the "minimal” date:

merged empl.groupby('Person ID SNSF').date.min().reset index()

In [51]: first empl
merged_appl.groupby('Person ID SNSF').date.min().reset index()

first appl

We have now two dataframes indexed by the Person 1ID :

In [52]: first _empl.head(5)

OQut[52]:
Person ID SNSF date
0 1611 1990-01-10
1 1659 1988-01-11
2 1661 1978-01-07
3 1694 1978-01-06
4 1712 1982-01-04

12 of 14 9/10/20, 10:25 AM

12-DA Pandas _realworld

13 of 14

file:///home/marie/Documents/github_accounts/...

Now we can again merge the two series to be able to compare applicant/employee start dates for single people:

In [53]:

In [54]:
Out[54]:

merge first = pd.merge(first appl, first empl, on = 'Person ID SNSF', suffix
appl', '_empl'))

es=('_

merge first

Person ID SNSF date_appl date_empl

0 1659 1975-01-10 1988-01-11

1 1661 1978-01-07 1978-01-07

2 1694 1985-01-01 1978-01-06

3 1712 1982-01-04 1982-01-04

4 1726 1985-01-03 1985-01-03
10336 748652 2019-01-12 2019-01-12
10337 748760 2020-01-03 2020-01-03
10338 749430 2020-01-04 2020-01-04
10339 749991 2020-01-03 2020-01-03
10340 750593 2020-01-01 2020-01-01

10341 rows x 3 columns

Finally we merge with the full table, based on the index to recover the other paramters:

In [55]:

full table = pd.merge(merge first, merged appl,on = 'Person ID SNSF')

Finally we can add a column to that dataframe as a "difference in dates™:

In [56]:

In [57]:

In [58]:
Out[58]:

full_table['time diff'] = full table.date appl-full_ table.date empl

full table.time diff = full table.time diff.apply(lambda x: x.days/365)

full table.hist(column="'time diff',bins = 50)

array([[<matplotlib.axes. subplots.AxesSubplot object at 0x12ba24970>]1,
dtype=object)

time_diff

4000 A

3500 A1

3000 A

2500 A

2000 A

1500 1

1000 A
500 1

9/10/20, 10:25 AM

12-DA Pandas _realworld file:///home/marie/Documents/github_accounts;/...

We see that we have one strong peak at AT == 0 which corresponds to people who were paid for the first time through
an SNSF grant when they applied themselves. The remaining cases have a peak around AT == 5 which typically
corresponds to the case where a PhD student was payed on a grant and then applied for a postdoc grant ~4-5 years later.

We can go further and ask how dependent this waiting time is on the Field of research. Obviously Humanities are
structured very differently
In [60]: sns.boxplot(data=full table, y='time diff', x='Field');

40

30 4

n
o

—
o

o

time_diff

=30 1 +

Humanities Biology Mathematics
Field

In [61]: sns.violinplot(data=full table, y='time diff', x='Field',);

40 p

30 4

20 1

= 101
;al

g 0]
F=

_10 4

_20 4

_30 4

Humanities Biology Mathematics
Field

14 of 14 9/10/20, 10:25 AM

98-DA Numpy Exercises file:///home/marie/Documents/github_accounts/...

In [2]: dimport numpy as np
import matplotlib.pyplot as plt

Exercice Numpy

1. Array creation
» Create a 1D array with values from 0 to 10 and in steps of 0.1. Check the shape of the array:
In [1:

« Create an array of normally distributed numbers with mean 1 = 0 and standard deviation ¢ = 0.5. It should have
20 rows and as many columns as there are elements in xarray . Callit normal_array :

In [1:
o Check the type of normal_array :

In []:

2. Array mathematics

e Using xarray as x-variable, create a new array yarray as y-variable using the function
y = 10 * cos(z) x e 0-12:

In []:

« Create array_abs by taking the absolute value of array mul:
In [1:

« Create a boolan array (logical array) where all positions > 0.3 in array abs are True and the others False
In []:

« Create a standard deviation projection along the second dimension (columns) of array_abs . Check that the
dimensions are the ones you expected. Also are the values around the value you expect?

1of3 9/10/20, 10:26 AM

98-DA Numpy Exercises file:///home/marie/Documents/github_accounts/...

In []:

3. Plotting
» Use aline plot to plot yarray vs xarray :
In []:
« Try to change the color of the plot to red and to have markers on top of the line as squares:
In []:
« Plotthe normal_array as animagage and change the colormap to 'gray":
In []:
« Assemble the two above plots in a figure with one row and two columns grid:
In []:
4. Indexing
« Create new arrays where you select every second element from xarray and yarray. Plot them on top of xarray and
yarray .
In []:
o Select all values of yarray that are larger than 0. Plot those on top of the regular xarray and yarray plot.
In []:
« Flip the order of xarray use itto plot yarray :

In []:

5. Combining arrays
« Create an array filled with ones with the same shape as normal_array . Concatenate it to normal_array along

the first dimensions and plot the result:

In []:

2 0f 3 9/10/20, 10:26 AM

98-DA Numpy Exercises file:///home/marie/Documents/github_accounts/...

e yarray represents a signal. Each line of normal array represents a possible random noise for that signal.
Using broadcasting, try to create an array of noisy versions of yarray using normal_array . Finally, plot it:

In []:

3of3 9/10/20, 10:26 AM

98-DA Numpy Solutions file:///home/marie/Documents/github_accounts/...

In [2]: dimport numpy as np
import matplotlib.pyplot as plt

Exercice Numpy

1. Array creation
» Create a 1D array with values from 0 to 10 and in steps of 0.1. Check the shape of the array:

In [145]: xarray = np.arange(0,10,0.1)
xarray.shape

Out[145]: (100,)

1.2. Create an array of normally distriouted numbers with mean 4 = 0 and standard deviation 0 = 0.5. It should have
20 rows and as many columns as there are elements in xarray . Callit normal_array :

In [146]: normal _array = np.random.normal(0,0.5, (20, xarray.shape[0]))

e Check the type of normal _array :

In [147]: normal _array.dtype
Out[147]: dtype('float64')

2. Array mathematics

e Using xarray as x-variable, create a new array yarray as y-variable using the function
y = 10 x cos(x) * e 01%:

In [148]: vyarray = 5*np.cos(xarray)*np.exp(-0.1*xarray)
« 2.2 Create array_abs by taking the absolute value of array mul :
In [149]: array _abs = np.abs(yarray)

« 2.2 Create a boolan array (logical array) where all positions > 0.3 in array abs are True and the others
False

In [165]: array bool = array abs > 0.3

1of6 9/10/20, 10:27 AM

98-DA Numpy Solutions file:///home/marie/Documents/github_accounts/...

« 2.3 Create a standard deviation projection along the second dimension (columns) of array abs . Check that the
dimensions are the ones you expected. Also are the values around the value you expect?

In [167]: array min = normal array.std(axis = 1)
array min.shape

0ut[1671: (20,)

In [168]: array min

Out[168]: array([0.54167658, 0.51651789, 0.4832876 , 0.54537271, 0.50834276,
0.47623427, 0.44677832, 0.47841273, 0.50255308, 0.50656681,
0.47822978, 0.52051232, 0.55511136, 0.46977863, 0.57914545,
0.47393849, 0.52705922, 0.43786828, 0.55795931, 0.45476456])

3. Plotting

e Use aline plot to plot yarray vs xarray :

In [172]: plt.plot(xarray, yarray,'ro')

Out[172]: [<matplotlib.lines.Line2D at 0x11fb2b9d6>]
A

-4

« Try to change the color of the plot to red and to have markers on top of the line as squares:

In [174]: plt.plot(xarray, yarray, '-sr')
Out[174]: [<matplotlib.lines.Line2D at 0x11f806070>]

-4

o-
~N
F =Y
o
@
5]

20f6 9/10/20, 10:27 AM

98-DA Numpy Solutions file:///home/marie/Documents/github_accounts;/...

« Plotthe normal_array as animagage and change the colormap to 'gray":

In [175]: plt.imshow(normal array, cmap = 'gray')

Out[175]: <matplotlib.image.AxesImage at 0x11fd9dfdeo>

« Assemble the two above plots in a figure with one row and two columns grid:

In [176]: fig, ax = plt.subplots(1,2)
ax[0].plot(xarray, yarray, '-sr')
ax[1l].imshow(normal array, cmap = 'gray')

Out[176]: <matplotlib.image.AxesImage at 0x11fd9a340>

0 20 40 60 80

00 25 50 75 100

4. Indexing

» Create new arrays where you select every second element from xarray and yarray. Plot them on top of xarray and
yarray .

3 0of6 9/10/20, 10:27 AM

98-DA Numpy Solutions

In [179]:

Out[179]:

xarray[::2]
yarray[::2]

xarray2
yarray2

plt.plot(xarray, yarray)

plt.plot(xarray2, yarray2,'o')

file:///home/marie/Documents/github_accounts;/...

[<matplotlib.lines.Line2D at 0x12045fbb0>]

-4

~N o

« Select all values of yarray that are larger than 0. Plot those on top of the regular xarray and yarray plot.

In [181]:

Out[181]:

plt.plot(xarray, yarray)

plt.plot(xarray[yarray>0], yarrayl[yarray>0],'o"')

[<matplotlib.lines.Line2D at 0x1205f0880>]

-2 1

-4

[

« Flip the order of xarray use itto plot yarray :

4 0of 6

9/10/20, 10:27 AM

98-DA Numpy Solutions file:///home/marie/Documents/github_accounts;/...

In [185]: flipped array = np.flipud(xarray)
plt.plot(flipped_array, yarray)

Out[185]: [<matplotlib.lines.Line2D at 0x120848dc0>]

A

5. Combining arrays

« Create an array filled with ones with the same shape as normal_array . Concatenate it to normal _array along
the first dimensions and plot the result:

In [189]: ones_array = np.ones(normal_array.shape)
concatenated = np.concatenate([ones_array, normal_arrayl)

plt.imshow(concatenated);

0

e yarray represents a signal. Each line of normal_array represents a possible random noise for that signal.
Using broadcasting, try to create an array of noisy versions of yarray using normal _array . Finally, plot it:

The last dimensions of both arrays are matching. We can therefore simply added the two arrays, and yarray will simply
be "replicated" as many times as needed:

In [194]: vyarray noise = yarray + normal_array

In [196]: plt.imshow(yarray noise)
Out[196]: <matplotlib.image.AxesImage at 0x11b249b80>

0

10

50f6 9/10/20, 10:27 AM

98-DA Numpy Solutions file:///home/marie/Documents/github_accounts/...

6 of 6 9/10/20, 10:27 AM

99-DA Pandas Exercises file:///home/marie/Documents/github_accounts/...

In [21]: dimport pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

Exercise Pandas

For these exercices we are using a dataset (https://www.kaggle.com/dgomonov/new-york-city-airbnb-open-data/kernels)
provided by Airbnb for a Kaggle competition. It describes its offer for New York City in 2019, including types of
appartments, price, location etc.

1. Create a dataframe

Create a dataframe of a few lines with objects and their poperties (e.g fruits, their weight and colour). Calculate the mean
of your Dataframe.

2. Import

« Import the table called AB_NYC 2019.csv as a dataframe. It is located in the Datasets folder. Have a look at the
beginning of the table (head).
« Create a histogram of prices

3. Operations

Create a new column in the dataframe by multiplying the "price" and "availability_365" columns to get an estimate of the
maximum yearly income.

3b. Subselection and plotting

Create a new Dataframe by first subselecting yearly incomes between 1 and 100'000. Then make a scatter plot of yearly
income versus number of reviews

4. Combine

We provide below and additional table that contains the number of inhabitants of each of New York's boroughs
("neighbourhood_group" in the table). Use merge to add this population information to each element in the original
dataframe.

5. Groups

1of2 9/10/20, 10:26 AM

99-DA Pandas Exercises file:///home/marie/Documents/github_accounts/...

« Using groupby calculate the average price for each type of room (room_type) in each neighbourhood_group. What
is the average price for an entire home in Brooklyn ?

« Unstack the multi-level Dataframe into a regular Dataframe with unstack() and create a bar plot with the resulting
table

6. Advanced plotting

Using Seaborn, create a scatter plot where x and y positions are longitude and lattitude, the color reflects price and the
shape of the marker the borough (neighbourhood_group). Can you recognize parts of new york ? Does the map make
sense ?

2 0f 2 9/10/20, 10:26 AM

99-DA Pandas_Solutions file:///home/marie/Documents/github_accounts/...

In [8]: dimport pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

Exercise

For these exercices we are using a dataset (https://www.kaggle.com/dgomonov/new-york-city-airbnb-open-data/kernels)
provided by Airbnb for a Kaggle competition. It describes its offer for New York City in 2019, including types of
appartments, price, location etc.

1. Create a dataframe

Create a dataframe of a few lines with objects and their poperties (e.g fruits, their weight and colour). Calculate the mean
of your Dataframe.

In [5]: fruits = pd.DataFrame({'fruits':['strawberry', 'orange', 'melon'], 'weight
':[20, 200, 1000], 'weight2':[20, 200, 1000], 'color': ['red',6 'orange', 'yello
w'l})

In [6]: fruits.describe()

Out[6]:
weight weight2

count 3.000000 3.000000
mean 406.666667 406.666667
std 521.664004 521.664004
min 20.000000 20.000000
25% 110.000000 110.000000
50% 200.000000 200.000000
75% 600.000000 600.000000
max 1000.000000 1000.000000

In [5]: fruits.mean()

Out[5]: weight 406.666667
dtype: float64

2. Import

« Import the table called AB_NYC_2019.csv as a dataframe. It is located in the Datasets folder. Have a look at the
beginning of the table (head).
» Create a histogram of prices

In [11]: airbnb = pd.read csv('Data/AB NYC 2019.csv')

1o0f8 9/10/20, 10:26 AM

99-DA Pandas_Solutions file:///home/marie/Documents/github_accounts/...

In [13]: airbnb.head()

OQut[13]:
id name host_id host_name neighbourhood_group neighbourhood latitude longitude

Clean & quiet
0 2539 apt home by the 2787 John Brooklyn Kensington 40.64749 -73.97237
park

Skylit Midtown

12595 Castle

2845 Jennifer Manhattan Midtown 40.75362 -73.98377

THE VILLAGE
OF .
2 3647 HARLEM... NEW 4632 Elisabeth Manhattan Harlem 40.80902 -73.9419C

YORK !

Cozy Entire
3 3831 Floor of 4869 LisaRoxanne Brooklyn Clinton Hill 40.68514 -73.9597¢€
Brownstone

Entire Apt:
Spacious
Studio/Loft by
central park

4 5022 7192 Laura Manhattan East Harlem 40.79851 -73.9439¢

In [17]: airbnb['price']l.plot(kind = 'hist', bins = range(0,1000,10));

3500 A1

3000 A

2500

Frequency

G n
s 8
o o

1000 1

500 A

s mn

0 200 400 600 800 1000

3. Operations

Create a new column in the dataframe by multiplying the "price" and "availability_365" columns to get an estimate of the
maximum yearly income.

In [18]: airbnb['yearly income'] = airbnb['price']l*airbnb['availability 365']

In [19]: airbnb['yearly income']

Out[19]: 0 54385
1 79875
2 54750
3 17266
4 0
48890 630
48891 1440
48892 3105
48893 110
48894 2070

Name: yearly income, Length: 48895, dtype: int64

20f8 9/10/20, 10:26 AM

99-DA Pandas_Solutions

3 0f8

3b. Subselection and plotting

file:///home/marie/Documents/github_accounts/...

Create a new Dataframe by first subselecting yearly incomes between 1 and 100'000 and then by suppressing cases with
0 reviews. Then make a scatter plot of yearly income versus number of reviews

In [20]: (airbnb.yearly income>1)&(airbnb.yearly income<100000)

Out[20]:

0
1
2
3
4

48890
48891
48892
48893
48894

True
True
True
True
False
True
True
True

True
True

Name: yearly income, Length: 48895, dtype: bool

In [21]: sub_airbnb = airbnb[(airbnb.yearly income>1)&(airbnb.yearly income<100000)].

copy ()

In [22]: sub_airbnb.plot(x = 'number of reviews', y = 'yearly income', kind = 'scatte
r', alpha = 0.01)
plt.show()

100000 +

80000

yearly_income

20000 -

4. Combine

60000 -

40000 A1

0 100 200 300 400
number_of_reviews

We provide below and additional table that contains the number of inhabitants of each of New York's boroughs
("neighbourhood_group” in the table). Use merge to add this population information to each element in the original

dataframe.

In [23]: boroughs

pd.read excel('Data/ny boroughs.xlsx")

9/10/20, 10:26 AM

99-DA Pandas_Solutions

4 0of 8

In [24]: boroug
Out[24]:

hs

borough population

file:///home/marie/Documents/github_accounts/...

0 Brooklyn 2648771
1 Manhattan 1664727
2 Queens 2358582
3 Staten Island 479458
4 Bronx 1471160
In [25]: airbnb
OQut[25]:
id name host_id host_name neighbourhood_group neighbourhood latitude
Clean & quiet
0 2539 apt home by the 2787 John Brooklyn Kensington 40.64749
park
1 2595 St Mg;‘;"t‘g 2845 Jennifer Manhattan Midtown 40.75362
THE VILLAGE
OF)
2 3647 HARLEM... NEW 4632 Elisabeth Manhattan Harlem 40.80902
YORK !
Cozy Entire
3 3831 Floor of 4869 LisaRoxanne Brooklyn Clinton Hill 40.68514
Brownstone
Entire Apt:
Spacious
4 5022 Studio/Loft by 7192 Laura Manhattan East Harlem 40.79851
central park
Charming one
48890 36484665 0OrOOM -neWly gn0n44 Sabrina Brooklyn Bedford- ,, 67853
renovated Stuyvesant
rowhouse
Affordable room
48891 36485057 in Bushwick/East 6570630 Marisol Brooklyn Bushwick 40.70184
Williamsburg
Sunny Studio at
48892 36485431 Historical 23492952 ligar & Aysel Manhattan Harlem 40.81475
Neighborhood
43rd St. Time
48893 36485609 Square-cozy 30985759 Taz Manhattan Hell's Kitchen 40.75751
single bed
Trendy duplex in
48894 36487245 the very heart of 68119814 Christophe Manhattan Hell's Kitchen 40.76404
Hell's Kitchen
48895 rows x 17 columns
In [26]: merged = pd.merge(airbnb, boroughs, left on = 'neighbourhood group', right o

n="'borough')

9/10/20, 10:26 AM

99-DA Pandas_Solutions file:///home/marie/Documents/github_accounts/...

In [27]: merged.head()

Out[27]:
id name host_id host_name neighbourhood_group neighbourhood Ilatitude longitude
Clean & quiet
0 2539 apt home by 2787 John Brooklyn Kensington 40.64749 -73.97237
the park
Cozy Entire
1 3831 Floor of 4869 LisaRoxanne Brooklyn Clinton Hill 40.68514 -73.95976
Brownstone
2 5121 BlissArisSpace! 7356 Garon Brooklyn Bedford- ,, cesgs -73.95596
Stuyvesant
Lovely Room 1,
3 sgo3 Garden Best g7, Laurie Brooklyn South Slope 40.66829 -73.98779
Area, Legal
rental
Only 2 stops to
4 6848 Manhattan 15991 Allen & Irina Brooklyn Williamsburg 40.70837 -73.95352
studio
5. Groups

« Using groupby calculate the average price for each type of room (room_type) in each neighbourhood_group. What
is the average price for an entire home in Brooklyn ?

« Unstack the multi-level Dataframe into a regular Dataframe with unstack() and create a bar plot with the resulting
table

50f8 9/10/20, 10:26 AM

99-DA Pandas_Solutions

file:///home/marie/Documents/github_accounts/...

In [28]: airbnb.groupby(['neighbourhood group', 'room type']).mean()
Out[28]:
id host_id latitude longitude price minimu
neighbourhood_group room_type
Entire » 5697876+07 1.037373e+08 40.848013 -73.880363 127.506596
home/apt
Private
Bronx room 2235896e+07 1.060786e+08 40.849158 -73.886172 66.788344
Shared
room 2705442e+07 1.123450e+08 40.840873 -73.893407 59.800000
Entire
1.730117e+07 4.861704e+07 40.685211 -73.955603 178.327545
home/apt
Private
Brooklyn room 1894125407 6.242636e+07 40.685513 -73.947150 76.500099
Shared
room 2-358634e+07 1.040423e+08 40.669307 -73.948156 50.527845
Entire | 8668606+07 6.557697¢+07 40.758266 -73.978402 249.239109
home/apt
Private
Manhattan room 1:880759e+07 6.982314e+07 40.776002 -73.968506 116.776622
Shared
room 2 119615e+07 9.666720e+07 40.770035 -73.971700 88.977083
Enfire 5 1127726+07 8.7132800+07 40.728993 -73.874459 147.050573
home/apt
Private
Queens room 2197231407 1.008169e+08 40.732940 -73.871716 71.762456
Shared
room 2-469434e+07 1.123200e+08 40.734411 -73.872973 69.020202
Entire 5 1708336+07 9.618779¢+07 40.605728 -74.109460 173.846591
home/apt
Private
Staten Island room 2106201e+07 1.017539e+08 40.614450 -74.103089 62.292553
Shared
room 3:061484e+07 7.713866e+07 40.609894 -74.091077 57.444444
In [29]: summary = airbnb.groupby(['neighbourhood group', 'room type']).mean().price
In [30]: summary
Out[30]: neighbourhood group room_ type
Bronx Entire home/apt 127.506596
Private room 66.788344
Shared room 59.800000
Brooklyn Entire home/apt 178.327545
Private room 76.500099
Shared room 50.527845
Manhattan Entire home/apt 249.239109
Private room 116.776622
Shared room 88.977083
Queens Entire home/apt 147.050573
Private room 71.762456
Shared room 69.020202
Staten Island Entire home/apt 173.846591
Private room 62.292553
Shared room 57.444444

Name: price, dtype: float64

6 of 8

9/10/20, 10:26 AM

99-DA Pandas_Solutions

file:///home/marie/Documents/github_accounts/...

In [31]: summary[('Brooklyn', 'Entire home/apt')]

Out[31]: 178.32754472225128

In [32]: summary.unstack()

Out[32]:

room_type Entire home/apt Private room Shared room

neighbourhood_group

Bronx
Brooklyn
Manhattan
Queens

Staten Island

In [33]: summary.unstack().plot(kind = 'bar', alpha = 0.5)

plt.show()

127.506596
178.327545
249.239109
147.050573
173.846591

66.788344

76.500099

116.776622

71.762456

62.292553

59.800000
50.527845
88.977083
69.020202
57.444444

250 1

200 1

150 A

100 A1

room_type

Entire home/apt

Private room
Shared room

Bronx -

Brooklyn

neighbourhood_group

6. Advanced plotting

Manhattan -

Queens

Staten Island 4

Using Seaborn, create a scatter plot where x and y positions are longitude and lattitude, the color reflects price and the
shape of the marker the borough (neighbourhood_group). Can you recognize parts of new york ? Does the map make

sense ?

7 of 8

9/10/20, 10:26 AM

99-DA Pandas_Solutions

file:///home/marie/Documents/github_accounts;/...

In [32]: fig, ax = plt.subplots(figsize=(10,8))
g = sns.scatterplot(data = airbnb, y = 'latitude', x = 'longitude', hue = 'p
rice',
hue norm=(0,200), s=10, palette='inferno')

40.9

40.8
]
2 407
o

ks ':""‘
40.6 1 . ’
405 4
—74.2 —74.1 -74.0 -73.9 738 -73.7
longitude
In [1:

8 of 8

9/10/20, 10:26 AM

