05-DA Numpy combining arrays file:///home/marie/Documents/github_accounts/...

5. Combining arrays

We have already seen how to create arrays and how to modify their dimensions. One last operation we can do is to
combine multiple arrays. There are two ways to do that: by assembling arrays of same dimensions (concatenation,
stacking etc.) or by combining arrays of different dimensions using broadcasting. Like in the previous chapter, we illustrate
with small arrays and a real image.

In [1]: import numpy as np
import matplotlib.pyplot as plt
import skimage
plt.gray();
image = skimage.data.chelsea()

<Figure size 432x288 with 0 Axes>

5.1 Arrays of same dimensions
Let's start by creating a few two 2D arrays:
In [2]: arrayl

array2
array3

np.ones((10,5))
2*np.ones((10,3))
3*np.ones((10,5))

5.1.1 Concatenation

The first operation we can perform is concatenation, i.e. assembling the two 2D arrays into a larger 2D array. Of course we

have to be careful with the size of each dimension. For example if we try to concatenate arrayl and array2 along
the first dimension, we get:

In [3]: np.concatenate([arrayl, array2])

ValueError Traceback (most recent call last)
<ipython-input-3-580de54a6ac0> in <module>

----> 1 np.concatenate([arrayl, array2])

< array function_ _ internals> in concatenate(*args, **kwargs)

ValueError: all the input array dimensions for the concatenation axis must ma

tch exactly, but along dimension 1, the array at index 0 has size 5 and the a
rray at index 1 has size 3

Both array have 10 lines, but one has 3 and the other 5 columns. We can therefore only concatenate them along the
second dimensions:

In [4]: array conc = np.concatenate([arrayl, array2], axis = 1)

In [5]: array_conc.shape

Out[5]: (10, 8)

1o0f8 9/10/20, 10:21 AM

05-DA Numpy combining arrays file:///home/marie/Documents/github_accounts;/...

In [6]: plt.imshow(array conc, cmap = 'gray');

If we now use our example of real image, we can for example concatenate the two first channels of our RGB image:

In [7]: plt.imshow(np.concatenate([image[:,:,0], imagel:,:,1]11));

In [8]: plt.imshow(np.concatenate([image[:,:,0], image[:,:,1]], axis=1l));

5.1.2 Stacking

If we have several arrays with exact same sizes, we can also stack them, i.e. assemble them along a new dimension. For
example we can create a 3D stack out of two 2D arrays:

In [9]: array_stack = np.stack([arrayl, array3])

In [10]: array_stack.shape
OQut[10]: (2, 10, 5)

20f8 9/10/20, 10:21 AM

05-DA Numpy combining arrays file:///home/marie/Documents/github_accounts;/...

We can select the dimension along which to stack, again by using the axis keyword. For example if we want our new
dimensions to be the third axis we can write:

In [11]: array_stack = np.stack([arrayl, array3], axis = 2)

In [12]: array_stack.shape
Out[12]: (10, 5, 2)

With our real image, we can for example stack the different channels in a new order (note that one could do that easily
with np.swapaxis):

In [13]: image stack = np.stack([image[:,:,2], image[:,:,0], image[:,:,1]], axis=2)
In [14]: plt.imshow(image_stack);

0

50

100

150

200

250

As we placed the red channel, which has the highest intensity, at the position of the green one (second position) our image
now is dominated by green tones.

5.2 Arrays of different dimensions

5.2.1 Broadcasting

Numpy has a powerful feature called broadcasting. This is the feature that for example allows you to write:

In [15]: 2 * arrayl

Out[15]: array([[2.
[2.
[2.
[2.
[2.
[2.
[2.
[2.
[2.
[2.

MuNERN NS
MuNENN NS
MuNpNN NS
eIty

—_~s v~ s s~ S~ N~ 0~~~

30f8 9/10/20, 10:21 AM

05-DA Numpy combining arrays file:///home/marie/Documents/github_accounts/...

Here we just combined a single number with an array and Numpy re-used or broadcasted the element with less
dimensions (the number 2) across the entire arrayl . This does not only work with single numbers but also with arrays
of different dimensions. Broadcasting can become very complex, so we limit ourselves here to a few common examples.

The general rule is that in an operation with arrays of different dimensions, missing dimensions or dimensions of size 1
get repeated to create two arrays of same size. Note that comparisons of dimension size start from the last dimensions.
For example if we have a 1D array and a 2D array:

In [16]: arraylD = np.arange(4)
arraylD

Out[16]: array([0, 1, 2, 3])

In [17]: array2D = np.ones((6,4))
array2D

Out[17]: array([[1.
[1.
[1.
[1.
[1.
[1.

R
N
< <~ o~ o~ o~
[
P
. o~ o~ <~ o~

In [18]: arraylD * array2D

Out[18]: array([[O.
[0.
[0.
[0.
[0.
[0.

R
NNNNNN
wWwwwww
e e e e e

Here arraylD which has a single line got broadcasted over each line of the 2D array array2D . Note the the size of
each dimension is important. If arraylD had for example more columns, that broadcasting could not work:

In [19]: arraylD = np.arange(3)
arraylD
Out[19]: array([6, 1, 2])

In [20]: arraylD * array2D

ValueError Traceback (most recent call last)
<ipython-input-20-30434b67efb8> in <module>
----> 1 arraylD * array2D

ValueError: operands could not be broadcast together with shapes (3,) (6,4)

As mentioned above, dimension sizes comparison start from the last dimension, so for example if arraylD had a length
of 6, like the first dimension of array2D , broadcasting would fail:

In [21]: arraylD = np.arange(6)
arraylD.shape

out[211: (6,)

40f8 9/10/20, 10:21 AM

05-DA Numpy combining arrays file:///home/marie/Documents/github_accounts/...

In [22]: array2D.shape
out[22]: (6, 4)

In [23]: arraylD * array2D

ValueError Traceback (most recent call last)
<ipython-input-23-30434b67efb8> in <module>
----> 1 arraylD * array2D

ValueError: operands could not be broadcast together with shapes (6,) (6,4)

5.2.2 Higher dimensions

Broadcasting can be done in higher dimensional cases. Imagine for example that you have an RGB image with
dimensions Nz M z3. If you want to modify each channel independently, for example to rescale them, you can use
broadcasting. We can use again our real image:

In [24]: image.shape
Out[24]: (300, 451, 3)

In [25]: scale factor = np.array([0.5, 0.1, 11)
scale factor

Out[25]: array([0.5, 0.1, 1. 1)

50f8 9/10/20, 10:21 AM

05-DA Numpy combining arrays file:///home/marie/Documents/github_accounts/...

In [26]: rescaled image = scale factor * image
rescaled image

Out[26]: array([[[71.5, 12. , 104.
[71.5, 12. , 104.
[70.5, 11.8, 102.

[EN—

[22.5, 2.7, 13.
[22.5, 2.7, 13.

—_— e —
_— o~

[22.5 2.7, 13.

[t 73. , 12.3, 107. 1,
[72.5, 12.2, 166.],
[71.5, 12. , 104. 1,
[23. , 2.9, 13. 1],
[22.5, 2.9, 13. 1],
[23.5, 3., 14. 11,

[[74. , 12.6, 112.],
[73.5, 12.5, 111.],
[73. , 12.2, 109.],
i.éé. , 2.8, 17. 1],
[24.5, 2.9, 18. 1],
[25. , 3., 19. 11,

[[46. , 5.8, 30. 1,
[52.5, 7.1, 43. 1],
[66. , 9.8, 71.],
[86. , 14.5, 138. 1],
[86. , 14.5, 138.],
[86. , 14.5, 138. 11,

([64. , 9.2, 60.],
[69.5, 10.3, 71. 1],
[67. , 9.5, 64. 1],
[83. , 14.2, 132. 1,
[83. , 14.2, 132.],
[83.5, 14.3, 133. 1],

[[69.5, 10.3, 71. 1,
[63.5, 8.8, 57. 1,
[62.5, 8.6, 53. 1,
[80.5, 13.7, 127. 1,
[80.5, 13.7, 127. 1,
[81. , 13.8, 128.]11)

6 of 8 9/10/20, 10:21 AM

05-DA Numpy combining arrays file:///home/marie/Documents/github_accounts/...

In [27]: plt.imshow(rescaled image.astype(int))
Out[27]: <matplotlib.image.AxesImage at Ox1lleabbcd0>

0

50
100
150
200

250

Note that if we the image has the dimensions 3Nz M (RGB planes in the first dimension), we encounter the same
problem as before: a mismatch in size for the last dimension:

In [28]: image2 = np.rollaxis(image, axis=2)
image2.shape

Out[28]: (3, 300, 451)

In [29]: scale factor.shape

out[291: (3,)

In [30]: scale factor * image2

ValueError Traceback (most recent call last)
<ipython-input-30-7a7267773c9f> in <module>
----> 1 scale_factor * image2

ValueError: operands could not be broadcast together with shapes (3,) (3,300,
451)

5.2.3 Adding axes

As seen above, if we have a mismatch in dimension size, the broadcasting mechanism doesn't work. To salvage such
cases, we still have the possibility to add empty axes in an array to restore the matching of the non-empty dimension.

In the above example our arrays have the following shapes:

In [31]: image2.shape
Out[31]: (3, 300, 451)

In [32]: scale factor.shape

out[32]: (3,)

So we need to add two "empty" axes after the single dimension of scale factor :

7 of 8 9/10/20, 10:21 AM

05-DA Numpy combining arrays file:///home/marie/Documents/github_accounts/...

In [33]: scale factor corr = scale factor[:, np.newaxis, np.newaxis]

In [34]: scale factor corr.shape

Out[34]: (3, 1, 1)

In [35]: image2 rescaled = scale factor_corr * image2

8 of 8 9/10/20, 10:21 AM

