06-DA Pandas_introduction file:///home/marie/Documents/github_accounts/...

6. Pandas Introduction

In the previous chapters, we have learned how to handle Numpy arrays that can be used to efficiently perform numerical
calculations. Those arrays are however homogeneous structures i.e. they can only contain one type of data. Also, even if
we have a single type of data, the different rows or columns of an array do not have labels, making it difficult to track what
they contain. For such cases, we need a structure closer to a table as can be found in Excel, and these structures are
implemented by the package Pandas.

But why can't we simply use Excel then? While Excel is practical to browse through data, it is very cumbersome to use to
combine, re-arrange and thoroughly analyze data: code is hidden and difficult to share, there's no version control, it's
difficult to automate tasks, the manual clicking around leads to mistakes etc.

In the next chapters, you will learn how to handle tabular data with Pandas, a Python package widely used in the scientific
and data science areas. You will learn how to create and import tables, how to combine them, modify them, do statistical
analysis on them and finally how to use them to easily create complex visualizations.

So that you see where this leads, we start with a short example of how Pandas can be used in a project. We look here at
data provided openly by the Swiss National Science Foundation about grants attributed since 1975.

In [1]: import numpy as np
import pandas as pd
import seaborn as sns

6.1 Importing data

people-and-publications). We can either manually download them and then use the path to read the data or directly use
the url. The latter has the advantage that if you have an evolving source of data, these will always be up to date:

In [2]: | # local import
projects = pd.read csv('Data/P3 GrantExport.csv',sep = ';")

import from url

#projects = pd.read csv('http://p3.snf.ch/P3Export/P3 GrantExport.csv',sep =
l’, :)

Then we can have a brief look at the table itself that Jupyter displays in a formated way and limit the view to the 5 first rows
using head() :

1of6 9/10/20, 10:24 AM

06-DA Pandas_introduction file:///home/marie/Documents/github_accounts/...

In [3]: projects.head(5)

Out[3]:
. Project Project . . Funding
NT::S:: Number Project Title Title Reipor';is(::l!‘c-tz Inslt::junr:::g Instrument
String English pp Hierarchy
Schlussband (Bd. Project Proiect
0 1 1000-000001 VI) der Jacob NaN Kaegi Werner funding funéin
Burckhardt-Biog... (Div. I-111) 9
Batterie de tests Project Proiect
1 4 1000-000004 a l'usage des NaN Massarenti Léonard funding J. Psyct
) . funding f
enseignants po... (Div. I-111) Scier
Kritische Kommission flrr das Project Komm
2 5 1000-000005 ,Crstausgabeder o\ Corpus ¢ ing Project
Evidentiae contra philosophorum medii (Div. IIll funding philosoj
D... ’
Kaziaall‘t)igr?:r: Project Project
3 6 1000-000006 . f NaN Burckhardt Max funding) Hanc
Handschriften in h funding
(Div. I-111) Alte Dr
der Sch...
Wissenschaftliche Project
4 7 1000-000007 Mitarbeitam Schweiz. ¢\ ing Project
Thesaurus Thesauruskommission (Div. I-I1l) funding Thesaurt

Lingu...

6.2 Exploring data

Pandas offers a variety of tools to compile information about data, and that compilation can be done very efficiently without
the need for loops, conditionals etc.

For example we can quickly count how many times each University appear in that table. We just use the
value counts() method for that:

In [4]: projects['University'].value counts().head(10)

Out[4]: Institution abroad - IACH 13348
University of Zurich - ZH 8170
University of Geneva - GE 7385
ETH Zurich - ETHZ 7278
University of Berne - BE 6445
University of Basel - BS 5560
EPF Lausanne - EPFL 5174
University of Lausanne - LA 4944
Unassignable - NA 2642
University of Fribourg - FR 2535

Name: University, dtype: int64
Then we can very easily plot the resulting information, either using directly Pandas or a more advanced library like

Seaborn, plotnine or Altair.

Here first with plain Pandas (using Matplotlib under the hood):

20f6 9/10/20, 10:24 AM

06-DA Pandas_introduction file:///home/marie/Documents/github_accounts/...

In [5]: projects['University'].value counts().head(10).plot(kind="bar")

Out[5]: <matplotlib.axes. subplots.AxesSubplot at 0x104df7040>

14000

12000 H

10000 H

8000

6000 A

4000

2000 A

0-

Institution abroad - IACH
University of Zurich - ZH
University of Geneva - GE
ETH Zurich - ETHZ
University of Beme - BE
University of Basel - BS

EPF Lausanne - EPFL
University of Lausanne - LA
Unassignable - NA
University of Fribourg - FR

6.3 Handling different data types

Unlike Numpy arrays, Pandas can handle a variety of different data types in a dataframe. For example it is very efficient at
dealing with dates. We see that our table contains e.g. a Start Date . We can turn this string into an actual date:

In [6]: projects['start'] = pd.to _datetime(projects['Start Date'])
projects['year'] = projects.start.apply(lambda x: x.year)

In [7]: projects.loc[0].start

Out[7]: Timestamp('1975-01-10 00:00:00')

In [8]: projects.loc[0].year
Out[8]: 1975.0

6.4 Data wrangling, aggregation and statistics

Pandas is very efficient at wrangling and aggregating data, i.e. grouping several elements of a table to calculate statistics
on them. For example we first need here to convert the Approved Amount to a numeric value. Certain rows contain
text (e.g. "not applicable") and we force the conversion:

In [9]: projects['Approved Amount'] = pd.to numeric(projects['Approved Amount'], err
ors = 'coerce')

Then we want to extract the type of filed without subfields e.g. "Humanities" instead of "Humanities and Social
Sciences;Theology & religion". For that we can create a custom function and apply it to an entire column:

30f6 9/10/20, 10:24 AM

06-DA Pandas_introduction file:///home/marie/Documents/github_accounts/...

In [10]: science types = ['Humanities', 'Mathematics', 'Biology']
projects['Field'] = projects['Discipline Name Hierarchy'].apply(
lambda el: next((y for y in [x for x in science types if x in el] if y i
s not None),None) if not pd.isna(el) else el)

Then we group the data by discipline and year, and calculate the mean of each group:

In [11]: aggregated = projects.groupby(['Institution Country', 'year',6 'Field'], as_in
dex=False) .mean()

Finally we can use Seaborn to plot the data by "Field" using just keywords to indicate what the axes and colours should
mean (following some principles of the grammar of graphics):

In [12]: sns.lineplot(data = aggregated, x = 'year',6 y='Approved Amount', hue='Field
")

Field
800000 1 —— Humanities
Mathematics
——— Biology
€ 600000 4
3
o
£
<
T 400000 -
e
(=%
=}
<
200000 A
0.
1980 1990 2000 2010 2020
year

Note that here, axis labelling, colorouring, legend, interval of confidence have been done automatically based on the
content of the dataframe.

We see a drastic augmentation around 2010: let's have a closer look. We can here again group data by year and funding
type and calculate the total funding:

In [13]: grouped = projects.groupby(['year', 'Funding Instrument Hierarchy']).agg(
total sum=pd.NamedAgg(column="'Approved Amount', aggfunc='sum')).reset in
dex()

40f6 9/10/20, 10:24 AM

06-DA Pandas_introduction

In [14]: grouped

file:///home/marie/Documents/github_accounts/...

OQut[14]:

year Funding Instrument Hierarchy total_sum

0 1975.0 Project funding 32124534.0

1 1975.0 Science communication 44600.0

2 1976.0 Programmes;National Research Programmes (NRPs) 268812.0

3 1976.0 Project funding 96620284.0

4 1976.0 Science communication 126939.0
378 2020.0 Programmes;rdd (Swiss Programme for Research o... 195910.0
379 2020.0 Project funding 193568294.0
380 2020.0 Project funding;Project funding (special) 19239681.0
381 2020.0 Science communication 3451740.0
382 2021.0 Science communication 55200.0

383 rows x 3 columns

Now, for each year we keep only the 5 largest funding types to be able to plot them:

In [15]: group_sorted = grouped.groupby('year',as index=False).apply(lambda x: (x.gro
upby('Funding Instrument Hierarchy')

lse))

.sum()

.sort_values('total sum', ascending=Fa

.head(5)).reset index()

Finally, we only keep year in the 2000's:

In [16]: instruments_by year = group_sorted[(group_sorted.year > 2005) & (group_sorte
d.year < 2012)]

50f6

9/10/20, 10:24 AM

06-DA Pandas_introduction file:///home/marie/Documents/github_accounts;/...

In [17]: import matplotlib.pyplot as plt
plt.figure(figsize=(10,10))
sns.barplot(data=instruments by year,
x="year', y='total sum', hue='Funding Instrument Hierarchy')

Out[17]: <matplotlib.axes. subplots.AxesSubplot at 0x105e35670>

1e8
35 Funding Instrument Hierarchy
EEm Project funding
N Careers
BN Programmes
EEN |nfrastructure
30 ™ Programmes;National Research Programmes (NRPs)
EEm Project funding;Project funding (special)
251
20 1
3
3
i
8
8
15
10 A
05 1
0.0 -
2006.0 2007.0 2008.0 2009.0 2010.0 20110

year

We see that the main change, is the sudden increase in funding for national research programs.

In []:

6 of 6 9/10/20, 10:24 AM

