07-DA Pandas_structures file:///home/marie/Documents/github_accounts/...

7. Pandas objects

In [1]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

Python has a series of data containers (list, dicts etc.) and Numpy offers multi-dimensional arrays, however none of these
structures offers a simple way neither to handle tabular data, nor to easily do standard database operations. This is why
Pandas exists: it offers a complete ecosystem of structures and functions dedicated to handle large tables with
inhomogeneous contents.

In this first chapter, we are going to learn about the two main structures of Pandas: Series and Dataframes.

7.1 Series

7.1.1 Simple series

Series are a the Pandas version of 1-D Numpy arrays. We are rarely going to use them directly, but they often appear
implicitly when handling data from the more general Dataframe structure. We therefore only give here basics.

To understand Series' specificities, let's create one. Usually Pandas structures (Series and Dataframes) are created from
other simpler structures like Numpy arrays or dictionaries:

In [2]: numpy array = np.array([4,8,38,1,6])

The function pd.Series() allows us to convert objects into Series:

In [3]: pd_series = pd.Series(numpy array)
pd series

Out[3]: 4

0

1 8

2 38

3 1

4 6
dtype: int64

The underlying structure can be recovered with the .values attribute:

In [4]: pd_series.values

Out[4]: array([4, 8, 38, 1, 6])

Otherwise, indexing works as for regular arrays:

In [5]: pd_series[1]
Out[5]: 8

1of6 9/10/20, 10:21 AM

07-DA Pandas_structures file:///home/marie/Documents/github_accounts/...

7.1.2 Indexing

On top of accessing values in a series by regular indexing, one can create custom indices for each element in the series:
In [6]: pd_series2 = pd.Series(numpy array, index=['a', 'b', 'c', 'd','e'])

In [7]: pd_series2

Out[7]: 4

a
b 8
C 38
d 1
e 6
dtype: int64

Now a given element can be accessed either by using its regular index:
In [8]: pd_series2[1]
Out[8]: 8
or its chosen index:
In [9]: pd_series2['b']
Out[9]: 8
A more direct way to create specific indexes is to transform as dictionary into a Series:

In [10]: composer birth = {'Mahler': 1860, 'Beethoven': 1770, 'Puccini': 1858, 'Shost
akovich': 1906}

In [11]: pd_composer birth = pd.Series(composer birth)
pd_composer_birth

OQut[11l]: Mahler 1860
Beethoven 1770
Puccini 1858

Shostakovich 1906
dtype: int64

In [12]: pd_composer birth['Puccini']
Out[12]: 1858

7.2 Dataframes

In most cases, one has to deal with more than just one variable, e.g. one has the birth year and the death year of a list of
composers. Also one might have different types of information, e.g. in addition to numerical variables (year) one might
have string variables like the city of birth. The Pandas structure that allow one to deal with such complex data is called a
Dataframe, which can somehow be seen as an aggregation of Series with a common index.

20f6 9/10/20, 10:21 AM

07-DA Pandas_structures file:///home/marie/Documents/github_accounts/...

7.2.1 Creating a Dataframe

To see how to construct such a Dataframe, let's create some more information about composers:

In [13]: composer _death = pd.Series({'Mahler': 1911, 'Beethoven': 1827, 'Puccini': 19
24, 'Shostakovich': 1975})
composer_city birth = pd.Series({'Mahler': 'Kaliste', 'Beethoven': 'Bonn', '
Puccini': 'Lucques', 'Shostakovich': 'Saint-Petersburg'})

Now we can combine multiple series into a Dataframe by precising a variable name for each series. Note that all our
series need to have the same indices (here the composers' name):

In [14]: composers df = pd.DataFrame({'birth': pd_composer birth, 'death': composer d
eath, 'city': composer _city birth})
composers_df

Out[14]:
birth death city
Mahler 1860 1911 Kaliste
Beethoven 1770 1827 Bonn
Puccini 1858 1924 Lucques

Shostakovich 1906 1975 Saint-Petersburg

A more common way of creating a Dataframe is to construct it directly from a dictionary of lists where each element of the
dictionary turns into a column:

In [15]: dict of list = {'birth': [1860, 1770, 1858, 1906], 'death':[1911, 1827, 192
4, 19751,
'city':['Kaliste', 'Bonn', 'Lucques', 'Saint-Petersburg']}

In [16]: pd.DataFrame(dict of list)

Qut[16]:
birth death city
0 1860 1911 Kaliste
1 1770 1827 Bonn
2 1858 1924 Lucques

3 1906 1975 Saint-Petersburg

However we now lost the composers name. We can enforce it by providing, as we did before for the Series, a list of
indices:

30f6 9/10/20, 10:21 AM

07-DA Pandas_structures file:///home/marie/Documents/github_accounts/...

In [17]: pd.DataFrame(dict of list, index=['Mahler', 'Beethoven', 'Puccini', ‘'Shostak

ovich'l])
Out[17]:
birth death city
Mahler 1860 1911 Kaliste
Beethoven 1770 1827 Bonn
Puccini 1858 1924 Lucques

Shostakovich 1906 1975 Saint-Petersburg

7.2.2 Accessing values

There are multiple ways of accessing values or series of values in a Dataframe. Unlike in Series, a simple bracket gives
access to a column and not an index, for example:

In [18]: composers df['city']

Out[18]: Mahler Kaliste
Beethoven Bonn
Puccini Lucques
Shostakovich Saint-Petersburg

Name: city, dtype: object

returns a Series. Alternatively one can also use the attributes synthax and access columns by using:

In [19]: composers df.city

Out[19]: Mahler Kaliste
Beethoven Bonn
Puccini Lucques
Shostakovich Saint-Petersburg

Name: city, dtype: object

The attributes synthax has some limitations, so in case something does not work as expected, revert to the brackets
notation.

When specifiying multiple columns, a DataFrame is returned:

In [20]: composers df[['city', 'birth']]

Out[20]:
city birth
Mahler Kaliste 1860
Beethoven Bonn 1770
Puccini Lucques 1858

Shostakovich Saint-Petersburg 1906

One of the important differences with a regular Numpy array is that here, regular indexing doesn't work:

In [21]: | #composers df[0,0]

40f6 9/10/20, 10:21 AM

07-DA Pandas_structures file:///home/marie/Documents/github_accounts/...

Instead one has to use either the .iloc[] orthe .loc[] method. .iloc[] can be used to recover the regular
indexing:

In [22]: composers df.iloc[0,1]
Out[22]: 1911
While .loc[] allows one to recover elements by using the explicit index, on our case the composers name:
In [23]: composers df.loc['Mahler', 'death']
Out[23]: 1911
Remember that loc and “iloc™" use brackets [] and not parenthesis ().
Numpy style indexing works here too
In [24]: composers df.iloc[1:3,:]

Qut[24]:
birth death city

Beethoven 1770 1827 Bonn

Puccini 1858 1924 Lucques

If you are working with a large table, it might be useful to sometimes have a list of all the columns. This is given by the
.keys () attribute:

In [25]: composers df.keys()
Out[25]: Index(['birth', 'death', 'city'], dtype='object')

7.2.3 Adding columns

It is very simple to add a column to a Dataframe. One can e.g. just create a column a give it a default value that we can
change later:

In [26]: composers df['country'] = 'default'

In [27]: composers df

Out[27]:
birth death city country
Mahler 1860 1911 Kaliste default
Beethoven 1770 1827 Bonn default
Puccini 1858 1924 Lucques default

Shostakovich 1906 1975 Saint-Petersburg default

Or one can use an existing list:

50f6 9/10/20, 10:21 AM

07-DA Pandas_structures

In [28]: country = ['Austria','Germany', 'Italy', 'Russia']

file:///home/marie/Documents/github_accounts/...

In [29]: composers df['country2'] = country

In [30]: composers df

Out[30]:
birth death city country country2
Mahler 1860 1911 Kaliste default Austria
Beethoven 1770 1827 Bonn default Germany
Puccini 1858 1924 Lucques default Italy
Shostakovich 1906 1975 Saint-Petersburg default Russia

6 of 6

9/10/20, 10:21 AM

