
8. Importing/export, basic plotting

In [1]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

We have seen in the previous chapter what structures are offered by Pandas and how to create them. Another very

common way of "creating" a Pandas Dataframe is by importing a table from another format like CSV or Excel.

8.1 Simple import

An Excel table containing the same information as we had in Chapter 1 (01-Pandas_structures.ipynb) is provided in

composers.xlsx (composers.xlsx) and can be read with the read_excel function. There are many more readers for

other types of data (csv, json, html etc.) but we focus here on Excel.

In [2]: pd.read_excel('Data/composers.xlsx')

The reader automatically recognized the heaers of the file. However it created a new index. If needed we can specify

which column to use as header:

In [3]: pd.read_excel('Data/composers.xlsx', index_col = 'composer')

If we open the file in Excel, we see that it is composed of more than one sheet. Clearly, when not specifying anything, the

reader only reads the first sheet. However we can specify a sheet:

In [4]: specific_sheet = pd.read_excel('Data/composers.xlsx', index_col = 'composer
',sheet_name='Sheet2')

Out[2]:
composer birth death city

0 Mahler 1860 1911 Kaliste

1 Beethoven 1770 1827 Bonn

2 Puccini 1858 1924 Lucques

3 Shostakovich 1906 1975 Saint-Petersburg

Out[3]:
birth death city

composer

Mahler 1860 1911 Kaliste

Beethoven 1770 1827 Bonn

Puccini 1858 1924 Lucques

Shostakovich 1906 1975 Saint-Petersburg

08-DA_Pandas_import_plotting file:///home/marie/Documents/github_accounts/...

1 of 10 9/10/20, 10:25 AM

In [5]: specific_sheet

For each reader, there is a long list of options to specify how the file should be read. We can see all these options using

the help (see below). Imagine that our tables contains a title and unnecessary rows: we can use the skiprows

argument. Imagine you have dates in your table: you can use the date_parser argument to specify how to format them

etc.

In [6]: #use shift+tab within the parenthesis to see optional arguemnts
#pd.read_excel()

8.2 Handling unknown values

As you can see above, some information is missing. Some missing values are marked as "unknown" while other are NaN.

NaN is the standard symbol for unknown/missing values and is understood by Pandas while "unknown" is just seen as

text. This is impractical as now we have e.g. columns with a mix of numbers and text which will make later computations

difficult. What we would like to do is to replace all "irrelevant" values with the standard NaN symbol that says "no

information".

Let's first do a regular import:

In [7]: import1 = pd.read_excel('Data/composers.xlsx', index_col = 'composer',sheet_
name='Sheet2')
import1

If we look now at one column, we can see that columns have been imported in different ways. One column is an object,

i.e. mixed types, the other contains floats:

Out[5]:
birth death city

composer

Mahler 1860.0 1911 Kaliste

Beethoven 1770.0 1827 Bonn

Puccini 1858.0 1924 Lucques

Shostakovich 1906.0 1975 Saint-Petersburg

Sibelius 10.0 unknown unknown

Haydn NaN NaN Röhrau

Out[7]:
birth death city

composer

Mahler 1860.0 1911 Kaliste

Beethoven 1770.0 1827 Bonn

Puccini 1858.0 1924 Lucques

Shostakovich 1906.0 1975 Saint-Petersburg

Sibelius 10.0 unknown unknown

Haydn NaN NaN Röhrau

08-DA_Pandas_import_plotting file:///home/marie/Documents/github_accounts/...

2 of 10 9/10/20, 10:25 AM

In [8]: import1.birth

In [9]: import1.death

If we want to do calculations, for example getting summary information using describe() we have a problem: the

death column is skipped because no calculation can be done with strings:

In [10]: import1.describe()

Now we specify that 'unknown' should be a NaN value:

In [11]: import2 = pd.read_excel('Data/composers.xlsx', index_col = 'composer',
sheet_name='Sheet2', na_values=['unknown'])

import2

Out[8]: composer
Mahler 1860.0
Beethoven 1770.0
Puccini 1858.0
Shostakovich 1906.0
Sibelius 10.0
Haydn NaN
Name: birth, dtype: float64

Out[9]: composer
Mahler 1911
Beethoven 1827
Puccini 1924
Shostakovich 1975
Sibelius unknown
Haydn NaN
Name: death, dtype: object

Out[10]:
birth

count 5.000000

mean 1480.800000

std 823.674207

min 10.000000

25% 1770.000000

50% 1858.000000

75% 1860.000000

max 1906.000000

Out[11]:
birth death city

composer

Mahler 1860.0 1911.0 Kaliste

Beethoven 1770.0 1827.0 Bonn

Puccini 1858.0 1924.0 Lucques

Shostakovich 1906.0 1975.0 Saint-Petersburg

Sibelius 10.0 NaN NaN

Haydn NaN NaN Röhrau

08-DA_Pandas_import_plotting file:///home/marie/Documents/github_accounts/...

3 of 10 9/10/20, 10:25 AM

And now computations are again possible, as Pandas knows how to deal with NaNs:

In [12]: import2.describe()

Handling bad or missing values is a very important part of data science. Taking care of the most common

occurrences at import is a good solution.

8.3 Column types

We see above that the birth column has been "classified" as a float. However we know that this is not the case, it's just an

integer. Here again, we can specify the column type already at import time using the dtype option and a dictionary:

In [13]: import2 = pd.read_excel('Data/composers.xlsx', index_col = 'composer',sheet_
name='Sheet1', na_values=['unknown'],

dtype={'composer':np.str,'birth':np.int32,'death':np.
int32,'city':np.str})

In [14]: import2.birth

8.4 Modifications after import

Of course we don't have to do all these adjustement at import time. We can also do a default import and check what has to

be corrected afterward.

8.4.1 Create NaNs

If we missed some bad values at import we can just replace all those directly in the dataframe. We can achieve that by

using the replace() method and specifying what should be replaced:

Out[12]:
birth death

count 5.000000 4.000000

mean 1480.800000 1909.250000

std 823.674207 61.396933

min 10.000000 1827.000000

25% 1770.000000 1890.000000

50% 1858.000000 1917.500000

75% 1860.000000 1936.750000

max 1906.000000 1975.000000

Out[14]: composer
Mahler 1860
Beethoven 1770
Puccini 1858
Shostakovich 1906
Name: birth, dtype: int32

08-DA_Pandas_import_plotting file:///home/marie/Documents/github_accounts/...

4 of 10 9/10/20, 10:25 AM

In [15]: import1

In [16]: import_nans = import1.replace('unknown', np.nan)
import_nans.birth

Note that when we fix "bad" values, e.g. here the "unknown" text value with NaNs, Pandas automatically adjust the type of

the column, allowing us for exampel to later do mathemtical operations.

In [17]: import1.death.dtype

In [18]: import_nans.death.dtype

8.4.2 Changing the type

We can also change the type of a column on an existing Dataframe with the same command as in Numpy:

In [19]: import2.birth

Out[15]:
birth death city

composer

Mahler 1860.0 1911 Kaliste

Beethoven 1770.0 1827 Bonn

Puccini 1858.0 1924 Lucques

Shostakovich 1906.0 1975 Saint-Petersburg

Sibelius 10.0 unknown unknown

Haydn NaN NaN Röhrau

Out[16]: composer
Mahler 1860.0
Beethoven 1770.0
Puccini 1858.0
Shostakovich 1906.0
Sibelius 10.0
Haydn NaN
Name: birth, dtype: float64

Out[17]: dtype('O')

Out[18]: dtype('float64')

Out[19]: composer
Mahler 1860
Beethoven 1770
Puccini 1858
Shostakovich 1906
Name: birth, dtype: int32

08-DA_Pandas_import_plotting file:///home/marie/Documents/github_accounts/...

5 of 10 9/10/20, 10:25 AM

In [20]: import2.birth.astype('float')

If we look again at import2:

In [21]: import2.birth

we see that we didn't actually change the type. Changes on a Dataframe are only effective if we reassign the column:

In [22]: import2.birth = import2.birth.astype('float')

In [23]: import2.birth

8.5 Export

You can easily export a Dataframe that you worked on. Most commonly you will export it in a common format like CSV:

In [24]: import2.to_csv('mydataframe.csv')

If you have a complex dataframe that e.g. contains lists, you can save it as a pickle object, a specific Python format that

allows one to save complex data:

In [25]: import2.to_pickle('Data/my_dataframe.pkl')

You can reload this type of data via the pickle loading function of Pandas:

In [26]: import3 = pd.read_pickle('Data/my_dataframe.pkl')

Out[20]: composer
Mahler 1860.0
Beethoven 1770.0
Puccini 1858.0
Shostakovich 1906.0
Name: birth, dtype: float64

Out[21]: composer
Mahler 1860
Beethoven 1770
Puccini 1858
Shostakovich 1906
Name: birth, dtype: int32

Out[23]: composer
Mahler 1860.0
Beethoven 1770.0
Puccini 1858.0
Shostakovich 1906.0
Name: birth, dtype: float64

08-DA_Pandas_import_plotting file:///home/marie/Documents/github_accounts/...

6 of 10 9/10/20, 10:25 AM

In [27]: import3

8.6 Plotting

We will learn more about plotting later, but let's see here some possibilities offered by Pandas. Pandas builds on top of

Matplotlib but exploits the knowledge included in Dataframes to improve the default output. Let's see with a simple dataset.

In [28]: composers = pd.read_excel('Data/composers.xlsx', sheet_name='Sheet5')

We can pass Series to Matplotlib which manages to understand them. Here's a default scatter plot:

In [29]: plt.plot(composers.birth, composers.death, 'o')
plt.show()

Now we look at the default Pandas output. Different types of plots are accessible when using the data_frame.plot

function via the kind option. The variables to plot are column names passed as keywords instead of whole series like in

Matplotlib:

Out[27]:
birth death city

composer

Mahler 1860.0 1911 Kaliste

Beethoven 1770.0 1827 Bonn

Puccini 1858.0 1924 Lucques

Shostakovich 1906.0 1975 Saint-Petersburg

08-DA_Pandas_import_plotting file:///home/marie/Documents/github_accounts/...

7 of 10 9/10/20, 10:25 AM

In [30]: composers.plot(x = 'birth', y = 'death', kind = 'scatter')
plt.show()

We see that the plot automatically gets axis labels. Another gain is that some obvious options like setting a title are directly

accesible when creating the plot:

In [31]: composers.plot(x = 'birth', y = 'death', kind = 'scatter',
title = 'Composer birth and death', grid = True, fontsize = 1

5)
plt.show()

One can add even more information on the plot by using more arguments used in a similar way as a grammar of graphics.

For example we can color the scatter plot by periods:

08-DA_Pandas_import_plotting file:///home/marie/Documents/github_accounts/...

8 of 10 9/10/20, 10:25 AM

In [32]: composers.plot(x = 'birth', y = 'death',kind = 'scatter',
c = composers.period.astype('category').cat.codes, colormap =

'Reds', title = 'Composer birth and death', grid = True, fontsize = 15)
plt.show()

Here you see already a limitation of the plotting library. To color dots by the peiod category, we had to turn the latter into a

series of numbers. We could then rename those to improve the plot, but it's better to use more specialized packages such

as Seaborn which allow to realize this kind of plot easily:

In [33]: sns.scatterplot(data = composers, x = 'birth', y = 'death', hue = 'period')
plt.show()

Some additional plotting options are available in the plot() module. For example histograms:

08-DA_Pandas_import_plotting file:///home/marie/Documents/github_accounts/...

9 of 10 9/10/20, 10:25 AM

In [34]: composers.plot.hist(alpha = 0.5)
plt.show()

Here you see again the gain from using Pandas: without specifying anything, Pandas made a histogram of the two

columns containing numbers, labelled the axis and even added a legend to the plot.

All these features are very nice and very helpful when exploring a dataset. When anaylzing data in depth and creating

complex plots, Pandas's plotting might however be limiting and other options such as Seaborn or Plotnine can be used.

Finally, all plots can be "styled" down to the smallest detail, either by using Matplotlib options or by directly applying a style

e.g.:

In [35]: plt.style.use('ggplot')

In [36]: composers.plot.hist(alpha = 0.5)
plt.show()

In []:

08-DA_Pandas_import_plotting file:///home/marie/Documents/github_accounts/...

10 of 10 9/10/20, 10:25 AM

