09-DA Pandas operations file:///home/marie/Documents/github_accounts/...

9. Operations with Pandas objects

In [1]: dimport pandas as pd
import numpy as np

One of the great advantages of using Pandas to handle tabular data is how simple it is to extract valuable information from
them. Here we are going to see various types of operations that are available for this.

9.1 Matrix types of operations

The strength of Numpy is its natural way of handling matrix operations, and Pandas reuses a lot of these features. For
example one can use simple mathematical operations to operate at the cell level:

In [2]: compo_pd = pd.read _excel('Data/composers.xlsx")

compo_pd
Out[2]:
composer birth death city
0 Mahler 1860 1911 Kaliste
1 Beethoven 1770 1827 Bonn
2 Puccini 1858 1924 Lucques

3 Shostakovich 1906 1975 Saint-Petersburg

In [3]: compo _pd['birth']*2
Out[3]: 0 3720

1 3540
2 3716
3 3812

Name: birth, dtype: int64

In [4]: np.log(compo pd['birth'])

Out[4]: 0 7.528332
1 7.478735
2 7.527256
3 7.552762
Name: birth, dtype: float64

Here we applied functions only to series. Indeed, since our Dataframe contains e.g. strings, no operation can be done on
it:

In [5]: #compo pd+1

If however we have a homogenous Dataframe, this is possible:

1of7 9/10/20, 10:25 AM

09-DA Pandas operations

20f7

In [6]:
Out[6]:

In [7]:
Out[7]:

compo _pd[['birth', 'death']]

birth
0 1860
1 1770
2 1858
3 1906

compo_pd[['birth', 'death']]*2

birth
0 3720
1 3540
2 3716
3 3812

death
1911
1827
1924
1975

death
3822
3654
3848
3950

9.2 Column operations

file:///home/marie/Documents/github_accounts/...

There are other types of functions whose purpose is to summarize the data. For example the mean or standard deviation.
Pandas by default applies such functions column-wise and returns a series containing e.g. the mean of each column:

In [8]:
Qut[8]:

np.mean(compo_pd)

birth
death
dtype:

1848.50
1909.25
float64

Note that columns for which a mean does not make sense, like the city are discarded. A series of common functions like
mean or standard deviation are directly implemented as methods and can be accessed in the alternative form:

In [9]:
Out[9]:

In [10]:
Out[10]:

compo_pd.describe()

birth death

count 4.000000 4.000000
mean 1848.500000 1909.250000
std 56.836021 61.396933
min 1770.000000 1827.000000
25% 1836.000000 1890.000000
50% 1859.000000 1917.500000
75% 1871.500000 1936.750000
max 1906.000000 1975.000000

compo_pd.std()

birth
death
dtype:

56.836021
61.396933

float64

9/10/20, 10:25 AM

09-DA Pandas operations

3of7

If you need the mean of only a single column you can of course chains operations:

In [11]: compo_pd.birth.mean()
Out[11]: 1848.5

9.3 Operations between Series

We can also do computations with multiple series as we would do with Numpy arrays:

In [12]: compo_pd['death']-compo pd['birth']
Out[12]: @ 51

1 57
2 66
3 69

dtype: int64

We can even use the result of this computation to create a new column in our Dataframe:

In [13]: compo_pd

Out[13]:
composer birth death city
0 Mahler 1860 1911 Kaliste
1 Beethoven 1770 1827 Bonn
2 Puccini 1858 1924 Lucques

3 Shostakovich 1906 1975 Saint-Petersburg

In [14]: compo pd['age'] = compo_pd['death']-compo pd['birth']

In [15]: compo_pd

OQut[15]:
composer birth death city age
0 Mahler 1860 1911 Kaliste 51
1 Beethoven 1770 1827 Bonn 57
2 Puccini 1858 1924 Lucques 66

3 Shostakovich 1906 1975 Saint-Petersburg 69

9.4 Other functions

file:///home/marie/Documents/github_accounts/...

Sometimes one needs to apply to a column a very specific function that is not provided by default. In that case we can use

one of the different apply methods of Pandas.

The simplest case is to apply a function to a column, or Series of a DataFrame. Let's say for example that we want to

define the the age >60 as 'old' and <60 as 'young'. We can define the following general function:

9/10/20, 10:25 AM

09-DA Pandas operations file:///home/marie/Documents/github_accounts/...

In [16]: def define age(x):
if x>60:
return 'old'
else:
return 'young

In [17]: define_age(30)

Out[17]: 'young'
In [18]: define_age(70)
OQut[18]: 'old'
We can now apply this function on an entire Series:

In [19]: compo_pd.age.apply(define age)
Out[19]: o young

1 young
2 old
3 old

Name: age, dtype: object

In [20]: compo_pd.age.apply(lambda x: x**2)
Qut[20]: © 2601

1 3249
2 4356
3 4761

Name: age, dtype: int64

And again, if we want, we can directly use this output to create a new column:

In [21]: compo pd['age def'] = compo pd.age.apply(define age)

compo_pd
OQut[21]:
composer birth death city age age_def
0 Mahler 1860 1911 Kaliste 51 young
1 Beethoven 1770 1827 Bonn 57 young
2 Puccini 1858 1924 Lucques 66 old
3 Shostakovich 1906 1975 Saint-Petersburg 69 old

We can also apply a function to an entire DataFrame. For example we can ask how many composers have birth and death
dates within the XIXth century:

In [22]: def nineteen_century count(x):
return np.sum((x>=1800)&(x<1900))
In [23]: compo pd[['birth','death']].apply(nineteen_century count)

Out[23]: birth 2
death 1
dtype: int64

4 0f7 9/10/20, 10:25 AM

09-DA Pandas operations

5o0f7

The function is applied column-wise and returns a single number for each in the form of a series.

In [24]: def nineteen century true(x):
return (x>=1800)&(x<1900)

In [25]: compo pd[['birth','death']].apply(nineteen _century true)

Out[25]:
birth death

0 True False

1 False True
2 True False

3 False False

file:///home/marie/Documents/github_accounts/...

Here the operation is again applied column-wise but the output is a Series.

There are more combinations of what can be the in- and output of the apply function and in what order (column- or row-
wise) they are applied that cannot be covered here.

9.5 Logical indexing

Just like with Numpy, it is possible to subselect parts of a Dataframe using logical indexing. Let's have a look again at an

example:

In [26]: compo_pd

Out[26]:
composer birth death city age age_def
0 Mahler 1860 1911 Kaliste 51 young
1 Beethoven 1770 1827 Bonn 57 young
2 Puccini 1858 1924 Lucques 66 old
3 Shostakovich 1906 1975 Saint-Petersburg 69 old

If we use a logical comparison on a series, this yields a logical Series:

In [27]: compo pd['birth']

Out[27]: © 1860

1 1770
2 1858
3 1906

Name: birth, dtype: int64

In [28]: compo pd['birth'] > 1859

Out[28]: O True
1 False
2 False
3 True

Name: birth, dtype: bool

9/10/20, 10:25 AM

09-DA Pandas operations file:///home/marie/Documents/github_accounts/...

Just like in Numpy we can use this logical Series as an index to select elements in the Dataframe:

In [29]: log _indexer = compo pd['birth'] > 1859
log indexer

Out[29]: @ True
1 False
2 False
3 True

Name: birth, dtype: bool

In [30]: compo_pd

OQut[30]:
composer birth death city age age_def
0 Mahler 1860 1911 Kaliste 51 young
1 Beethoven 1770 1827 Bonn 57 young
2 Puccini 1858 1924 Lucques 66 old
3 Shostakovich 1906 1975 Saint-Petersburg 69 old

In [31]: ~log_indexer

Qut[31]: o False
1 True
2 True
3 False
Name: birth, dtype: bool

In [32]: compo_pd[~log indexer]

Out[32]:
composer birth death city age age_def

1 Beethoven 1770 1827 Bonn 57 young
2 Puccini 1858 1924 Lucques 66 old
We can also create more complex logical indexings:

In [33]: (compo pd['birth'] > 1859)&(compo pd['age']>60)
Qut[33]: © False

1 False
2 False
3 True
dtype: bool

In [34]: compo pd[(compo pd['birth'] > 1859)&(compo_pd['age']>60)]

Out[34]:
composer birth death city age age_def

3 Shostakovich 1906 1975 Saint-Petersburg 69 old

And we can create new arrays containing only these subselections:

In [35]: compos sub = compo pd[compo pd['birth'] > 1859]

6 of 7

9/10/20, 10:25 AM

09-DA Pandas operations file:///home/marie/Documents/github_accounts/...

In [36]: compos_sub

Out[36]:
composer birth death city age age_def
0 Mahler 1860 1911 Kaliste 51 young
3 Shostakovich 1906 1975 Saint-Petersburg 69 old

We can then modify the new array:

In [37]: compos sub.loc[0,'birth'] = 3000

/Users/gwl8g940/miniconda3/envs/danalytics/1ib/python3.8/site-packages/pandas

/core/indexing.py:966: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row _indexer,col indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/s

table/user guide/indexing.html#returning-a-view-versus-a-copy

self.obj[item] = s

Note that we get this SettingWithCopyWarning warning. This is a very common problem hand has to do with how new
arrays are created when making subselections. Simply stated, did we create an entirely new array or a "view" of the old
one? This will be very case-dependent and to avoid this, if we want to create a new array we can just enforce it using the

copy () method (for more information on the topic see for example this explanation (https:/www.dataquest.io

In [38]: compos sub2 = compo pd[compo pd['birth'] > 1859].copy()

compos_sub2.loc[0, 'birth'] = 3000

In [39]: compos_ sub2

Out[39]:
composer birth death city age age_def
0 Mahler 3000 1911 Kaliste 51 young
3 Shostakovich 1906 1975 Saint-Petersburg 69 old

7 of 7

9/10/20, 10:25 AM

