12-DA Pandas _realworld file:///home/marie/Documents/github_accounts/...

12. A complete example

In [1]: dimport pandas as pd
import numpy as np
import matplotlib.pyplot as plt

import seaborn as sns

We have seen now most of the basic features of Pandas including importing data, combining dataframes, aggregating
information and plotting it. In this chapter, we are going to re-use these concepts with the real data seen in the introduction
chapter (06-DA_Pandas_introduction.ipynb). We are also going to explore some more advanced plotting libraries that
exploit to the maximum dataframe structures.

12.1 Importing data

We are importing here two tables provided openly by the Swiss National Science Foundation. One contains a list of all
projects to which funds have been allocated since 1975. The other table contains a list of all people to which funds have
been awarded during the same period:

In [7]1: | # local import
projects = pd.read csv('Data/P3 GrantExport.csv',sep
persons = pd.read csv('Data/P3 PersonExport.csv',sep ;

import from url

#projects = pd.read csv('http://p3.snf.ch/P3Export/P3 GrantExport.csv',sep
;)

#persons = pd.read csv('http://p3.snf.ch/P3Export/P3 PersonExport.csv',sep
l', l)

We can have a brief look at both tables:

1o0f14 9/10/20, 10:25 AM

12-DA Pandas _realworld file:///home/marie/Documents/github_accounts/...

In [8]: projects.head(5)

Out[8]:
. Project Project . . Funding
NT::S:: Number Project Title Title Reipor';is(::l!‘c-tz Inslt::junr:::g Instrument
String English pp Hierarchy
Schlussband (Bd. Project Proiect
0 1 1000-000001 VI) der Jacob NaN Kaegi Werner funding funéin
Burckhardt-Biog... (Div. I-111) 9
Batterie de tests Project Proiect
1 4 1000-000004 a l'usage des NaN Massarenti Léonard funding If Psyct
) . funding f
enseignants po... (Div. I-111) Scier
Kritische Kommission flrr das . Komm
Erstausgabe der Corpus Project Project
2 5 1000-000005 _ . : NaN . o funding ; .
Evidentiae contra philosophorum medii (Div. IIll funding philosoj
D... ’
Kaziaall‘t)igr?:r: Project Project
3 6 1000-000006 . f NaN Burckhardt Max funding) Hanc
Handschriften in h funding
(Div. I-111) Alte Dr
der Sch...
Wissenschaftliche Project
4 7 1000-000007 Mitarbeitam Schweiz. ¢\ ing Project
Thesaurus Thesauruskommission h funding Thesaurt
Li (Div. I-111)
ingu...
In [9]: persons.head(5)
Out[9]:
. . . Projec
Last First Institute Institute Person Prolects_ as Projects Projects i
Gender ID OCRID responsible as as .
Name Name Name Place : . Practi
SNSF Applicant Applicant Partner P
artn
0 aMarca Davide male NaN NaN 53856 NaN NaN NaN NaN Nz
1 aMarca Andrea male NaN NaN 132628 NaN 67368 NaN NaN Ne
2 A Jafari Golnaz female U""’LeJZS'e‘fr: Luzern 747886 NaN 191432 NaN NaN N
3 Aaberg Johan male NaN NaN 575257 NaN NaN NaN NaN Ne¢
4 Aahman Josefin female NaN NaN 629557 NaN NaN NaN NaN Ne

We see that the persons table gives information such as the role of a person in various projects (applicant, employee
etc.), her/his gender etc. The project table on the other side gives information such as the period of a grant, how much
money was awarded etc.

What if we now wish to know for example:

» How much money is awarded on average depending on gender?
« How long does it typically take for a researcher to go from employee to applicant status on a grant?

We need a way to link the two tables, i.e. create a large table where each row corresponds to a single observation
containing information from the two tables such as: applicant, gender, awarded funds, dates etc. We will now go through
all necessary steps to achieve that goal.

20f 14 9/10/20, 10:25 AM

12-DA Pandas _realworld

3of14

12.2 Merging tables

file:///home/marie/Documents/github_accounts/...

If each row of the persons table contained a single observation with a single person and a single project (the same person
would appear of course multiple times), we could just join the two tables based e.g. on the project ID. Unfortunately, in the
persons table, each line corresponds to a single researcher with all projects IDs lumped together in a list. For example:

In [12]:
Out[12]:

In [13]:
Out[13]:

persons.iloc[10041]

Last Name

Bodenmann

First Name

Guy

Gender

male

Institute Name

er/Jug...

Institute Place

Zirich

Person ID SNSF

47670

OCRID

0964-6409

Projects as responsible Applicant
29627; ...

Projects as Applicant
90;166348

Projects as Partner

NaN

Projects as Practice Partner
NaN

Projects as Employee

62901

Projects as Contact Person
NaN

Name: 10041, dtype: object

Lehrstuhl fir Klinische Psychologie Kind

0000-0003-
46820;56660;62901;109547;115948;128960;1

112141;1220

persons.iloc[10041]['Projects as responsible Applicant']

'46820;56660;62901;109547;115948;128960;129627;129699;133004;146775;147634;17

3270

Therefore the first thing we need to do is to split those strings into actual lists. We can do that by using classic Python
string splitting. We simply apply that function to the relevant columns. We need to take care of rows containing NaNs on
which we cannot use split() . We create two series, one for applicants, one for employees:

In [14]:

projID a = persons['Projects as responsible Applicant'].apply(lambda x: Xx.sp
lit(';"') if not pd.isna(x) else np.nan)
projID e = persons['Projects as Employee'].apply(lambda x: x.split(';') if n

ot pd.isna(x) else np.nan)

9/10/20, 10:25 AM

12-DA Pandas _realworld file:///home/marie/Documents/github_accounts/...

4 0f14

In [15]:
Out[15]:

In [17]:
Out[17]:

projID a

0 NaN
1 [67368]
2 [191432]
3 NaN
4 NaN
110811 [52821, 143769, 147153, 165510, 183584]
110812 NaN
110813 NaN
110814 NaN
110815 NaN

Name: Projects as responsible Applicant, Length: 110816, dtype: object

projID a[l0041]

['46820",
'56660",
'62901",
'109547",
'115948",
'128960",
'129627',
'129699',
'133004',
'146775",
'147634',
'173270"']

Now, to avoid problems later we'll only keep rows that are not NaNs. We first add the two series to the dataframe and then

remove NaNs:

In [18]:
Out[18]:

In [19]:

pd.isna(projID_a)

0 True
1 False
2 False
3 True
4 True
110811 False
110812 True
110813 True
110814 True
110815 True

Name: Projects as responsible Applicant, Length: 110816, dtype: bool

applicants = persons.copy()
applicants['projID'] = projID a
applicants = applicants[~pd.isna(projID a)]

employees = persons.copy()
employees['projID'] = projID e
employees = employees[~pd.isna(projID e)]

Now we want each of these projects to become a single line in the dataframe. Here we use a function that we haven't used

before called explode which turns every element in a list into a row (a good illustration of the variety of available
functions in Pandas):

9/10/20, 10:25 AM

12-DA Pandas _realworld file:///home/marie/Documents/github_accounts/...

In [20]: applicants = applicants.explode('projID')
employees = employees.explode('projID')

In [21]: applicants.head(5)

Out[21]:
Last First Institute Person Projects as Projects Projects
Name Name Gender Institute Name Place ID OCRID responsible as as
SNSF Applicant Applicant Partner
Andrea male NaN NaN 132628 NaN 67368 NaN NaN
Marca
Jafari Golnaz female Universitat Luzern Luzern 747886 NaN 191432 NaN NaN
Clinique de
7 Aapo Ml e Genolier EMIH. oo dier 3268 NaN 8532:9513 8155 NaN
S. Oncologie-
Hématolo...
Clinique de
7 Aapro Mall e CGenolier EMH. o diier 3268 NaN 8532:9513 8155 NaN
S. Oncologie-
Hématolo...
Lehrstuhl far
11 Aas Gregor male Pflanzenphysiologie Bayreuth 36412 NaN 52037 NaN NaN
Universitat ...

So now we have one large table, where each row corresponds to a single applicant and a single project. We can finally do
our merging operation where we combined information on persons and projects. We will do two such operations: one for
applicants using the projID a column for merging and one using the projID e column. We have one last problem
to fix:

In [22]: applicants.loc[1l].projID
Out[22]: '67368'

In [23]: projects.loc[1]['Project Number']
Out[23]: 4

We need the project ID in the persons table to be a number and not a string. We can try to convert but get an error:

50f14 9/10/20, 10:25 AM

12-DA Pandas _realworld file:///home/marie/Documents/github_accounts;/...

In [24]: applicants.projID = applicants.projID.astype(int)
employees.projID = employees.projID.astype(int)

ValueError Traceback (most recent call last)
<ipython-input-24-fca9460daf4e> in <module>
----> 1 applicants.projID = applicants.projID.astype(int)

2 employees.projID = employees.projID.astype(int)

~/miniconda3/envs/danalytics/lib/python3.8/site-packages/pandas/core/generic.
py in astype(self, dtype, copy, errors)

5696 else:
5697 # else, only a single dtype is given
-> 5698 new data = self. data.astype(dtype=dtype, copy=copy, erro
rs=errors)
5699 return self. constructor(new data). finalize (self)
5700

~/miniconda3/envs/danalytics/lib/python3.8/site-packages/pandas/core/internal
s/managers.py in astype(self, dtype, copy, errors)

580

581 def astype(self, dtype, copy: bool = False, errors: str = "rais
ell):
--> 582 return self.apply("astype", dtype=dtype, copy=copy, errors=er
rors)

583

584 def convert(self, **kwargs):

~/miniconda3/envs/danalytics/lib/python3.8/site-packages/pandas/core/internal
s/managers.py in apply(self, f, filter, **kwargs)

440 applied = b.apply(f, **kwargs)
441 else:
--> 442 applied = getattr(b, f)(**kwargs)
443 result blocks = extend blocks(applied, result blocks)
444

~/miniconda3/envs/danalytics/lib/python3.8/site-packages/pandas/core/internal
s/blocks.py in astype(self, dtype, copy, errors)

623 valsld = values.ravel()

624 try:
--> 625 values = astype nansafe(valsld, dtype, copy=True)

626 except (ValueError, TypeError):

627 # e.g. astype nansafe can fail on object-dtype of str
ings

~/miniconda3/envs/danalytics/lib/python3.8/site-packages/pandas/core/dtypes/c
ast.py in astype nansafe(arr, dtype, copy, skipna)

872 # work around NumPy brokenness, #1987

873 if np.issubdtype(dtype.type, np.integer):
--> 874 return lib.astype intsafe(arr.ravel(), dtype).reshape(ar
r.shape)

875

876 # if we have a datetime/timedelta array of objects

pandas/ libs/lib.pyx in pandas. libs.lib.astype intsafe()

ValueError: invalid literal for int() with base 10: ''

It looks like we have a row that doesn't conform to expectation and only contains ". Let's try to figure out what happened.
First we find the location with the issue:

6 of 14 9/10/20, 10:25 AM

12-DA Pandas _realworld file:///home/marie/Documents/github_accounts/...

In [25]: applicants[applicants.projID==""]

Out[25]:
. . . Person Projects as Projects Proj¢
Last Name N';':; Gender Ins'\tlg::z Insglt:éz ID OCRID resplonsible : as :
SNSF Applicant Applicant Pari
Séminaire
de politique
50947 Kleinewefers Henner male économique, Fribourg 10661 NaN 8; NaN !
d'économie
Faculté de
o Psychologie Gendve
62384 Massarenti Léonard male et des 4 11138 NaN 4; NaN !
Sciences de
I'Ed...
Then we look in the original table:
In [26]: persons.loc[50947]
Out[26]: Last Name Kle
inewefers
First Name
Henner
Gender
male
Institute Name Séminaire de politique économique, d'éco
nomie ...
Institute Place
Fribourg
Person ID SNSF
10661
OCRID
NaN
Projects as responsible Applicant
8;
Projects as Applicant
NaN
Projects as Partner
NaN
Projects as Practice Partner
NaN
Projects as Employee
NaN
Projects as Contact Person
NaN

Name: 50947, dtype: object

Unfortunately, as is often the case, we have a misformatting in the original table. The project as applicant entry has a
single number but still contains the ; sign. Therefore when we split the text, we end up with ['8"', ' '] . Can we fix
this? We can for example filter the table and remove rows where projID has length 0:

In [30]: applicants = applicants[applicants.projID.apply(lambda x: len(x) > 0)]
employees = employees[employees.projID.apply(lambda x: len(x) > 0)]

Now we can convert the projID column to integer:

7 of 14 9/10/20, 10:25 AM

12-DA Pandas _realworld file:///home/marie/Documents/github_accounts/...

In [31]: applicants.projID = applicants.projID.astype(int)
employees.projID = employees.projID.astype(int)

Finally we can use merge to combine both tables. We will combine the projects (on 'Project Number') and persons table
(on 'projID_a' and 'projlD_e"):

In [32]: merged appl =
ject Number')
merged_empl =
ect Number')

pd.merge(applicants, projects, left on='projID', right on='Pro

pd.merge(employees, projects, left on='projID', right on='Proj

In [33]: applicants.head(5)

Out[33]:
Last First Institute Person Projects as Projects Projects
Name Name Gender Institute Name Place ID OCRID responsible as as
SNSF Applicant Applicant Partner
1 @ Andrea male NaN NaN 132628 NaN 67368 NaN NaN
Marca
2 Jaf:ri Golnaz female Universitat Luzern Luzern 747886 NaN 191432 NaN NaN
Clinique de
7 Agpro Mg Genolier EMH oo dlier 3268 NaN 85329513 8155 NaN
S. Oncologie-
Hématolo...
Clinique de
7 Aapro Ml g Genolier EMH oo ier 3268 NaN 85329513 8155 NaN
S. Oncologie-
Hématolo...
Lehrstuhl fir
11 Aas Gregor male Pflanzenphysiologie Bayreuth 36412 NaN 52037 NaN NaN

Universitat ...

12.3 Reformatting columns: time

We now have in those tables information on both scientists and projects. Among other things we now when each project of
each scientist has started via the Start Date column:

In [34]: merged empl['Start Date'l]

Out[34]: @ 01.04.1993
1 01.04.1993
2 01.04.1993
3 01.04.1993
4 01.04.1993

127126 01.04.1990
127127 01.04.1991
127128 01.11.1998
127129 01.11.1992
127130 01.10.2008
Name: Start Date, Length: 127131, dtype: object

If we want to do computations with dates (e.g. measuring time spans) we have to change the type of the column. Currently
it is indeed just a string. We could parse that string, but Pandas already offers tools to handle dates. For example we can
use pd.to datetime to transform the string into a Python datetime format. Let's create a new date column:

8 of 14 9/10/20, 10:25 AM

12-DA Pandas _realworld

In [35]:

In [36]:

Out[36]:

In [37]:
Out[37]:

merged _empl['date']
merged _appl['date']

merged empl.iloc[0]['date"]

Timestamp('1993-01-04 00:00:00"')

merged empl.iloc[O]['date'].year

1993

Let's add a year column to our dataframe:

In [38]:

merged _empl['year']
merged _appl['year']

12.4 Completing information

file:///home/marie/Documents/github_accounts/...

pd.to datetime(merged empl['Start Date'])
pd.to datetime(merged appl['Start Date'])

merged_empl.date.apply(lambda x: x.year)
merged_appl.date.apply(lambda x: x.year)

As we did in the introduction, we want to be able to broadly classify projects into three categories. We therefore search for
a specific string ("Humanities', 'Mathematics','Biology') within the 'Discipline Name Hierarchy' column to create a new
column called 'Field":

In [39]:

science types = ['Humanities',

'Mathematics', 'Biology']

merged appl['Field'] = merged appl['Discipline Name Hierarchy'].apply(
lambda el: next((y for y in [x for x in science types if x in el] if y i

s not None),None) if not pd.isna(el) else el)

We will use the amounts awarded in our analysis. Let's look at that column:

In [40]:
Out[40]:

merged _appl['Approved Amount']

0
1
2
3
4

74650
74651
74652
74653
74654

20120
data not included in

211427.
174021.
.00

8865

150524.
346000.
262960.
449517 .
1433628.
Name: Approved Amount, Length:

.00

P3
00
00

00
00
00
00
00

74655, dtype: object

Problem: we have rows that are not numerical. Let's coerce that column to numerical:

In [41]:

9 of 14

merged appl['Approved Amount'] = pd.to numeric(merged appl['Approved Amount
"1, errors='coerce')

9/10/20, 10:25 AM

12-DA Pandas _realworld file:///home/marie/Documents/github_accounts/...

10 of 14

In [42]: merged appl['Approved Amount']

Out[42]: @ 20120.0
1 NaN
2 211427.0
3 174021.0
4 8865.0
74650 150524.0
74651 346000.0
74652 262960.0
74653 449517.0
74654 1433628.0

Name: Approved Amount, Length: 74655, dtype: float64

12.5 Data anaylsis

We are finally done tidying up our tables so that we can do proper data analysis. We can aggregate data to answer some
questions.

12.5.1 Amounts by gender

Let's see for example what is the average amount awarded every year, split by gender. We keep only the 'Project funding'
category to avoid obscuring the results with large funds awarded for specific projects (PNR etc):

In [44]: merged projects = merged applimerged appl['Funding Instrument Hierarchy'] ==
'Project funding'l]

In [45]: grouped gender = merged projects.groupby(['Gender','year'])['Approved Amount
"]l.mean().reset _index()
grouped gender

OQut[45]:
Gender year Approved Amount

0 female 1975.0 101433.200000
1 female 1976.0 145017.750000
2 female 1977.0 177826.157895
3 female 1978.0 141489.857143
4 female 1979.0 218496.904762

87 male 2016.0 429717.055907
88 male 2017.0 507521.397098
89 male 2018.0 582461.020513
90 male 2019.0 624826.387985
91 male 2020.0 617256.523404

92 rows x 3 columns

To generate a plot, we use here Seaborn which uses some elements of a grammar of graphics. For example we can
assign variables to each "aspect” of our plot. Here x and y axis are year and amount while color ('hue’) is the gender. In
one line, we can generate a plot that compiles all the information:

9/10/20, 10:25 AM

12-DA Pandas _realworld

11 of 14

file:///home/marie/Documents/github_accounts/...

In [46]: sns.lineplot(data = grouped gender, x='year', y='Approved Amount', hue='Gend

er')

Out[46]: <matplotlib.axes. subplots.AxesSubplot at 0x122c5d0do>

600000

500000 -

Approved Amount

200000 1

100000 A

There seems to be a small but systematic difference in the average amount awarded.

400000

300000 -

Gender

— female

male

A

19'80

1990

2000 2010
year

20'20

We can now use a plotting library that is essentially a Python port of ggplot to add even more complexity to this plot. For
example, let's split the data also by Field:

In [47]: import plotnine as p9

In [48]: grouped gender field = merged projects.groupby(['Gender', 'year', 'Field'])['A
pproved Amount'].mean().reset index()

In [49]: grouped gender field

Out[49]:

Gender year Field Approved Amount

0 female 1975.0 Biology 95049.000000

1 female 1975.0 Humanities 95451.666667

2 female 1975.0 Mathematics 125762.000000

3 female 1976.0 Biology 183154.200000

4 female 1976.0 Humanities 68590.750000
271 male 2019.0 Humanities 523397.013072
272 male 2019.0 Mathematics 632188.796040
273 male 2020.0 Biology 694705.243590
274 male 2020.0 Humanities 520925.507246
275 male 2020.0 Mathematics 624141.068182

276 rows x 4 columns

9/10/20, 10:25 AM

12-DA Pandas _realworld file:///home/marie/Documents/github_accounts/...

In [50]: (p9.ggplot(grouped gender field, p9.aes('year', 'Approved Amount', color='Ge
nder'))
+ p9.geom_point()
+ p9.geom line()
+ p9.facet wrap('~Field'))

Biology Humanities Mathematics
A
i
600000 - #
® o ,'
‘ !1 '|P1
{ . o
! 3
I= | I |
3 b | '
£ g i 4
< 400000 - [° ¢ I ‘ Gender
kA ? t! . —o— female
g o) ‘ \ male
2 i bRy 3
o 8 N q !
Q. ﬂ\ u"b X‘” é I 3) z‘ | 27
< J [i X W
" (P‘ .* *‘l‘l } I\t v‘ an'h ”,
200000 - ZHH 1 N A 8%
’ ’H . I |1/ &4 |‘1 ’
a (da LR
ks :
| » x% l
T ‘,m‘\ '
o8|/

1980 1990 2000 20102020 1980 1990 20002010 2020 1980 1990 2000 2010 2020
year

Out[50]: <ggplot: (305412337)>

12.5.2 From employee to applicant

One of the questions we wanted to answer above was how much time goes by between the first time a scientist is
mentioned as "employee" on an application and the first time he applies as main applicant. We have therefore to:

1. Find all rows corresponding to a specific scientist
2. Find the earliest date of project

For (1) we can use groupby and use the Person ID SNSF ID which is a unique ID assigned to each researcher.
Once this aggregation is done, we can summarize each group by looking for the "minimal” date:

merged empl.groupby('Person ID SNSF').date.min().reset index()

In [51]: first empl
merged_appl.groupby('Person ID SNSF').date.min().reset index()

first appl

We have now two dataframes indexed by the Person 1ID :

In [52]: first _empl.head(5)

OQut[52]:
Person ID SNSF date
0 1611 1990-01-10
1 1659 1988-01-11
2 1661 1978-01-07
3 1694 1978-01-06
4 1712 1982-01-04

12 of 14 9/10/20, 10:25 AM

12-DA Pandas _realworld

13 of 14

file:///home/marie/Documents/github_accounts/...

Now we can again merge the two series to be able to compare applicant/employee start dates for single people:

In [53]:

In [54]:
Out[54]:

merge first = pd.merge(first appl, first empl, on = 'Person ID SNSF', suffix
appl', '_empl'))

es=('_

merge first

Person ID SNSF date_appl date_empl

0 1659 1975-01-10 1988-01-11

1 1661 1978-01-07 1978-01-07

2 1694 1985-01-01 1978-01-06

3 1712 1982-01-04 1982-01-04

4 1726 1985-01-03 1985-01-03
10336 748652 2019-01-12 2019-01-12
10337 748760 2020-01-03 2020-01-03
10338 749430 2020-01-04 2020-01-04
10339 749991 2020-01-03 2020-01-03
10340 750593 2020-01-01 2020-01-01

10341 rows x 3 columns

Finally we merge with the full table, based on the index to recover the other paramters:

In [55]:

full table = pd.merge(merge first, merged appl,on = 'Person ID SNSF')

Finally we can add a column to that dataframe as a "difference in dates™:

In [56]:

In [57]:

In [58]:
Out[58]:

full_table['time diff'] = full table.date appl-full_ table.date empl

full table.time diff = full table.time diff.apply(lambda x: x.days/365)

full table.hist(column="'time diff',bins = 50)

array([[<matplotlib.axes. subplots.AxesSubplot object at 0x12ba24970>]1,
dtype=object)

time_diff

4000 A

3500 A1

3000 A

2500 A

2000 A

1500 1

1000 A
500 1

9/10/20, 10:25 AM

12-DA Pandas _realworld file:///home/marie/Documents/github_accounts;/...

We see that we have one strong peak at AT == 0 which corresponds to people who were paid for the first time through
an SNSF grant when they applied themselves. The remaining cases have a peak around AT == 5 which typically
corresponds to the case where a PhD student was payed on a grant and then applied for a postdoc grant ~4-5 years later.

We can go further and ask how dependent this waiting time is on the Field of research. Obviously Humanities are
structured very differently
In [60]: sns.boxplot(data=full table, y='time diff', x='Field');

40

30 4

n
o

—
o

o

time_diff

=30 1 +

Humanities Biology Mathematics
Field

In [61]: sns.violinplot(data=full table, y='time diff', x='Field',);

40 p

30 4

20 1

= 101
;al

g 0]
F=

_10 4

_20 4

_30 4

Humanities Biology Mathematics
Field

14 of 14 9/10/20, 10:25 AM

