
Parallel computing

This notebooks is heavily based on this (https://github.com/dask/dask-tutorial/blob/master/01_dask.delayed.ipynb) official
dask tutorial.

We first "reserve" some CPU. We will see in the next chapter exactly how this is done.

In [1]: from time import sleep
from dask.distributed import Client

In []: client = Client()

There are two simple situations where we can benefit from parallelization: we can have a series of independent functions
e.g. in a data processing pipeline, or we can have multiple independent calls to a given function in a for loop. Let's see
the first case, and learn how Dask deals with it.

Delaying computation

For the purpose of illustration, we imagine that we have two functions that are slow to execute. To simulate the slowness
we just pause execution within the functions for a few seconds using time.sleep, let's say here 1s.

In [4]: def inc(x):
sleep(1)
return x + 1

def add(x, y):
sleep(1)
return x + y

If we use the timing magic function we can check that the following "script" takes 3s:

In [8]: %%time
x = inc(1)
y = inc(2)
z = add(x, y)

In principle we could execute the two first lines in parallel as the variables are indpendent. The solution implemented by
Dask is the following:

"Take notes" on what the program should be doing
With that information, smartly split the problem into subproblems
Send each problem to an individual process (e.g. two cores)

So how do we tell Dask what tasks it should take into account when "taking notes"? The solution is to use the function
delayed() which takes as input another function. Every function "decorated" with the delay function will be included in
the Dask flow. Let's try it:

CPU times: user 176 ms, sys: 26.7 ms, total: 203 ms
Wall time: 3.01 s

01-Dask_delay file:///home/marie/Documents/CAS_data_scienc...

1 of 6 2/12/20, 9:49 AM

In [9]: from dask import delayed

In [32]: %%time
x = delayed(inc)(1)
y = delayed(inc)(2)
z = delayed(add)(x, y)

We see that the time consumed is minimal. But has z been really calculated ?

In [33]: z

No! z is also a delayed object now. Dask knows how to calculate it but hasn't done it yet. To effectively get the result of z,
we have to use the compute() function or method:

In [38]: %%time
z.compute()

The computation time is now only 2s instead of 3. Indeed the two first calls to inc could be done in parallel, making us
gain 1s in the process.

What is Dask actually doing: Task graph

Dask offers a very useful way to visualize how the task are split through the visualize() method that one can use on
any delayed variable. Let's check e.g. what is z:

In [40]: z.visualize()

CPU times: user 686 µs, sys: 540 µs, total: 1.23 ms
Wall time: 820 µs

Out[33]: Delayed('add-901f6d69-1c83-47a7-b38c-5d1ea3a03e1a')

CPU times: user 146 ms, sys: 20.9 ms, total: 167 ms
Wall time: 2.03 s

Out[38]: 5

Out[40]:

01-Dask_delay file:///home/marie/Documents/CAS_data_scienc...

2 of 6 2/12/20, 9:49 AM

Each "leaf" of that tree starts and indepenent calculation that can be sent to an independent process if available. Here the
two inc() calls start separately and are then combined in the add() call.

Generating this Task graph and handling the flow of information beetween processes is the main task of Dask.

We can make our calculation slighly more complex and see what happens:

In [65]: %%time
x = delayed(inc)(1)
y = delayed(inc)(2)
z = delayed(add)(x, y)

x2 = delayed(inc)(1)
y2 = delayed(inc)(2)
z2 = delayed(add)(x2, y2)

total = delayed(add)(z, z2)

In [66]: total.visualize()

Let's however look at alternative ways of caclulating this last sum. First, what happens if we just use a regualr + sign ?

In [67]: total_plus = z + z2

CPU times: user 1.86 ms, sys: 1.16 ms, total: 3.02 ms
Wall time: 2.52 ms

Out[66]:

01-Dask_delay file:///home/marie/Documents/CAS_data_scienc...

3 of 6 2/12/20, 9:49 AM

In [68]: total_plus.visualize()

We obtain exactly the same graph. Dask knows about standard operations and automatically includes them in the task
graph. Let's see if we us the standard Python sum() function:

In [69]: total_sum = sum([z, z2])

Out[68]:

01-Dask_delay file:///home/marie/Documents/CAS_data_scienc...

4 of 6 2/12/20, 9:49 AM

In [70]: total_sum.visualize()

We now see an important difference! z and z2 are calculated in sequence and not in parallel (except for their "internal
definitions"). What happens here is that sum() not beeing included in the task graph, triggers the computation first of z
and then of z2.

This shows that one should be careful when using delay() for parallelization. Other recommendations are: not delaying
a delayed function, breaking long code into multiple delayed functions etc. (see here (https://docs.dask.org/en/latest
/delayed-best-practices.html) for more details).

Exercises

If you haven't executed the notebook unil now, import the packages and start the client.

In []: from dask.distributed import Cient
from dask import delayed
client = Client()

Based on what we just learned apply the inc() function on the list data (using a for loop or a comprehension list) and
then multiply all elements using the numpy function np.prod(). Check the task graph to make sure everyting happens
as expected:

Out[70]:

01-Dask_delay file:///home/marie/Documents/CAS_data_scienc...

5 of 6 2/12/20, 9:49 AM

In [103]: data = [3,8,1,4,2,9,4,6]

In []: newdata = [delayed(inc)(x) for x in data]
newdata
import numpy as np
prod = np.prod(newdata)
prod
prod.visualize()
prod is a delayed object
-> bad, it is doying everything sequential, not parallel
prod = delay(np.prod)(newdata)
prod.visualize()
-> ok, now everything is run in parallel

NB: make sense to use paralell if you have huge of data,
otherwise it can even take longer time ...

01-Dask_delay file:///home/marie/Documents/CAS_data_scienc...

6 of 6 2/12/20, 9:49 AM

Applied problem: Sequence of operations on images
In [1]: import glob, os

from dask.distributed import Client
from dask import delayed
import skimage.io
import skimage.filters
import numpy as np
import matplotlib.pyplot as plt

A very common problem when dealing with image processing, is to have a set of images in a folder and having to apply a
time-consuming operation on all of them.

Let's first get the names of all images:

In [2]: filenames = glob.glob('../Data/BBBC032_v1_dataset/*.tif')
filenames

Dask is not good at parsing filenames so we transform those into absolute paths:

In []: filenames = [os.path.abspath(f) for f in filenames]

We can import a single image using the io module of scikit-image:

In [3]: image = skimage.io.imread(filenames[0])

In [4]: image.shape

It is a quite large image representing volume data. Typical image filtering functions could be relatively slow on this
especially with large kernels. We are going to do a gaussian filtering on only part of the image and then measure the mean
value of the array:

In [24]: %%time
image = skimage.io.imread(filenames[0])
filtered = skimage.filters.gaussian(image[0:40,:,:],0.1)
mean_val =np.mean(im)

If we execute that function on all images we are obsiously going to spend about 1min on this. Let's try to make it faster
using Dask:

In [9]: client = Client()

Out[2]: ['../PyImageCourse/Data/BBBC032_v1_dataset/BMP4blastocystC2.tif',
 '../PyImageCourse/Data/BBBC032_v1_dataset/BMP4blastocystC3.tif',
 '../PyImageCourse/Data/BBBC032_v1_dataset/BMP4blastocystC1.tif',
 '../PyImageCourse/Data/BBBC032_v1_dataset/BMP4blastocystC0.tif']

Out[4]: (172, 1344, 1024)

CPU times: user 1.59 s, sys: 725 ms, total: 2.31 s
Wall time: 2.23 s

02-Applied_delay_images file:///home/marie/Documents/CAS_data_scienc...

1 of 3 2/12/20, 9:49 AM

In [11]: client

In [29]: %%time
all_vals = []
for f in filenames:
 im = skimage.io.imread(f)
 im = skimage.filters.gaussian(im[0:40,:,:],0.1)
 mean_val = np.mean(im)
 all_vals.append(mean_val)
np.max(all_vals)

In [30]: all_vals = []
for f in filenames:

im = delayed(skimage.io.imread)(f)
im = delayed(skimage.filters.gaussian)(im[0:40,:,:],0.1)
mean_val = delayed(np.mean)(im)
all_vals.append(mean_val)

In [31]: max_mean = delayed(np.max)(all_vals)

Out[11]:

Client
Scheduler: tcp://127.0.0.1:62025
Dashboard: http://127.0.0.1:8787/status (http://127.0.0.1:8787/status)

Cluster
Workers: 4
Cores: 4
Memory: 17.18 GB

CPU times: user 6.91 s, sys: 2.61 s, total: 9.52 s
Wall time: 9.15 s

Out[29]: 0.00791776016748083

02-Applied_delay_images file:///home/marie/Documents/CAS_data_scienc...

2 of 3 2/12/20, 9:49 AM

In [32]: max_mean.visualize()

In [33]: %%time
max_mean.compute()

Out[32]:

CPU times: user 301 ms, sys: 24.4 ms, total: 325 ms
Wall time: 3.98 s

Out[33]: 0.00791776016748083

02-Applied_delay_images file:///home/marie/Documents/CAS_data_scienc...

3 of 3 2/12/20, 9:49 AM

Creating a cluster and observing it

There are two ways of allocating computing resources in Dask. dask.distributed offers more control and can be run
both on a local machine (laptop) or on a cluster, and we therefore focus on this.

The allocation and access to resources happens through two objects: a cluster and a client to access it.

Cluster creation
First we create a cluster, here a local cluster on this machine, but it could also be a cluster e.g. on an HPC facility. We can
specify many options here, in particular the number of workers (separate Python processes), the threads per worker etc.:

In [2]: from dask.distributed import LocalCluster

In [3]: cluster = LocalCluster(n_workers=1, threads_per_worker=1)

Connecting to cluster via client
Now we can connect a client to our cluster to be able to acutally use it and submit computations. This is so to say our
interface to the cluster:

In [4]: from dask.distributed import Client

In [5]: client = Client(cluster)

Here is our client:

In [6]: client

Out[6]:

Client
Scheduler: tcp://127.0.0.1:64240
Dashboard: http://127.0.0.1:8787/status (http://127.0.0.1:8787/status)

Cluster
Workers: 1
Cores: 1
Memory: 17.18 GB

03-Cluster_client file:///home/marie/Documents/CAS_data_scienc...

1 of 4 2/12/20, 9:49 AM

We see on the right a summary of the status of our cluster and on the left, two important addresses:

The dashboard address (of the type http://127.0.0.1:8787/status (http://127.0.0.1:8787/status)) leads us to a
dashboard where we can monitor the activity of the cluster. The Dask extension for Jupyterlab allows us to have
acces to the monitoring dashborad directly within Jupyterlab. We can just choose the Dask icon on the left and
use the Dashboard address to access all panels. Note that when using a Jupyterhub you have to change the
address to https://address-of-hub.ch/user/your-user-name/proxy/8787 (https://address-of-hub.ch
/user/your-user-name/proxy/8787)
The scheduler address allows us to create additional workers, e.g. directly in the terminal, by pointing them to the
correct scheduler and typing:

 dask-worker "tcp://127.0.0.1:55323"

On top of many methods and attributes, the client also offers an interactive interface to the cluster:

In [7]: client.cluster

Here we can interactively select the number of workers and say if we want it to be automatically adjusted.

Using Dask extension
An alternative to create a cluster, is to use the Dask extension. If you click on "+NEW", a cluster is automatically created.
To use it in your notebook simple click on the "<>" button which will add the client to your current notebook.

In [28]: from IPython.display import HTML

HTML("""
<video width="800" controls>
 <source src="images/cluster_extension.mp4" type="video/mp4">
</video>
""")

Out[28]:

No video with supported format and MIME type found.

03-Cluster_client file:///home/marie/Documents/CAS_data_scienc...

2 of 4 2/12/20, 9:49 AM

Example
We are going to see all these pieces in action now using a simple example handling numpy arrays.

In [8]: from dask import delayed
import numpy as np

In [16]: all_vals = []
for i in range(10):

ar = delayed(np.random.randint)(1,100,(1000,1000,10))
ar = delayed(np.log)(ar)#[::2,::2,0]
mean_val = delayed(np.mean)(ar)
all_vals.append(mean_val)

maxval = delayed(np.max)(all_vals)

In [17]: maxval.visualize()

In [11]: maxval.compute()

Now we do the same operation for a lot more iterations:

In [12]: all_vals = []
for i in range(1000):

ar = delayed(np.random.randint)(1,100,(1000,1000,10))
ar = delayed(np.log)(ar)#[::2,::2,0]
mean_val = delayed(np.mean)(ar)
all_vals.append(mean_val)

maxval = delayed(np.max)(all_vals)

Out[17]:

Out[11]: 3.6278351697511226

03-Cluster_client file:///home/marie/Documents/CAS_data_scienc...

3 of 4 2/12/20, 9:49 AM

In [13]: cluster

In []: maxval.compute()

Since this is very slow, we can now stop the operation, add a worker and restart.

Alternatively, as described above, to avoid stopping the calculation, we can dymamically assing new workers to the
scheduler:

In [50]: client

Asynchronous calculation

We have just seen how to add new workers to a running computation. We had to do that through the command line,
because the computation is blocking the execution of other tasks until completion. We can go around this by executing the
tasks asynchronously using the client.compute() function instead of the regular compute() method.
Asynchronous calculation is a complex topic about which you can learn more e.g. here (https://distributed.dask.org
/en/latest/manage-computation.html).

In [18]: value = client.compute(maxval)

In [22]: value.result()

Exercise
Open a new notebook and just try to create a cluster, a client, a dashboard, and run some code on it.

Out[50]:

Client
Scheduler: tcp://127.0.0.1:55323
Dashboard: http://127.0.0.1:55324/status (http://127.0.0.1:55324/status)

Cluster
Workers: 4
Cores: 7
Memory: 68.72 GB

Out[22]: 3.6278351697511226

03-Cluster_client file:///home/marie/Documents/CAS_data_scienc...

4 of 4 2/12/20, 9:49 AM

Dask (numpy) arrays

As mentioned before, there are other solutions to perform perform parallel computing in Python. However Dask offers an
crucial feature not present in other libraries: a built-in parallelized implemtation of large parts of the popular libraries
Numpy and Pandas. In other terms, no need to systematically use delayed or think how to optimize a function, Dask has
already done it for you!

Here we will first explore possibilities offered by dask-arrays, the equivalent of numpy arrays. As usual, we first create our
cluster:

In [1]: from dask.distributed import Client

client = Client("tcp://127.0.0.1:63517")
client

Dask-arrays are numpy-delayed arrays

The equivalent of the numpy import is the dask.array import:

In [2]: import dask.array as da
import numpy as np

A great feature of dask.array is that it mirror very closely the Numpy API, so if you are familiar with the latter, you
should have no problem with dask.

For example let's create an array of random numbers and check that they behave the same way:

In [20]: nprand = np.random.randint(0,100, (4,5))

In [21]: darand = da.random.randint(0,100, (4,5))

In [22]: nprand.shape

In [23]: darand.shape

Let's look that the arrays directly:

Out[1]:

Client
Scheduler: tcp://127.0.0.1:63517
Dashboard: http://127.0.0.1:8787/status (http://127.0.0.1:8787/status)

Cluster
Workers: 4
Cores: 4
Memory: 17.18 GB

Out[22]: (4, 5)

Out[23]: (4, 5)

04-Dask_arrays file:///home/marie/Documents/CAS_data_scienc...

1 of 13 2/12/20, 9:50 AM

In [27]: nprand

In [28]: darand

Here we see already a difference. Numpy just shows the matrix, while dask shows us a much richer output, including size,
type, dimensionality etc.

But do the darand values exist anywhere ? Let's check that we can find the maximum in the array:

In [33]: darand.max()

Again, we get some info but no values. In fact, as with delayed before, the values have not been computed yet!

The logic is the same as with delayed. Any time we actually want a result we can call the compute method:

In [35]: darand.max().compute()

There could also be intermediate steps:

In [37]: myval = 10*darand.max()

In [40]: myval.compute()

Dask re-implements many standard array creation functions, including zeros(), ones() and many of the np.random
module.

However one can also create arrays directly from a numpy array:

Out[27]: array([[14, 98, 63, 6, 62],
 [7, 7, 16, 53, 85],
 [90, 87, 60, 32, 90],
 [92, 83, 90, 57, 23]])

Out[28]:
Array Chunk

Bytes 160 B 160 B

Shape (4, 5) (4, 5)

Count 1 Tasks 1 Chunks

Type int64 numpy.ndarray

Out[33]:
Array Chunk

Bytes 8 B 8 B

Shape () ()

Count 3 Tasks 1 Chunks

Type int64 numpy.ndarray

Out[35]: 98

Out[40]: 980

04-Dask_arrays file:///home/marie/Documents/CAS_data_scienc...

2 of 13 2/12/20, 9:50 AM

In [29]: da_array = da.from_array(np.ones((5,8)))

In [30]: da_array

Dask-arrays are distributed

Let's create a larger array and see how it is handled by Dask and compare it with Numpy:

In [78]: large_nparray = np.random.randint(0,100,(10000,1000,100))

In [75]: myarray = da.random.randint(0,100,(10000,1000,100))

In [77]: myarray

First, notice how the array visualisation is helpful! Second, note that we have information about "chunks". When handling
larger objects, Dasks automatically breaks them into chunks that can be generated or operated on by different workers in
a parallel way. We can compute the mean of this array and observe what happens:

In [66]: mean = myarray.mean()

In [67]: mean.visualize()

In [68]: mean.compute()

Slicing like in Numpy
One of the main feature of numpy array is the possibility to slice and index them. Great news: dask arrays behave exactly
in the same way for most "regular" cases (e.g. it doesn't implement slicing with multiple lists). Let's see how it works:

Out[30]:
Array Chunk

Bytes 320 B 320 B

Shape (5, 8) (5, 8)

Count 1 Tasks 1 Chunks

Type float64 numpy.ndarray

Out[77]:
Array Chunk

Bytes 8.00 GB 80.00 MB

Shape (10000, 1000, 100) (400, 250, 100)

Count 100 Tasks 100 Chunks

Type int64 numpy.ndarray

Out[67]:

Out[68]: 49.4997707582

04-Dask_arrays file:///home/marie/Documents/CAS_data_scienc...

3 of 13 2/12/20, 9:50 AM

In [5]: myarray = da.random.random((5000,5000))

In [6]: myarray

For example we can slice the array:

In [8]: sliced_array = myarray[::2,:]

In [9]: sliced_array

Or we can use logical indexing. First we create a logical array:

In [11]: logical_array = myarray > 0.5

In [12]: logical_array

And then use it for logical indexing:

In [13]: extracted_values = myarray[logical_array]

Out[6]:

Array Chunk

Bytes 200.00 MB 50.00 MB

Shape (5000, 5000) (2500, 2500)

Count 4 Tasks 4 Chunks

Type float64 numpy.ndarray

Out[9]:
Array Chunk

Bytes 100.00 MB 25.00 MB

Shape (2500, 5000) (1250, 2500)

Count 8 Tasks 4 Chunks

Type float64 numpy.ndarray

Out[12]:

Array Chunk

Bytes 25.00 MB 6.25 MB

Shape (5000, 5000) (2500, 2500)

Count 8 Tasks 4 Chunks

Type bool numpy.ndarray

04-Dask_arrays file:///home/marie/Documents/CAS_data_scienc...

4 of 13 2/12/20, 9:50 AM

In [14]: extracted_values

Of course here for example we don't know the size of the resulting length. This is a typical case where any downstream
parallelization becomes difficult as chunks of the array cannot be distributed. However we can get the result:

In [15]: values = extracted_values.compute()

In [16]: values

Numpy functions just work!
An extremely useful features of Dask is that whenever you are handling a dask-array you can apply most of the Numpy
funtions to it and it remains a dask-array, i.e. it gets integrated in the task graph. For example:

In [45]: cos_array = np.cos(myarray)

In [46]: cos_array

Out[14]:
Array Chunk

Bytes unknown unknown

Shape (nan,) (nan,)

Count 48 Tasks 4 Chunks

Type float64 numpy.ndarray

Out[16]: array([0.65084936, 0.51052718, 0.90765229, ..., 0.86515662, 0.68235459,
 0.56506943])

Out[46]:

Array Chunk

Bytes 200.00 MB 50.00 MB

Shape (5000, 5000) (2500, 2500)

Count 8 Tasks 4 Chunks

Type float64 numpy.ndarray

04-Dask_arrays file:///home/marie/Documents/CAS_data_scienc...

5 of 13 2/12/20, 9:50 AM

In [47]: cos_array.visualize()

Dask also re-implements many numpy functions internally so that they are accessible as methods of the dask-arrays:

In [58]: proj = myarray.sum(axis = 0)

In [59]: proj

The great advantage of dask-arrays is that functions have been optimized in order to make the task-graph very efficient.
For example this simple calculation produces already a quite complex task graph. If handling large "out-of-RAM" array with
numpy, one would have to break up the large array and be very smart about how to process each task.

In [61]: newda = myarray + da.transpose(myarray)

Out[47]:

Out[59]:
Array Chunk

Bytes 40.00 kB 20.00 kB

Shape (5000,) (2500,)

Count 10 Tasks 2 Chunks

Type float64 numpy.ndarray

04-Dask_arrays file:///home/marie/Documents/CAS_data_scienc...

6 of 13 2/12/20, 9:50 AM

In [62]: newda.visualize()

This is already quite complicated, but it can become much more complicated very quickly.

In [63]: newda = da.dot(myarray, myarray + da.transpose(myarray))

Out[62]:

04-Dask_arrays file:///home/marie/Documents/CAS_data_scienc...

7 of 13 2/12/20, 9:50 AM

In [64]: newda.visualize()

04-Dask_arrays file:///home/marie/Documents/CAS_data_scienc...

8 of 13 2/12/20, 9:50 AM

Out[64]:

04-Dask_arrays file:///home/marie/Documents/CAS_data_scienc...

9 of 13 2/12/20, 9:50 AM

In [65]: %%time
computed_array = newda.compute();

In [66]: myarray2 = np.random.random((5000,5000))

In [67]: %%time
newnp = np.dot(myarray2, myarray2 + np.transpose(myarray2))

We see here that for a reasonably sized array, the overhead time needed to push data between processes makes Dask
slower than basic Numpy, so be careful in what context you use Dask! But Dasks scales nicely:

In [68]: myarray = da.random.random((10000,10000))

In [69]: newda = da.dot(myarray, myarray + da.transpose(myarray))

In [70]: newda.visualize()

Limitations
Of course there are limitations to what one can do. For example, most linear algebra functions are not dask compatible:

In [12]: myarray = da.random.random((10,10))

eigenval, eigenvect = np.linalg.eig(myarray);

The result is not a dask array:

In [15]: eigenval

CPU times: user 161 ms, sys: 190 ms, total: 351 ms
Wall time: 5.42 s

CPU times: user 10.7 s, sys: 212 ms, total: 10.9 s
Wall time: 3.62 s

Out[70]:

/Users/gw18g940/miniconda3/envs/dask-tutorial/lib/python3.7/site-packages
/dask/array/core.py:1333: FutureWarning: The `numpy.linalg.eig` function
is not implemented by Dask array. You may want to use the da.map_blocks f
unction or something similar to silence this warning. Your code may stop
working in a future release.
 FutureWarning,

Out[15]: array([4.72657183+0.j , 0.25040593+0.91024704j,
 0.25040593-0.91024704j, 0.79482289+0.j ,
 0.74611566+0.j , 0.43071796+0.j ,
 -0.89630506+0.j , -0.52818014+0.18462008j,
 -0.52818014-0.18462008j, -0.39702164+0.j])

04-Dask_arrays file:///home/marie/Documents/CAS_data_scienc...

10 of 13 2/12/20, 9:50 AM

Also some operations such as those reshaping arrays may pose difficulties to Dasks as they require reshuffling array
chunks. For example:

In [18]: myarray = da.zeros((5000,5000))

In [19]: myarray

This works because it's easy to reshuffle some chunks:

In [20]: reshaped = np.reshape(myarray,(5000,1000,5))

In [21]: reshaped

In [23]: reshaped.visualize()

But this doesn't:

Out[19]:

Array Chunk

Bytes 200.00 MB 50.00 MB

Shape (5000, 5000) (2500, 2500)

Count 4 Tasks 4 Chunks

Type float64 numpy.ndarray

Out[21]:

Array Chunk

Bytes 200.00 MB 50.00 MB

Shape (5000, 1000, 5) (2500, 500, 5)

Count 8 Tasks 4 Chunks

Type float64 numpy.ndarray

Out[23]:

04-Dask_arrays file:///home/marie/Documents/CAS_data_scienc...

11 of 13 2/12/20, 9:50 AM

In [22]: reshaped = np.reshape(myarray,(1000,5000,5))

While it actually works in numpy:

In [26]: numpy_array = np.zeros((5000,5000))

In [27]: reshaped = np.reshape(numpy_array,(1000,5000,5))

In [28]: reshaped.shape

Exercise
Try to solve this exercise. Regularly check the visual representation of arrays and of the task-graph to understand what is
going on.

1. Create a dask-array of of normally distributed values with mean=9, and sigma = 1 of size 5000x5000
2. Add to it a numpy array of the same size and filled with ones. What kind of array to you obtain ?
3. Use numpy-style indexing to recover only the values smaller than 10
4. Can you find how to create a dask-histogram of those values?
5. Compute the histogram and try to plot the result using matplotlib

--
ValueError Traceback (most recent call las
t)
<ipython-input-22-a69696d87bee> in <module>
----> 1 reshaped = np.reshape(myarray,(1000,5000,5))

<__array_function__ internals> in reshape(*args, **kwargs)

~/miniconda3/envs/dask-tutorial/lib/python3.7/site-packages/dask/array/co
re.py in __array_function__(self, func, types, args, kwargs)
 1357 if da_func is func:
 1358 return handle_nonmatching_names(func, args, kwargs)
-> 1359 return da_func(*args, **kwargs)
 1360
 1361 @property

~/miniconda3/envs/dask-tutorial/lib/python3.7/site-packages/dask/array/re
shape.py in reshape(x, shape)
 193
 194 # Logic for how to rechunk
--> 195 inchunks, outchunks = reshape_rechunk(x.shape, shape, x.chunk
s)
 196 x2 = x.rechunk(inchunks)
 197

~/miniconda3/envs/dask-tutorial/lib/python3.7/site-packages/dask/array/re
shape.py in reshape_rechunk(inshape, outshape, inchunks)
 62 oleft -= 1
 63 if reduce(mul, outshape[oleft : oi + 1]) != din:
---> 64 raise ValueError("Shapes not compatible")
 65
 66 # TODO: don't coalesce shapes unnecessarily

ValueError: Shapes not compatible

Out[28]: (1000, 5000, 5)

04-Dask_arrays file:///home/marie/Documents/CAS_data_scienc...

12 of 13 2/12/20, 9:50 AM

In []: import dask.array as da
import numpy as np

da_array = da.random.normal(loc=9, scale=1, size=(5000, 5000))

np_array = np.ones((5000,5000))

added = da_array + np_array

added
output is still a dask array

In []: masked = added[added < 10]

In []: # in numpy, no need to specify bins and range (automatically chosen if n
ot specified)
here it requires to specify bins and range
(dask has to know what you want to now how to distribute things)
myhist, bins = da.histogram(masked, bins=100, range=[-9,11])
myhist.visualize()

In []: myhist.compute()

04-Dask_arrays file:///home/marie/Documents/CAS_data_scienc...

13 of 13 2/12/20, 9:50 AM

In [1]: from dask.distributed import Client

client = Client("tcp://127.0.0.1:56643")
client

Dask dataframes

Just like numpy arrays, Dask implements an equivalent of the Pandas dataframe. Let's briefly remember what a dataframe
is by loading some tabular data:

In [2]: import pandas as pd

In [3]: births = pd.read_csv('../Data/Birthdays.csv')

In [3]: births

A dataframe is a table where each line represents an observation and that can contain numerical values or categorical
values (it can contain lists or other complex objects, but rather shouldn't). Each line has an index that can be used to
recover that line:

Out[1]:

Client
Scheduler: tcp://127.0.0.1:56643
Dashboard: http://127.0.0.1:8787/status (http://127.0.0.1:8787/status)

Cluster
Workers: 4
Cores: 4
Memory: 17.18 GB

Out[3]:

Unnamed: 0 state year month day date wday births

0 1 AK 1969 1 1 1969-01-01 Wed 14

1 2 AL 1969 1 1 1969-01-01 Wed 174

2 3 AR 1969 1 1 1969-01-01 Wed 78

3 4 AZ 1969 1 1 1969-01-01 Wed 84

4 5 CA 1969 1 1 1969-01-01 Wed 824

...

372859 372860 VT 1988 12 31 1988-12-31 Sat 21

372860 372861 WA 1988 12 31 1988-12-31 Sat 157

372861 372862 WI 1988 12 31 1988-12-31 Sat 167

372862 372863 WV 1988 12 31 1988-12-31 Sat 45

372863 372864 WY 1988 12 31 1988-12-31 Sat 18

372864 rows × 8 columns

05-Dask_dataframes file:///home/marie/Documents/CAS_data_scienc...

1 of 19 2/12/20, 9:50 AM

In [4]: births.loc[0]

One can recover each variable either for a specific index:

In [5]: births.loc[0].state

or for the entire dataframe:

In [6]: births.state

Dataframes also support numpy-like indexing:

In [7]: births.state == 'AK'

Out[4]: Unnamed: 0 1
state AK
year 1969
month 1
day 1
date 1969-01-01
wday Wed
births 14
Name: 0, dtype: object

Out[5]: 'AK'

Out[6]: 0 AK
1 AL
2 AR
3 AZ
4 CA
 ..
372859 VT
372860 WA
372861 WI
372862 WV
372863 WY
Name: state, Length: 372864, dtype: object

Out[7]: 0 True
1 False
2 False
3 False
4 False
 ...
372859 False
372860 False
372861 False
372862 False
372863 False
Name: state, Length: 372864, dtype: bool

05-Dask_dataframes file:///home/marie/Documents/CAS_data_scienc...

2 of 19 2/12/20, 9:50 AM

In [8]: births[births.state == 'AK']

In []: births.mean()

Pandas is a huge library that offers all necessary tools for advanced data science and is used in many other packages
such as the plotting library seaborn or the machine learning packages scikit-learn (you can learn a bit more about Pandas
e.g. here (https://github.com/guiwitz/Pandas_course).

Import as dask-dataframe
We import now the same csv file, but now as a dask-dataframe and not a pandas-dataframe:

In [4]: from dask import dataframe as dd

In [5]: births_da = dd.read_csv('../Data/Birthdays.csv')

In [8]: len(births_da.compute())

In [6]: births_da

Out[8]:

Unnamed: 0 state year month day date wday births

0 1 AK 1969 1 1 1969-01-01 Wed 14

51 52 AK 1969 1 2 1969-01-02 Thurs 20

102 103 AK 1969 1 3 1969-01-03 Fri 20

153 154 AK 1969 1 4 1969-01-04 Sat 16

204 205 AK 1969 1 5 1969-01-05 Sun 18

...

372609 372610 AK 1988 12 27 1988-12-27 Tues 38

372660 372661 AK 1988 12 28 1988-12-28 Wed 40

372711 372712 AK 1988 12 29 1988-12-29 Thurs 31

372762 372763 AK 1988 12 30 1988-12-30 Fri 28

372813 372814 AK 1988 12 31 1988-12-31 Sat 29

7306 rows × 8 columns

Out[8]: 372864

Out[6]: Dask DataFrame Structure:

Unnamed: 0 state year month day date wday births

npartitions=1

int64 object int64 int64 int64 object object int64

...

Dask Name: from-delayed, 3 tasks

05-Dask_dataframes file:///home/marie/Documents/CAS_data_scienc...

3 of 19 2/12/20, 9:50 AM

Again, we see that there are no actual data there. All Dask did was to read the first lines to figure out the columns and
types. If we want to have a clearer idea of the file content we can use head():

In [7]: births_da.head()

Now we can now do the same fancy indexing that we did before:

In [8]: subtable = births_da[births_da.state == 'AK']

and see that there are still no data there. Let's look at the task graph:

Out[7]:

Unnamed: 0 state year month day date wday births

0 1 AK 1969 1 1 1969-01-01 Wed 14

1 2 AL 1969 1 1 1969-01-01 Wed 174

2 3 AR 1969 1 1 1969-01-01 Wed 78

3 4 AZ 1969 1 1 1969-01-01 Wed 84

4 5 CA 1969 1 1 1969-01-01 Wed 824

05-Dask_dataframes file:///home/marie/Documents/CAS_data_scienc...

4 of 19 2/12/20, 9:50 AM

In [9]: subtable.visualize()

05-Dask_dataframes file:///home/marie/Documents/CAS_data_scienc...

5 of 19 2/12/20, 9:50 AM

Out[9]:

05-Dask_dataframes file:///home/marie/Documents/CAS_data_scienc...

6 of 19 2/12/20, 9:50 AM

As the file is small, no tasks are parallelized. But we can do this artificially by forcing dask to break the file into smaller
chunks:

In [10]: births_da = dd.read_csv('../Data/Birthdays.csv',
blocksize=5e6)

In [12]: len(births_da.compute())

In [11]: births_da

Out[12]: 372864

Out[11]: Dask DataFrame Structure:

Unnamed: 0 state year month day date wday births

npartitions=4

int64 object int64 int64 int64 object object int64

...

...

...

...

Dask Name: from-delayed, 12 tasks

05-Dask_dataframes file:///home/marie/Documents/CAS_data_scienc...

7 of 19 2/12/20, 9:50 AM

In [13]: subtable = births_da[births_da.state == 'AK']
subtable.visualize()

05-Dask_dataframes file:///home/marie/Documents/CAS_data_scienc...

8 of 19 2/12/20, 9:50 AM

Out[13]:

05-Dask_dataframes file:///home/marie/Documents/CAS_data_scienc...

9 of 19 2/12/20, 9:50 AM

Other classic Pandas applications

One of the main uses of dataframes is the production of statistics, in particular for specific sub-parts of the dataframe
through the groupby() function. These operations are supported by Dask as well:

In [14]: births_grouped = births_da.groupby('state')

In [16]: births_group_mean = births_grouped.mean()

In [17]: births_group_mean.visualize()

Out[17]:

05-Dask_dataframes file:///home/marie/Documents/CAS_data_scienc...

10 of 19 2/12/20, 9:50 AM

In [18]: births_group_mean.compute()

05-Dask_dataframes file:///home/marie/Documents/CAS_data_scienc...

11 of 19 2/12/20, 9:50 AM

Out[18]:

Unnamed: 0 year month day births

state

AK 186490.363674 1978.499726 6.523542 15.731727 25.374350

AL 186357.881565 1978.492615 6.522566 15.743846 165.039934

AR 186453.473461 1978.497674 6.522845 15.739808 93.600547

AZ 186436.387141 1978.496854 6.521067 15.739672 129.580575

CA 186215.389352 1978.484778 6.522048 15.770375 1067.956997

CO 186518.550034 1978.501027 6.522930 15.729637 129.552088

CT 186394.528583 1978.494530 6.519967 15.743572 112.737691

DC 186399.759130 1978.494597 6.521953 15.741622 58.195732

DE 186472.827699 1978.498426 6.522650 15.733817 25.825236

FL 186477.669358 1978.498563 6.523471 15.733817 359.148898

GA 186349.298605 1978.491523 6.524200 15.747881 251.521739

HI 186501.362852 1978.499726 6.523542 15.731727 47.265125

IA 186505.551328 1978.500000 6.522310 15.731454 119.108815

ID 186521.236929 1978.500684 6.523542 15.731727 45.567068

IL 186317.537326 1978.489882 6.520919 15.748018 488.039923

IN 186447.118999 1978.496786 6.520996 15.741485 233.006976

KS 186398.155382 1978.494050 6.521680 15.741759 98.729449

KY 186367.933133 1978.492274 6.522768 15.745932 153.559415

LA 186465.618279 1978.497469 6.522917 15.737994 207.178137

MA 186341.089542 1978.490636 6.523718 15.750239 216.457553

MD 186426.612228 1978.495281 6.522637 15.741622 150.657366

ME 186436.477904 1978.495827 6.521959 15.737584 43.806950

MI 186289.479448 1978.488051 6.519050 15.765806 387.427694

MN 186346.094053 1978.491046 6.519481 15.749829 173.539029

MO 186444.592831 1978.496101 6.521959 15.737447 210.423998

MS 186422.434610 1978.494802 6.522572 15.740082 121.646101

MT 186539.550034 1978.501027 6.522930 15.729637 34.754825

NC 186514.812509 1978.499658 6.522650 15.733543 240.947448

ND 186541.550034 1978.501027 6.522930 15.729637 32.675702

NE 186542.550034 1978.501027 6.522930 15.729637 69.408077

NH 186468.643678 1978.497126 6.521346 15.735495 36.259442

NJ 186334.745117 1978.489551 6.524519 15.762737 271.122797

NM 186481.319102 1978.497537 6.523262 15.735632 65.893404

NV 186502.294375 1978.498700 6.522239 15.733543 33.046394

NY 186081.586118 1978.475931 6.522296 15.786854 702.754534

OH 186360.525618 1978.491051 6.520700 15.757754 455.844514

OK 186524.860526 1978.499726 6.522584 15.731727 127.695182

05-Dask_dataframes file:///home/marie/Documents/CAS_data_scienc...

12 of 19 2/12/20, 9:50 AM

In [19]: births_group_mean.births.nlargest(10).compute()

Out[19]: state
CA 1067.956997
TX 718.072715
NY 702.754534
IL 488.039923
OH 455.844514
PA 444.353615
MI 387.427694
FL 359.148898
NJ 271.122797
GA 251.521739
Name: births, dtype: float64

05-Dask_dataframes file:///home/marie/Documents/CAS_data_scienc...

13 of 19 2/12/20, 9:50 AM

In [20]: births_da.state.unique().compute()

Out[20]: 0 AK
1 AL
2 AR
3 AZ
4 CA
5 CO
6 CT
7 DC
8 DE
9 FL
10 GA
11 HI
12 IA
13 ID
14 IL
15 IN
16 KS
17 KY
18 LA
19 MA
20 MD
21 ME
22 MI
23 MN
24 MO
25 MS
26 MT
27 NC
28 ND
29 NE
30 NH
31 NJ
32 NM
33 NV
34 NY
35 OH
36 OK
37 OR
38 PA
39 RI
40 SC
41 SD
42 TN
43 TX
44 UT
45 VA
46 VT
47 WA
48 WI
49 WV
50 WY
Name: state, dtype: object

05-Dask_dataframes file:///home/marie/Documents/CAS_data_scienc...

14 of 19 2/12/20, 9:50 AM

Larger files
The birth dataset is not very large and dask doesn't really help because it fits in RAM and the overhead of communication
betweeen processes is too important.

Let's look at a case where files are larger and/or our dataset is split between multiple files. This dataset is taken from
Zenodo (https://zenodo.org/record/834557#.Xj0fMxP0nOS) and represents an analysis of all edits made to Wikipedia
pages from its beginning to 2016.

Data are split among multiple zip files, each containing multiple "largish" (500Mb) CSV files. Let's look at one of them:

In [21]: filepath = '../Data/wikipedia/20161101-current_content-part1-12-1728.csv
'

In [22]: wikipedia_changes = dd.read_csv(filepath)

In [23]: wikipedia_changes

We see that here Dask decided by default to split the file into 9 partitions becasuse of its size. Let's look at a few lines:

In [24]: wikipedia_changes.head()

Out[23]: Dask DataFrame Structure:

page_id last_rev_id token_id str origin_rev_id in out

npartitions=9

int64 int64 int64 object int64 object object

...

...

...

...

Dask Name: from-delayed, 27 tasks

Out[24]:

page_id last_rev_id token_id str origin_rev_id in out

0 12 746687538 1623 see 233194
[391426, 988138,
6540619, 6551217,
12116305, 1...

[391368, 407005,
6539886, 6540818,
12116304, 1...

1 12 746687538 1624 also 233194
[391426, 988138,
6540619, 6551217,
12116305, 1...

[391368, 407005,
6539886, 6540818,
12116304, 1...

2 12 746687538 3519 . 178538

[391426, 18309960,
18310083,
47354530,
1328933...

[391381, 871060,
18310026,
18310134,
47417405,...

3 12 746687538 4507 = 320749 [83542729,
160471915] [367665, 83543709]

4 12 746687538 4508 = 320749 [83542729,
160471915] [367665, 83543709]

05-Dask_dataframes file:///home/marie/Documents/CAS_data_scienc...

15 of 19 2/12/20, 9:50 AM

The page_id corresponds to a specific Wikipedia topic, the str represents a given word that has been added or
modified. The in and out arrays represent a sequence of events (referenced by an ID) of adding and removal, i.e. the
longer the list, the most often this word has been edited.

Word of caution: Dask imports each partition as a separate dataframe, meaning that if the index is a default numeric
index, it restarts for each dataframe. In other words, when querying index = 0, we will here get 9 items:

In [25]: wikipedia_changes.loc[0].compute()

Hence there is no simple way to "get the first 10 elements of the dataframe". Instead, it's much simpler for example to ask
"give me the first 10 elements of page_id = 593":

In [26]: first_words = wikipedia_changes[wikipedia_changes.page_id==593].loc[0:2
0].compute()

Let's see what strings we have here:

In [27]: ' '.join(list(first_words.str.values))

Out[25]:

page_id last_rev_id token_id str origin_rev_id in out

0 12 746687538 1623 see 233194

[391426, 988138,
6540619,
6551217,
12116305, 1...

[391368, 407005,
6539886,
6540818,
12116304, 1...

0 593 744804419 36875 by 155262821

[164630979,
167839234,
183617334,
185043789, 1...

[164630961,
167839008,
183617090,
185043774, 1...

0 700 746750216 1260 check 619139 [61773188,
91845565]

[61773072,
91844748]

0 783 746647937 207927 [655587695 [707531216] [707530825]

0 864 745162899 76425 | 262349476

[314394579,
347669693,
348610355,
350408772, 4...

[314394537,
347669682,
348610301,
350408703, 4...

0 991 744928000 3073 important 18972725

[77455083,
87982073,
156235181,
156235404, 163...

[77453607,
87981675,
156235168,
156235397, 163...

0 1175 746229520 33743]] 576608421 [654529644] [654529496]

0 1347 746716698 26536 jpg 163084252 [294293698] [294293671]

0 1537 747000036 174476 </ 477994012

[489689538,
496207384,
511974564,
602763537, 6...

[489689469,
496207260,
497925062,
579792032, 6...

Out[27]: 'by [[george]] , are puppet - animated films which typically use a diff
erent version of a puppet for different'

05-Dask_dataframes file:///home/marie/Documents/CAS_data_scienc...

16 of 19 2/12/20, 9:50 AM

Seems to be this page (https://www.google.com
/search?q=animated+films+which+typically+use+a+different+version+of+a+puppet+for+different&
oq=animated+films+which+typically+use+a+different+version+of+a+puppet+for+different&aqs=chrome..69i57.167j0j4&
sourceid=chrome&ie=UTF-8).

Compare Pandas and Dask
Let's see how Pandas and Dask compare on this single "largish" (500Mb) file. We can for example count occurrences of
single words. We can use the same functions as in Pandas (value_counts) as dasks implements a very close API:

In [28]: count_str = wikipedia_changes.str.value_counts()

In [29]: count_str.visualize()

In [30]: real_count = count_str.compute()

Let's look at the the few most used words or "tokens":

Out[29]:

05-Dask_dataframes file:///home/marie/Documents/CAS_data_scienc...

17 of 19 2/12/20, 9:50 AM

In [31]: real_count.head(n = 30)

Now we compare the performances of Pandas and Dask:

In [32]: %%time
wikipedia_changes = dd.read_csv(filepath)
count_str = wikipedia_changes.str.value_counts()
real_count = count_str.compute()

In [33]: %%time
wiki_pd = pd.read_csv(filepath)
count_str = wiki_pd.str.value_counts()

We see that Dask doesn't help much in this case.

Multiple large files
We only looked at a tiny part of the dataset. We will now look at much more of it even though still not at the complete one.

Dask offers the very useful feature of being able to open multiple files as one dask-dataframe by using the wild-card * or
generating a file list. For example here, we have multiple CSV files in the folder and we can just say:

Out[31]: | 256476
= 229648
. 210243
, 181501
the 157474
[[141926
]] 141926
/ 106560
of 105209
- 90254
and 74325
in 59890
> 57475
ref 54172
: 52983
) 47957
(47930
to 44798
a 44271
}} 41837
{{ 41745
* 39386
< 38841
</ 28086
; 27291
& 25329
is 21762
as 18853
for 17466
title 16764
Name: str, dtype: int64

CPU times: user 106 ms, sys: 17.2 ms, total: 123 ms
Wall time: 4.57 s

CPU times: user 4.61 s, sys: 466 ms, total: 5.08 s
Wall time: 5.11 s

05-Dask_dataframes file:///home/marie/Documents/CAS_data_scienc...

18 of 19 2/12/20, 9:50 AM

In [35]: wiki_large = dd.read_csv('../Data/wikipedia/2016*.csv')

We see many more partitions, meaning that dask indeed considered all files. If we wanted to import the files with pandas
we would have more trouble:

In [36]: import glob
all_files = glob.glob('../Data/wikipedia/2016*.csv')
#wiki_large_pd = pd.concat((pd.read_csv(f) for f in all_files))

In [37]: all_files

Let's time again the same taks as before:

In [38]: %%time
wiki_large = dd.read_csv('../Data/wikipedia/2016*.csv')
count_str = wiki_large.str.value_counts()
real_count = count_str.compute()

In [39]: %%time
all_files = glob.glob('../Data/wikipedia/2016*.csv')
wiki_large_pd = pd.concat([pd.read_csv(f) for f in all_files])
count_str = wiki_large_pd.str.value_counts()

Exercise
1. Create a dask-dataframe from the data in the ../Data/Chicago_taxi folder
2. Try to understand the file by looking at the columns
3. People have multiple ways of paying. Can you find out which category gives on average the largest tip (use

groupby) ?

In []: import dask.dataframe as dd
taxi = dd.read_csv('../Chicago_taxi/chicago.csv')
taxi
taxi = dd.read_csv('../Chicago_taxi/chicago.csv', dtype={'taxi_id': 'flo
at64'})
if not specified, get an error at mean().compute()
taxi_group = taxi.group_by('payment_type')
mean_val = taxi_group.mean().compute()
mean_val.tips

Out[37]: ['../Data/wikipedia/20161101-current_content-part2-1729-3376.csv',
 '../Data/wikipedia/20161101-current_content-part3-3378-4631.csv',
 '../Data/wikipedia/20161101-current_content-part1-12-1728.csv',
 '../Data/wikipedia/20161101-current_content-part4-4633-5902.csv']

CPU times: user 292 ms, sys: 48.5 ms, total: 340 ms
Wall time: 16.4 s

CPU times: user 20.6 s, sys: 2.91 s, total: 23.5 s
Wall time: 24.1 s

05-Dask_dataframes file:///home/marie/Documents/CAS_data_scienc...

19 of 19 2/12/20, 9:50 AM

Some more features
We quickly summarize here some more features that might be of interest even for beginners.

In [2]: from dask.distributed import Client

client = Client("tcp://127.0.0.1:63517")
client

Calculating multiple outputs
Sometimes we need multiple outputs from a computation. However until now all we have seen are series of delayed
computations and final compute() call. It is however possible to recover multiple intermediate results and to do that
without computational penalty*. Let's consider this example:

In [2]: import dask
import dask.array as da

In [3]: my_array = da.random.random((1000,1000,250))

In [4]: my_array

We want to calculate the difference between max and min projections along the third axis. But we also want to check the
maximum projection.

In [5]: maxproj = my_array.min(axis = 2)
meanproj = my_array.max(axis = 2)
difference = maxproj - meanproj

If we caclulate things separately, the maximum projection is done twice:

Out[2]:

Client
Scheduler: tcp://127.0.0.1:63517
Dashboard: http://127.0.0.1:8787/status (http://127.0.0.1:8787/status)

Cluster
Workers: 4
Cores: 4
Memory: 17.18 GB

Out[4]:

Array Chunk

Bytes 2.00 GB 125.00 MB

Shape (1000, 1000, 250) (250, 250, 250)

Count 16 Tasks 16 Chunks

Type float64 numpy.ndarray

06-More_features file:///home/marie/Documents/CAS_data_scienc...

1 of 4 2/12/20, 9:51 AM

Domain specific applications

In addition to the default features (array, dataframe, bag etc.) offered by Dask, there are additional domain-specific
modules. We are looking at two of them here: machine learning and image processing.

dask_ml
Just like dask-array is a port of Numpy to Dask, dask_ml is a port from sckit-learn to Dask. Scikit-learn is currently
probably the most popular machine-learning package in Python. Dask offers a subset of function available in scikit-learn
using the same syntax. Let's see an example. The calculation is only for the purpose of illustration and is not realistic.

We look again at the taxi dataset:

In [1]: from dask.distributed import Client

client = Client("tcp://127.0.0.1:49550")
client

In [2]: import dask.dataframe as dd

In [24]: taxi = dd.read_csv('../Data/Chicago_taxi/chicago_taxi_trips_2016_01.csv
', dtype={'taxi_id': 'float64'})

In [25]: taxi

We are working here on a trivial question and checking the relation between the fare and the trip time (in seconds). We
only keep those two variables:

In [26]: taxi = taxi[['trip_seconds', 'fare']]

In [27]: taxi = taxi.dropna()

Out[1]:

Client
Scheduler: tcp://127.0.0.1:49550
Dashboard: http://127.0.0.1:8787/status (http://127.0.0.1:8787/status)

Cluster
Workers: 4
Cores: 4
Memory: 17.18 GB

Out[25]: Dask DataFrame Structure:

taxi_id trip_start_timestamp trip_end_timestamp trip_seconds trip_miles pickup_census_tract

npartitions=3

float64 object object float64 float64 float64

...

...

...

Dask Name: from-delayed, 9 tasks

07-Specialized_dask file:///home/marie/Documents/CAS_data_scienc...

1 of 4 2/12/20, 9:52 AM

Then we can easily split out dataset into train and test sets:

In [28]: train, test = taxi.random_split([0.8, 0.2])

We pick a linear regression model from dask_ml:

In [56]: from dask_ml.linear_model import LinearRegression

We create a linear fit object as we would do it in scikit-learn:

In [30]: linfit = LinearRegression(fit_intercept=False)

And we call the fit() method like for any other scikit-ml method:

In [57]: linfit_model = linfit.fit(train[['trip_seconds']].values,train[['fare
']].values)

We can then predict values for our test set:

In [59]: pred = linfit_model.predict(test[['trip_seconds']].values)

And we see that the model takes in dask object and also generates a dask object. Hence we can do prediction for large
datasets! Finally we can look at our fit:

In [61]: import matplotlib.pyplot as plt
import numpy as np

fig, ax = plt.subplots()
plt.plot(test.trip_seconds.compute().values, test.fare.compute().value
s,'o',alpha = 0.1)
plt.plot(np.arange(0,20000), linfit_model.coef_[0]*np.arange(0,20000))
ax.set_ylim([0,200])

dask-image

Out[61]: (0, 200)

07-Specialized_dask file:///home/marie/Documents/CAS_data_scienc...

2 of 4 2/12/20, 9:52 AM

We have seen before that we could wrap an image importer and other image processing functions into delay() calls.
However Dask offers a built-in set of functions to deal with images. We are going to illistrate this through an example.

We load a series of images:

In [39]: from dask_image import imread, ndfilters
import dask

We have a series of images in a folder. We want to analyze all of them and create a large dask array:

In [57]: images = imread.imread('/Users/gw18g940/OneDrive - Universitaet Bern/Cou
rses/DaskCourse/Butterflies/CAM01798*.JPG')

In [58]: images

Then we only keep a single channel and downscale the image by slicing the array:

In [59]: im_downscale = images[:,::4,::4,0]

In [61]: im_downscale

Then we filter each image using a guassian filter implemented in dask-image:

In [62]: im_filtered = ndfilters.gaussian_filter(im_downscale, sigma=(0,2,2))

We recover both the original and filtere image for comparison. Note that this is not something that one would typically do
as it loads all data into RAM:

In [63]: result = dask.compute(images, im_filtered)

Out[58]:

Array Chunk

Bytes 214.99 MB 53.75 MB

Shape (4, 3456, 5184, 3) (1, 3456, 5184, 3)

Count 12 Tasks 4 Chunks

Type uint8 numpy.ndarray

Out[61]:
Array Chunk

Bytes 4.48 MB 1.12 MB

Shape (4, 864, 1296) (1, 864, 1296)

Count 16 Tasks 4 Chunks

Type uint8 numpy.ndarray

07-Specialized_dask file:///home/marie/Documents/CAS_data_scienc...

3 of 4 2/12/20, 9:52 AM

In [64]: import matplotlib.pyplot as plt

fig, ax = plt.subplots(2,1, figsize=(10,10))
ax[0].imshow(result[0][0,:,:],cmap = 'gray')
ax[1].imshow(result[1][0,:,:],cmap = 'gray')

Out[64]: <matplotlib.image.AxesImage at 0x12e305390>

07-Specialized_dask file:///home/marie/Documents/CAS_data_scienc...

4 of 4 2/12/20, 9:52 AM

Running dask on a cluster

Dask greatly simplifies the work on a HPC cluster where different CPUs do not belong to the same machine like on a large
station or a Google Cloud/AWS/Azure/SWITCHengine cloud computer.

In particular the dask-jobqueue module helps dealing with various queing systems typically used on such systems. For
example at Unibe, the Ubelix cluster uses the SLURM system. In normal usage, one has to write submission requests to
execute jobs, make sure they properly exploit resources if meant to work in parallel etc. As we'll show here Dask massively
simplifies the procedure.

In [1]: from dask_jobqueue import SLURMCluster

First we create a "cluster on the cluster" and use the SLURMCluster in this particualar case. We can specify here all
parameteres that one can commonly specify on SLURM. Here we only say how many CPUs and hown much RAM per
CPU we need:

In [2]: cluster = SLURMCluster(
cores=1,
memory="5 GB"

)

With this command, Dask has created (but not submitted) the request to slurm. We can use the jon_script() method
to see how that request looks. It's a standard SBATCH script:

In []: print(cluster.job_script())

At the top we see specifications for the cluster (including e.g. our RAM request) and on the bottom we se the command
executed on the cores so that we can use them with Dask. Note that this is all done automatically for you.

Then we proceed as usual and create a client that we connect to the cluster. Unfortunately, it's not yet possible to use the
dask dashboard on the cluster.

In [4]: from dask.distributed import Client
client = Client(cluster)

However we can adjust the size of our cluster which for the moment has 0 workers and thus 0 CPUs. Any time we scale
up, new jobs are sent to the cluster. If we scale down, the jobs are stopped. If we monitor our resource usaage on the
cluster, we we'll see jobs appearing and disappearing.

In [16]: client.cluster

We can also use the simple scale() command:

In [14]: cluster.scale(jobs=10)

08-dask_on_cluster file:///home/marie/Documents/CAS_data_scienc...

1 of 2 2/12/20, 9:51 AM

Finally we can do what we came to do: calculations !

In [8]: import dask.array as da

In [9]: myarray = da.random.randint(0,100,(10000,1000,100))

In [10]: myarray

In [13]: %%time
myarray.mean().compute()

In [15]: %%time
myarray.mean().compute()

Out[10]:
Array Chunk

Bytes 8.00 GB 80.00 MB

Shape (10000, 1000, 100) (400, 250, 100)

Count 100 Tasks 100 Chunks

Type int64 numpy.ndarray

CPU times: user 302 ms, sys: 32.4 ms, total: 335 ms
Wall time: 7.14 s

Out[13]: 49.498726549

CPU times: user 462 ms, sys: 52.9 ms, total: 515 ms
Wall time: 2.83 s

Out[15]: 49.498726549

08-dask_on_cluster file:///home/marie/Documents/CAS_data_scienc...

2 of 2 2/12/20, 9:51 AM

