01-Dask delay file:///home/marie/Documents/CAS data_scienc...

Parallel computing

This notebooks is heavily based on this (https:/github.com/dask/dask-tutorial/blob/master/01_dask.delayed.ipynb) official
dask tutorial.

We first "reserve" some CPU. We will see in the next chapter exactly how this is done.

In [1]: from time import sleep
from dask.distributed import Client

In []: client = Client()

There are two simple situations where we can benefit from parallelization: we can have a series of independent functions
e.g. in a data processing pipeline, or we can have multiple independent calls to a given function in a for loop. Let's see
the first case, and learn how Dask deals with it.

Delaying computation

For the purpose of illustration, we imagine that we have two functions that are slow to execute. To simulate the slowness
we just pause execution within the functions for a few seconds using time. sleep, let's say here 1s.

In [4]: def inc(x):
sleep(1)
return x + 1

def add(x, y):
sleep(1l)
return x + vy

If we use the timing magic function we can check that the following "script" takes 3s:

In [8]: %%time

inc(1)
inc(2)
add(x, vy)

N < X
nnn

CPU times: user 176 ms, sys: 26.7 ms, total: 203 ms
Wall time: 3.01 s

In principle we could execute the two first lines in parallel as the variables are indpendent. The solution implemented by
Dask is the following:

® "Take notes" on what the program should be doing
® With that information, smartly split the problem into subproblems
® Send each problem to an individual process (e.g. two cores)

So how do we tell Dask what tasks it should take into account when "taking notes"? The solution is to use the function
delayed () which takes as input another function. Every function "decorated" with the delay function will be included in

the Dask flow. Let's try it:

1of6 2/12/20, 9:49 AM

01-Dask delay file:///home/marie/Documents/CAS data scienc...

In [9]: from dask import delayed

ime
delayed(inc) (1)
delayed(inc)(2)
delayed(add) (x, y)

In [32]: %%

-+

N < X
i nn

CPU times: user 686 us, sys: 540 us, total: 1.23 ms
Wall time: 820 us

We see that the time consumed is minimal. But has z been really calculated ?

In [33]: z
Out[33]: Delayed('add-901f6d69-1c83-47a7-b38c-5dlea3ab3ela’)

No! z is also a delayed object now. Dask knows how to calculate it but hasn't done it yet. To effectively get the result of z,

we have to use the compute () function or method:

In [38]: %%time
z.compute()

CPU times: user 146 ms, sys: 20.9 ms, total: 167 ms
Wall time: 2.03 s

Out[38]: 5

The computation time is now only 2s instead of 3. Indeed the two first calls to inc could be done in parallel, making us

gain 1s in the process.

What is Dask actually doing: Task graph

Dask offers a very useful way to visualize how the task are split through the visualize () method that one can use on
any delayed variable. Let's check e.g. what is z:

In [40]: z.visualize()

Out[40]:

20f6 2/12/20, 9:49 AM

01-Dask delay file:///home/marie/Documents/CAS data scienc...

Each "leaf" of that tree starts and indepenent calculation that can be sent to an independent process if available. Here the
two inc () calls start separately and are then combined in the add () call.

Generating this Task graph and handling the flow of information beetween processes is the main task of Dask.

We can make our calculation slighly more complex and see what happens:

In [65]: %%

-+

ime

X = delayed(inc) (1)

y = delayed(inc)(2)

z = delayed(add) (x, vy)

x2 = delayed(inc) (1)

y2 = delayed(inc) (2)

z2 = delayed(add) (x2, y2)

total = delayed(add)(z, z2)

CPU times: user 1.86 ms, sys: 1.16 ms, total: 3.02 ms
Wall time: 2.52 ms

In [66]: total.visualize()

Out[66]:

Let's however look at alternative ways of caclulating this last sum. First, what happens if we just use a regualr + sign ?

In [67]: total plus = z + z2

3 0f6 2/12/20, 9:49 AM

01-Dask delay file:///home/marie/Documents/CAS data scienc...

In [68]: total plus.visualize()

Out[68]:

We obtain exactly the same graph. Dask knows about standard operations and automatically includes them in the task
graph. Let's see if we us the standard Python sum () function:

In [69]: total sum = sum([z, z2])

40f6 2/12/20, 9:49 AM

01-Dask delay file:///home/marie/Documents/CAS data scienc...

In [70]: total sum.visualize()

Out[70]:

FE

We now see an important difference! z and z2 are calculated in sequence and not in parallel (except for their "internal
definitions"). What happens here is that sum () not beeing included in the task graph, triggers the computation first of z
and then of z2.

This shows that one should be careful when using delay () for parallelization. Other recommendations are: not delaying
a delayed function, breaking long code into multiple delayed functions etc. (see here (https://docs.dask.org/en/latest
/delayed-best-practices.html) for more details).

Exercises

If you haven't executed the notebook unil now, import the packages and start the client.

In [1: from dask.distributed import Cient
from dask import delayed
client = Client()

Based on what we just learned apply the inc () function on the list data (using a for loop or a comprehension list) and
then multiply all elements using the numpy function np.prod (). Check the task graph to make sure everyting happens
as expected:

50f6 2/12/20, 9:49 AM

01-Dask delay

6 of 6

In [103]:

In [1:

file:///home/marie/Documents/CAS data scienc...

data = [3,8,1,4,2,9,4,6]

newdata = [delayed(inc)(x) for x in data]
newdata

import numpy as np

prod = np.prod(newdata)

prod

prod.visualize()

prod is a delayed object

-> bad, it is doying everything sequential, not parallel
prod = delay(np.prod) (newdata)
prod.visualize()

-> ok, now everything is run in parallel

NB: make sense to use paralell if you have huge of data,
otherwise it can even take longer time ...

2/12/20, 9:49 AM

