Applied problem: Sequence of operations on images

```
In [1]: import glob, os
    from dask.distributed import Client
    from dask import delayed
    import skimage.io
    import skimage.filters
    import numpy as np
    import matplotlib.pyplot as plt
```

A very common problem when dealing with image processing, is to have a set of images in a folder and having to apply a time-consuming operation on all of them.

Let's first get the names of all images:

Dask is not good at parsing filenames so we transform those into absolute paths:

```
In [ ]: filenames = [os.path.abspath(f) for f in filenames]
```

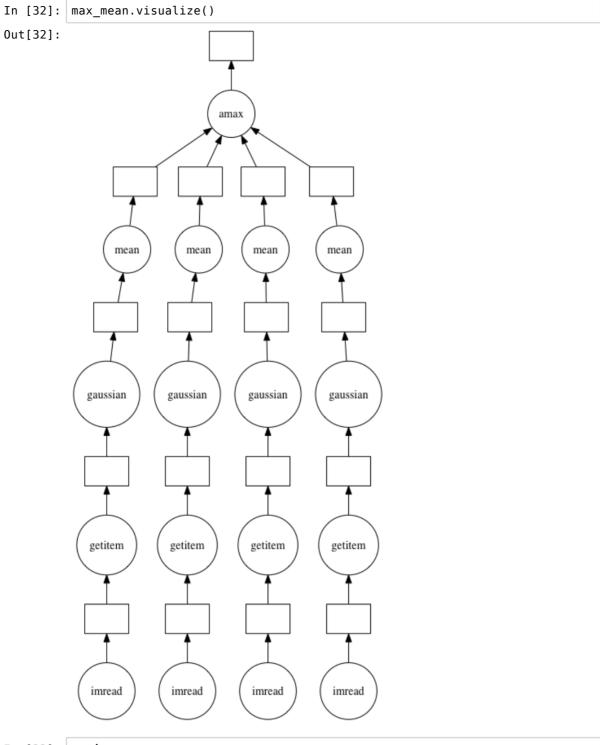
We can import a single image using the io module of scikit-image:

```
In [3]: image = skimage.io.imread(filenames[0])
In [4]: image.shape
Out[4]: (172, 1344, 1024)
```

It is a quite large image representing volume data. Typical image filtering functions could be relatively slow on this especially with large kernels. We are going to do a gaussian filtering on only part of the image and then measure the mean value of the array:

```
In [24]: %%time
    image = skimage.io.imread(filenames[0])
    filtered = skimage.filters.gaussian(image[0:40,:,:],0.1)
    mean_val =np.mean(im)

CPU times: user 1.59 s, sys: 725 ms, total: 2.31 s
Wall time: 2.23 s
```


If we execute that function on all images we are obsiously going to spend about 1min on this. Let's try to make it faster using Dask:

```
In [9]: client = Client()
```

1 of 3 2/12/20, 9:49 AM

```
In [11]: client
Out[11]:
          Client
                                                                Cluster
          Scheduler: tcp://127.0.0.1:62025
                                                                Workers: 4
          Dashboard: http://127.0.0.1:8787/status (http://127.0.0.1:8787/status)
                                                                Cores: 4
                                                                Memory: 17.18 GB
In [29]: %%time
          all_vals = []
          for f in filenames:
              im = skimage.io.imread(f)
              im = skimage.filters.gaussian(im[0:40,:,:],0.1)
              mean_val = np.mean(im)
              all_vals.append(mean_val)
          np.max(all_vals)
          CPU times: user 6.91 s, sys: 2.61 s, total: 9.52 s
         Wall time: 9.15 s
Out[29]: 0.00791776016748083
In [30]: all_vals = []
          for f in filenames:
              im = delayed(skimage.io.imread)(f)
              im = delayed(skimage.filters.gaussian)(im[0:40,:,:],0.1)
              mean val = delayed(np.mean)(im)
              all vals.append(mean val)
In [31]: max mean = delayed(np.max)(all vals)
```

2 of 3 2/12/20, 9:49 AM

In [33]: %%time
max_mean.compute()

CPU times: user 301 ms, sys: 24.4 ms, total: 325 ms

Wall time: 3.98 s

Out[33]: 0.00791776016748083

3 of 3 2/12/20, 9:49 AM