04-Dask arrays

1o0f13

file:///home/marie/Documents/CAS data scienc...

Dask (numpy) arrays

As mentioned before, there are other solutions to perform perform parallel computing in Python. However Dask offers an
crucial feature not present in other libraries: a built-in parallelized implemtation of large parts of the popular libraries
Numpy and Pandas. In other terms, no need to systematically use delayed or think how to optimize a function, Dask has

already done it for you!

Here we will first explore possibilities offered by dask-arrays, the equivalent of numpy arrays. As usual, we first create our

cluster:

In [1]:

Out[1]:

from dask.distributed import Client

client = Client("tcp://127.0.0.1:63517")

client
Client Cluster
Scheduler: tcp://127.0.0.1:63517 Workers: 4

Dashboard: http://127.0.0.1:8787/status (http://127.0.0.1:8787/status) Cores: 4
Memory: 17.18 GB

Dask-arrays are numpy-delayed arrays

The equivalent of the numpy import is the dask.array import:

In [2]:

import dask.array as da
import numpy as np

A great feature of dask.array is that it mirror very closely the Numpy API, so if you are familiar with the latter, you

should have no problem with dask.

For example let's create an array of random numbers and check that they behave the same way:

In [20]:

In [21]:

In [22]:
Out[22]:

In [23]:
Out[23]:

nprand = np.random.randint (0,100, (4,5))
darand = da.random.randint(0,100, (4,5))

nprand.shape

(4, 5)

darand.shape

(4, 5)

Let's look that the arrays directly:

2/12/20, 9:50 AM

04-Dask arrays file:///home/marie/Documents/CAS data_scienc...

In [27]: nprand

Out[27]: array([[14, 98, 63, 6, 62],
[7, 7, 16, 53, 85],
[90, 87, 60, 32, 90],
[92, 83, 90, 57, 2311])

In [28]: darand

Out[28]:
Array |Chunk

Bytes |160B |160B 4

Shape | (4, 5) (4, 5)

Count | 1 Tasks |1 Chunks

Type |int64 |numpy.ndarray

Here we see already a difference. Numpy just shows the matrix, while dask shows us a much richer output, including size,
type, dimensionality etc.

But do the darand values exist anywhere ? Let's check that we can find the maximum in the array:

In [33]: darand.max()

Out[33]:
Array |Chunk

Bytes |8B 8B

shape|) |0

Count | 3 Tasks | 1 Chunks

Type |int64 |numpy.ndarray

Again, we get some info but no values. In fact, as with delayed before, the values have not been computed yet!

The logic is the same as with delayed. Any time we actually want a result we can call the compute method:
In [35]: darand.max().compute()
Out[35]: 98
There could also be intermediate steps:
In [37]: myval = 1l0*darand.max()
In [40]: myval.compute()

Out[40]: 980

Dask re-implements many standard array creation functions, including zeros (), ones () and many of the np. random
module.

However one can also create arrays directly from a numpy array:

20f13 2/12/20, 9:50 AM

04-Dask arrays file:///home/marie/Documents/CAS data scienc...

In [29]: da_array = da.from array(np.ones((5,8)))

In [30]: da array

Out[30]:

Array |Chunk

Bytes |320B |320B 5

Shape | (5,8) |(5,8)

Count | 1 Tasks | 1 Chunks 8

Type |floaté4 |numpy.ndarray

Dask-arrays are distributed

Let's create a larger array and see how it is handled by Dask and compare it with Numpy:
In [78]: large nparray = np.random.randint(0,100, (10000,1000,100))
In [75]: myarray = da.random.randint(0,100, (10000,1000,100))

In [77]1: myarray

Out[771]:
Array Chunk N\
Bytes |8.00 GB 80.00 MB =
Shape | (10000, 1000, 100) | (400, 250, 100) % 8
Count | 100 Tasks 100 Chunks -
Type |int64 numpy.ndarray "

First, notice how the array visualisation is helpful! Second, note that we have information about "chunks". When handling
larger objects, Dasks automatically breaks them into chunks that can be generated or operated on by different workers in
a parallel way. We can compute the mean of this array and observe what happens:

In [66]: mean = myarray.mean()

In [67]: mean.visualize()

Out[67]:

In [68]: mean.compute()

Out[68]: 49.4997707582

Slicing like in Numpy

One of the main feature of numpy array is the possibility to slice and index them. Great news: dask arrays behave exactly
in the same way for most "regular" cases (e.g. it doesn't implement slicing with multiple lists). Let's see how it works:

30f13 2/12/20, 9:50 AM

04-Dask arrays

file:///home/marie/Documents/CAS data scienc...

In [5]: myarray = da.random.random((5000,5000))
In [6]: myarray
Out[6]:
Array Chunk
Bytes 200.00 MB |50.00 MB g
Shape | (5000, 5000) [(2500, 2500)
Count (4 Tasks 4 Chunks
5000
Type |float64 numpy.ndarray
For example we can slice the array:
In [8]: sliced array = myarray[::2,:]
In [9]: sliced array
Out[9]:
Array Chunk
Bytes [100.00 MB |25.00 MB g
Shape | (2500, 5000) [(1250, 2500)
5000
Count | 8 Tasks 4 Chunks
Type |float64 numpy.ndarray
Or we can use logical indexing. First we create a logical array:
In [11]: 1logical array = myarray > 0.5
In [12]: Tlogical array
Out[12]:
Array Chunk
Bytes (2500 MB |6.25 MB g
Shape (5000, 5000) | (2500, 2500)
Count | 8 Tasks 4 Chunks
5000
Type |bool numpy.ndarray

And then use it for logical indexing:

In [13]:

4 0f 13

extracted values

= myarray[logical array]

2/12/20, 9:50 AM

04-Dask arrays file:///home/marie/Documents/CAS data_scienc...

In [14]: extracted values

Out[14]:
Array Chunk

Bytes | unknown | unknown

Shape|(nan,) |(nan)

Count | 48 Tasks |4 Chunks

Type |float64 |numpy.ndarray

Of course here for example we don't know the size of the resulting length. This is a typical case where any downstream
parallelization becomes difficult as chunks of the array cannot be distributed. However we can get the result:

In [15]: values = extracted values.compute()

In [16]: values

Out[16]: array([0.65084936, 0.51052718, 0.90765229, ..., 0.86515662, 0.68235459,
0.56506943])

Numpy functions just work!

An extremely useful features of Dask is that whenever you are handling a dask-array you can apply most of the Numpy
funtions to it and it remains a dask-array, i.e. it gets integrated in the task graph. For example:

In [45]: cos_array = np.cos(myarray)

In [46]: cos_array

Out[46]:
Array Chunk
Bytes [200.00 MB |50.00 MB g
Shape | (5000, 5000) | (2500, 2500)
Count | 8 Tasks 4 Chunks
5000
Type |float64 numpy.ndarray

50f13 2/12/20, 9:50 AM

04-Dask arrays file:///home/marie/Documents/CAS data scienc...

In [47]: cos_array.visualize()

Out[47]:

0.0) 0. 1) (1.0) (1.1

(0.0) (0. 1) (1.0) (L1

random_sample

Dask also re-implements many numpy functions internally so that they are accessible as methods of the dask-arrays:
In [58]: proj = myarray.sum(axis = 0)

In [59]: proj

0ut[59]:
Array Chunk
Bytes [40.00 kB |20.00 kB | | | 1
Shape | (5000,) |(2500,) 5000

Count | 10 Tasks | 2 Chunks

Type |floaté4 |numpy.ndarray

The great advantage of dask-arrays is that functions have been optimized in order to make the task-graph very efficient.
For example this simple calculation produces already a quite complex task graph. If handling large "out-of-RAM" array with
numpy, one would have to break up the large array and be very smart about how to process each task.

In [61]: newda = myarray + da.transpose(myarray)

6 of 13 2/12/20, 9:50 AM

04-Dask arrays

7 of 13

In [62]:
Out[62]:

newda.visualize()

(0.0)

(0.0)

(0.0)

transpose

random_sample

0. 1)

file:///home/marie/Documents/CAS data scienc...

(1.0)

0. 1)

transpose

(1.0)

(1.0)

transpose

0. 1)

random_sample

random_sample

This is already quite complicated, but it can become much more complicated very quickly.

In [63]:

newda

(r.n

(1. 1)

transpose

(1.0

random_sample

= da.dot(myarray, myarray + da.transpose(myarray))

2/12/20, 9:50 AM

04-Dask arrays file:///home/marie/Documents/CAS data_scienc...

In [64]: newda.visualize()

8 of 13 2/12/20, 9:50 AM

04-Dask arrays file:///home/marie/Documents/CAS data scienc...

out[64]:
(D ©.1)
sum-aggregate sum-aggregate
(LD (1.0, 1) 0. 1.1) (1.0) 0.0) 0.0, 1)
sum sum sum-aggregate Q é
(LD ©.1.1) (1.0.1) (1.1.0) (1.0.0) 0.1.0) (0.0.0) 0.0, 1)
tensordot tensordot tensordot sum sum tensordot
| (1.1,0) 0.1 (1.0,0) 0.1.0)
tensordot add tensordot tensordot tensordot
0.1 (1,0) 0.0)
add add
(L. (1.0) (1.0) 0.0)
random_sample random_sample
©. 1) 0,0)
random_sample random_sample

90f13 2/12/20, 9:50 AM

04-Dask arrays file:///home/marie/Documents/CAS data_scienc...

In [65]: %%time
computed _array = newda.compute();

CPU times: user 161 ms, sys: 190 ms, total: 351 ms
Wall time: 5.42 s

In [66]: myarray2 = np.random.random((5000,5000))
In [67]: %%time

newnp = np.dot(myarray2, myarray2 + np.transpose(myarray2))

CPU times: user 10.7 s, sys: 212 ms, total: 10.9 s
Wall time: 3.62 s

We see here that for a reasonably sized array, the overhead time needed to push data between processes makes Dask
slower than basic Numpy, so be careful in what context you use Dask! But Dasks scales nicely:

In [68]: myarray = da.random.random((10000,10000))
In [69]: newda = da.dot(myarray, myarray + da.transpose(myarray))

In [70]: newda.visualize()

Out[70]:

Limitations

Of course there are limitations to what one can do. For example, most linear algebra functions are not dask compatible:

In [12]: myarray = da.random.random((10,10))

eigenval, eigenvect = np.linalg.eig(myarray);

/Users/gwl8g940/miniconda3/envs/dask-tutorial/lib/python3.7/site-packages
/dask/array/core.py:1333: FutureWarning: The “numpy.linalg.eig function
is not implemented by Dask array. You may want to use the da.map_blocks f
unction or something similar to silence this warning. Your code may stop
working in a future release.

FutureWarning,

The result is not a dask array:

In [15]: eigenval

Out[15]: array([4.72657183+0.] , 0.25040593+0.91024704j,
0.25040593-0.91024704j, 0.79482289+0.]j ,
0.74611566+0.] , 0.43071796+0.j ,
-0.89630506+0. j , -0.52818014+0.18462008j,
-0.52818014-0.18462008j, -0.39702164+0.j 1)

10 of 13 2/12/20, 9:50 AM

04-Dask arrays file:///home/marie/Documents/CAS data scienc...

Also some operations such as those reshaping arrays may pose difficulties to Dasks as they require reshuffling array
chunks. For example:

In [18]: myarray = da.zeros((5000,5000))

In [19]: myarray

Out[19]:
Array Chunk
Bytes (200.00 MB |50.00 MB g
Shape | (5000, 5000) [(2500, 2500)
Count | 4 Tasks 4 Chunks
5000
Type |float64 numpy.ndarray

This works because it's easy to reshuffle some chunks:

In [20]: reshaped = np.reshape(myarray, (5000,1000,5))

In [21]: reshaped

Out[21]:

Array Chunk

Bytes (200.00 MB 50.00 MB

Shape [(5000, 1000, 5) | (2500, 500, 5) % 8
Count | 8 Tasks 4 Chunks

5
Type [float64 numpy.ndarray

In [23]: reshaped.visualize()

Out[23]:
(0.0.0) 0.1.0) (1,0.0) (1.1.0)

POOC

0.0) 0.1 (1.0) (r.n

0O

11 of 13 2/12/20, 9:50 AM

But this doesn't:

04-Dask arrays file:///home/marie/Documents/CAS data_scienc...

12 of 13

In [22]: reshaped = np.reshape(myarray, (1000,5000,5))

ValueError Traceback (most recent call las
t)

<ipython-input-22-a69696d87bee> in <module>

----> 1 reshaped = np.reshape(myarray, (1000,5000,5))

< array function_ _ internals> in reshape(*args, **kwargs)

~/miniconda3/envs/dask-tutorial/lib/python3.7/site-packages/dask/array/co
re.py in __ array_function_(self, func, types, args, kwargs)

1357 if da_func is func:

1358 return handle nonmatching names(func, args, kwargs)
-> 1359 return da_func(*args, **kwargs)

1360

1361 @property

~/miniconda3/envs/dask-tutorial/lib/python3.7/site-packages/dask/array/re
shape.py in reshape(x, shape)

193

194 # Logic for how to rechunk
--> 195 inchunks, outchunks = reshape rechunk(x.shape, shape, x.chunk
S)

196 x2 = x.rechunk(inchunks)

197

~/miniconda3/envs/dask-tutorial/lib/python3.7/site-packages/dask/array/re
shape.py in reshape rechunk(inshape, outshape, inchunks)

62 oleft -=1

63 if reduce(mul, outshapel[oleft : oi + 1]) != din:
---> 64 raise ValueError("Shapes not compatible")

65

66 # TODO: don't coalesce shapes unnecessarily

ValueError: Shapes not compatible

While it actually works in numpy:
In [26]: numpy array = np.zeros((5000,5000))
In [27]: reshaped = np.reshape(numpy array, (1000,5000,5))

In [28]: reshaped.shape
Out[28]: (1000, 5000, 5)

Exercise

Try to solve this exercise. Regularly check the visual representation of arrays and of the task-graph to understand what is
going on.

1. Create a dask-array of of normally distributed values with mean=9, and sigma = 1 of size 5000x5000
2. Add to it a numpy array of the same size and filled with ones. What kind of array to you obtain ?

3. Use numpy-style indexing to recover only the values smaller than 10

4. Can you find how to create a dask-histogram of those values?

5. Compute the histogram and try to plot the result using matplotlib

2/12/20, 9:50 AM

04-Dask arrays file:///home/marie/Documents/CAS data_scienc...

In []: import dask.array as da
import numpy as np

da array = da.random.normal(loc=9, scale=1l, size=(5000, 5000))

np_array np.ones((5000,5000))

added = da_array + np_array

added
output is still a dask array

In []: masked = added[added < 10]

In [1: # in numpy, no need to specify bins and range (automatically chosen if n
ot specified)
here it requires to specify bins and range
(dask has to know what you want to now how to distribute things)
myhist, bins = da.histogram(masked, bins=100, range=[-9,11])
myhist.visualize()

In [1: myhist.compute()

13 of 13 2/12/20, 9:50 AM

