
Domain specific applications

In addition to the default features (array, dataframe, bag etc.) offered by Dask, there are additional domain-specific
modules. We are looking at two of them here: machine learning and image processing.

dask_ml
Just like dask-array is a port of Numpy to Dask, dask_ml is a port from sckit-learn to Dask. Scikit-learn is currently
probably the most popular machine-learning package in Python. Dask offers a subset of function available in scikit-learn
using the same syntax. Let's see an example. The calculation is only for the purpose of illustration and is not realistic.

We look again at the taxi dataset:

In [1]: from dask.distributed import Client

client = Client("tcp://127.0.0.1:49550")
client

In [2]: import dask.dataframe as dd

In [24]: taxi = dd.read_csv('../Data/Chicago_taxi/chicago_taxi_trips_2016_01.csv
', dtype={'taxi_id': 'float64'})

In [25]: taxi

We are working here on a trivial question and checking the relation between the fare and the trip time (in seconds). We
only keep those two variables:

In [26]: taxi = taxi[['trip_seconds', 'fare']]

In [27]: taxi = taxi.dropna()

Out[1]:

Client
Scheduler: tcp://127.0.0.1:49550
Dashboard: http://127.0.0.1:8787/status (http://127.0.0.1:8787/status)

Cluster
Workers: 4
Cores: 4
Memory: 17.18 GB

Out[25]: Dask DataFrame Structure:

taxi_id trip_start_timestamp trip_end_timestamp trip_seconds trip_miles pickup_census_tract

npartitions=3

float64 object object float64 float64 float64

... ... ... ... ... ...

... ... ... ... ... ...

... ... ... ... ... ...

Dask Name: from-delayed, 9 tasks

07-Specialized_dask file:///home/marie/Documents/CAS_data_scienc...

1 of 4 2/12/20, 9:52 AM



Then we can easily split out dataset into train and test sets:

In [28]: train, test = taxi.random_split([0.8, 0.2])

We pick a linear regression model from dask_ml:

In [56]: from dask_ml.linear_model import LinearRegression

We create a linear fit object as we would do it in scikit-learn:

In [30]: linfit = LinearRegression(fit_intercept=False)

And we call the fit() method like for any other scikit-ml method:

In [57]: linfit_model = linfit.fit(train[['trip_seconds']].values,train[['fare
']].values)

We can then predict values for our test set:

In [59]: pred = linfit_model.predict(test[['trip_seconds']].values)

And we see that the model takes in dask object and also generates a dask object. Hence we can do prediction for large
datasets! Finally we can look at our fit:

In [61]: import matplotlib.pyplot as plt
import numpy as np

fig, ax = plt.subplots()
plt.plot(test.trip_seconds.compute().values, test.fare.compute().value
s,'o',alpha = 0.1)
plt.plot(np.arange(0,20000), linfit_model.coef_[0]*np.arange(0,20000))
ax.set_ylim([0,200])

dask-image

Out[61]: (0, 200)

07-Specialized_dask file:///home/marie/Documents/CAS_data_scienc...

2 of 4 2/12/20, 9:52 AM



We have seen before that we could wrap an image importer and other image processing functions into delay() calls.
However Dask offers a built-in set of functions to deal with images. We are going to illistrate this through an example.

We load a series of images:

In [39]: from dask_image import imread, ndfilters
import dask

We have a series of images in a folder. We want to analyze all of them and create a large dask array:

In [57]: images = imread.imread('/Users/gw18g940/OneDrive - Universitaet Bern/Cou
rses/DaskCourse/Butterflies/CAM01798*.JPG')

In [58]: images

Then we only keep a single channel and downscale the image by slicing the array:

In [59]: im_downscale = images[:,::4,::4,0]

In [61]: im_downscale

Then we filter each image using a guassian filter implemented in dask-image:

In [62]: im_filtered = ndfilters.gaussian_filter(im_downscale, sigma=(0,2,2))

We recover both the original and filtere image for comparison. Note that this is not something that one would typically do
as it loads all data into RAM:

In [63]: result = dask.compute(images, im_filtered)

Out[58]:

Array Chunk

Bytes 214.99 MB 53.75 MB

Shape (4, 3456, 5184, 3) (1, 3456, 5184, 3)

Count 12 Tasks 4 Chunks

Type uint8 numpy.ndarray

Out[61]:
Array Chunk

Bytes 4.48 MB 1.12 MB

Shape (4, 864, 1296) (1, 864, 1296)

Count 16 Tasks 4 Chunks

Type uint8 numpy.ndarray

07-Specialized_dask file:///home/marie/Documents/CAS_data_scienc...

3 of 4 2/12/20, 9:52 AM



In [64]: import matplotlib.pyplot as plt

fig, ax = plt.subplots(2,1, figsize=(10,10))
ax[0].imshow(result[0][0,:,:],cmap = 'gray')
ax[1].imshow(result[1][0,:,:],cmap = 'gray')

Out[64]: <matplotlib.image.AxesImage at 0x12e305390>

07-Specialized_dask file:///home/marie/Documents/CAS_data_scienc...

4 of 4 2/12/20, 9:52 AM


