
Running dask on a cluster

Dask greatly simplifies the work on a HPC cluster where different CPUs do not belong to the same machine like on a large
station or a Google Cloud/AWS/Azure/SWITCHengine cloud computer.

In particular the dask-jobqueue module helps dealing with various queing systems typically used on such systems. For
example at Unibe, the Ubelix cluster uses the SLURM system. In normal usage, one has to write submission requests to
execute jobs, make sure they properly exploit resources if meant to work in parallel etc. As we'll show here Dask massively
simplifies the procedure.

In [1]: from dask_jobqueue import SLURMCluster

First we create a "cluster on the cluster" and use the SLURMCluster in this particualar case. We can specify here all
parameteres that one can commonly specify on SLURM. Here we only say how many CPUs and hown much RAM per
CPU we need:

In [2]: cluster = SLURMCluster(
cores=1,
memory="5 GB"

)

With this command, Dask has created (but not submitted) the request to slurm. We can use the jon_script() method
to see how that request looks. It's a standard SBATCH script:

In [ ]: print(cluster.job_script())

At the top we see specifications for the cluster (including e.g. our RAM request) and on the bottom we se the command
executed on the cores so that we can use them with Dask. Note that this is all done automatically for you.

Then we proceed as usual and create a client that we connect to the cluster. Unfortunately, it's not yet possible to use the
dask dashboard on the cluster.

In [4]: from dask.distributed import Client
client = Client(cluster)

However we can adjust the size of our cluster which for the moment has 0 workers and thus 0 CPUs. Any time we scale
up, new jobs are sent to the cluster. If we scale down, the jobs are stopped. If we monitor our resource usaage on the
cluster, we we'll see jobs appearing and disappearing.

In [16]: client.cluster

We can also use the simple scale() command:

In [14]: cluster.scale(jobs=10)

08-dask_on_cluster file:///home/marie/Documents/CAS_data_scienc...

1 of 2 2/12/20, 9:51 AM



Finally we can do what we came to do: calculations !

In [8]: import dask.array as da

In [9]: myarray = da.random.randint(0,100,(10000,1000,100))

In [10]: myarray

In [13]: %%time
myarray.mean().compute()

In [15]: %%time
myarray.mean().compute()

Out[10]:
Array Chunk

Bytes 8.00 GB 80.00 MB

Shape (10000, 1000, 100) (400, 250, 100)

Count 100 Tasks 100 Chunks

Type int64 numpy.ndarray

CPU times: user 302 ms, sys: 32.4 ms, total: 335 ms
Wall time: 7.14 s

Out[13]: 49.498726549

CPU times: user 462 ms, sys: 52.9 ms, total: 515 ms
Wall time: 2.83 s

Out[15]: 49.498726549

08-dask_on_cluster file:///home/marie/Documents/CAS_data_scienc...

2 of 2 2/12/20, 9:51 AM


