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0. Pandas introduction

In [1]: dimport numpy as np

import pandas as pd
import matplotlib.pyplot as plt

from plotnine import ggplot, aes
import plotnine as pn
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Why should we use Pandas instad of just opening our table in Excel? While Excel is practical to browse through data, it is
very cumbersome to use it to combine, re-arrange and thoroughly analyze data: code is hidden and difficult to share,

there's no version control, it's difficult to automate tasks, the manual clicking around leads to mistakes etc.

In this course you will learn how to handle tabular data with Pandas, a Python package widely used in the scientific and
data science areas. You will learn how to create and import tables, how to combine them, modify them, do statistical
analysis on them and finally how to use them to easily create complex visualisations.

So that you see where this leads, we start with a short example of how Pandas can be used in a project. We look here at
tables provided by the Federal Office of Statistics about all Swiss towns every year (population, number of vacant houses,

unemployement etc.)

0.1 From import to plot in 3 lines

® Import: In a first step we import the spread sheet:

In [2]: towns = pd.read excel('Datasets/2013.xls', skiprows=list(range(5))+list
(range(6,9)), skipfooter=34, index col='Commune',na values=['*"'])

® Then we can look at it:

In [3]: towns.head()

Out[3]:
Densité de Par Par
Code \ la | Variation A Etrangers [ 0-19
Habitants . mouvement | excédent
commune population en % . . en % | ans
migratoire | naturel
par km?
Commune
Aeugst am
. 1 1910 241 4.7 4.4 0.1 13.6 21.6
Albis
Affoltern
. 2 11160 1052 0.6 0.0 0.4 26.0 21.4
am Albis
Bonstetten | 3 5173 696 0.3 -1.0 0.9 12.7 23.9
Hausen
. 4 3356 246 -0.1 -0.4 0.3 12.4 23.8
am Albis
Hedingen |5 3469 531 1.7 0.9 0.6 14.0 24.0

5 rows x 37 columns
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® And in one line do a rather complex plot where cities are split into size groups and their average vote calcualted:

In [4]: ax = towns.groupby(pd.cut(towns['Habitants'], np.arange(0, 100000, 1000
0)),as_index=False).mean().dropna().plot(x = 'Habitants', y = ['UDC','PS
S'1)
ax.set _ylabel('% Vote')
plt.show()
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0.2 Combining data and assemble complex plot

Above we imported a single table. However often you need to combine information from multiple sources or multiple
experiments. This can be extremely tedious to do in Excel. Here it is done in a few lines:

® import all tables in a loop

In [5]: towns = []
for x in range(2013, 2015):
temp town = pd.read excel('Datasets/'+str(x)+'.xls', skiprows=list(r
ange(5))+list(range(6,9)), skipfooter=34, index _col='Commune',na values=
["*', '+ 1)
temp town['year'] = x
towns.append(temp_ town)

® assemble the tables (concatenation)

In [6]: towns_concat = pd.concat(towns,sort=False)

® Make a list of cities you are interested in and select only those:

In [7]: cities = ['Zlrich', 'Bern', 'Lausanne', 'Basel', 'Genéve']

Plot for each city a parameter you are interested in like the fraction of vacant appartments:

In [8]: dimport seaborn as sns
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In [9]: g = sns.lineplot(data = towns concat.loc[cities].reset index(), x = 'yea
r', y = 'Taux de logements vacants',
hue = 'Commune', marker = "o0", dashes=False);
plt.legend(loc="upper left')
plt.show()
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We can also exploit the plotting capabilities of advanced packages such as plotnine, a Python version of ggplot, to create
complex plots with little effort. For example here, we show how the voting depends on how much a town depends on
agriculture. We separate the data by year as well as py party.

First we just import two years of data (two different parliaments):

In [14]: towns = []
for x in [2014, 2018]:
temp_town = pd.read excel('Datasets/'+str(x)+'.xls', skiprows=list(r
ange(5))+list(range(6,9)), skipfooter=34, index col='Commune',na values=
['*,+])
temp_town['year'] = x
towns.append(temp_ town)
towns_concat = pd.concat(towns,sort=False)

We recover the necessary information and do some data reshaping (tidying) to be able to easily realize the plot:

In [15]: towns parties = towns concat.reset index()[['year',6 'UDC','PS', 'Commune
','Surface agricole en %']]

#wide to long
towns parties = pd.melt(towns parties, id vars=['Commune', 'Surface agric
ole en %', 'year'],

value vars=["UDC", "PS"], value name='Vote fract
ion', var_name='Party')

In [16]: towns parties.head()

Out[16]:
Commune | Surface agricole en % | year | Party | Vote fraction
0| Aeugst am Albis |51.334180 2014 (UDC | 28.652058
1] Affoltern am Albis [ 40.094340 2014 (UDC |31.894371
2 | Bonstetten 55.436242 2014 (UDC |27.095457
3| Hausen am Albis |55.774854 2014 (UDC |33.535200
4 [ Hedingen 46.248086 2014 (UDC |31.438683
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And finally we can plot our data:

In [17]: sns.lmplot(data = towns parties.dropna(), x = 'Surface agricole en %',
y = 'Vote fraction', hue = 'year',col = 'Party',
scatter_kws={'alpha' :0.1})

Out[17]: <seaborn.axisgrid.FacetGrid at 0x7f3a68867el0>
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In [18]: (ggplot(towns parties.dropna(),aes(x = 'Surface agricole en %', y = 'Vot
e fraction', color = 'factor(year)', shape = 'Party'))
+ pn.geom_point(alpha = 0.05)
+ pn.geom_smooth(method='1lm")

+ pn.stats.stat_summary_bin(fun_data = 'mean_cl_normal', bins = 30)#fun
_y = np.mean, fun_ymin=np.var, fun_ymax=np.var, bins = 30)

+ pn.labs(color = 'Year')

+ pn.scale color _manual(['red', 'blue'])

).draw();

/usr/local/lib/python3.5/dist-packages/pandas/core/computation/check.py:1
9: UserWarning: The installed version of numexpr 2.4.3 is not supported i
n pandas and will be not be used

The minimum supported version is 2.6.1

ver=ver, min_ver= MIN NUMEXPR VERSION), UserWarning)
/usr/local/lib/python3.5/dist-packages/numpy/core/fromnumeric.py:2223: Fu
tureWarning: Method .ptp is deprecated and will be removed in a future ve
rsion. Use numpy.ptp instead.

return ptp(axis=axis, out=out, **kwargs)
/usr/local/lib/python3.5/dist-packages/numpy/core/fromnumeric.py:2223: Fu
tureWarning: Method .ptp is deprecated and will be removed in a future ve
rsion. Use numpy.ptp instead.

return ptp(axis=axis, out=out, **kwargs)
/usr/local/lib/python3.5/dist-packages/numpy/core/fromnumeric.py:2223: Fu
tureWarning: Method .ptp is deprecated and will be removed in a future ve
rsion. Use numpy.ptp instead.

return ptp(axis=axis, out=out, **kwargs)
/usr/local/lib/python3.5/dist-packages/numpy/core/fromnumeric.py:2223: Fu
tureWarning: Method .ptp is deprecated and will be removed in a future ve
rsion. Use numpy.ptp instead.

return ptp(axis=axis, out=out, **kwargs)
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1. Pandas objects

In [1]: dimport numpy as np
import pandas as pd
import matplotlib.pyplot as plt

If you have already used Python, you know about its standard data structures (list, dicts etc). If you use Python for
science, you also probably know Numpy arrays which underlying almost all other specialized scientific packages.

None of these structures offers a simple way to handle database style data, nor to easily do standard database
operations. This is why Pandas exists: it offers a complete ecosystem of structures and functions dedicated to handle large

tables with inhomogeneous contents.

In this first chapter, we are going to learn about the two main structures of Pandsa: Series and Dataframes.

1.1 Series

1.1.1 Simple series

Series are a the Pandas version of 1-D Numpy arrays. To understand their specificities, let's create one. Usually Pandas
structures (Series and Dataframes) are creates from other simpler structures like Numpy arrays or dictionaries:

(MZ: Pandas builds on numpy; Series are equivalent of a list)
In [2]: numpy array = np.array([4,8,38,1,6])
In [3]: # MZ:

numpy_array**2

Out[3]: array([ 16, 64, 1444, 1, 36])

The function pd.Series () allows us to convert objects into Series:

In [4]: pd_series = pd.Series(numpy_array)
pd series
# on the left => the indices; can be anything, e.g. names of towns

Out[4]: © 4
1 8
2 38
3 1
4 6
dtype: int64

The underlying structure can be recovered with the . values attribute:
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In [5]: pd_series.values
# MZ: output is numpy array

Out[5]: array([ 4, 8, 38, 1, 6])

Otherwise, indexing works as for regular arrays:

In [6]: pd_series[1]
Out[6]: 8

1.1.2 Indexing

On top of accessing values in a series by regular indexing, one can create custom indices for each element in the series:

In [7]: pd_series2 = pd.Series(numpy array, index=['a', 'b', 'c', 'd','e'])
# MZ: force the index to be what we give
# MZ: to retrieve the indexes (keys)
pd series2.keys()

Out[7]: Index(['a', 'b', 'c', 'd', 'e']l, dtype='object')

In [8]: pd_series2

4
8
38

Out[8]: a
b
c
d 1
e
d

6
type: int64

Now a given element can be accessed either by using its regular index:
In [9]: pd series2[1]
Out[9]: 8
or its chosen index:
In [10]: pd series2['b']
Qut[le]: 8
A more direct way to create specific indexes is to transform as dictionary into a Series:

In [11]: # MZ: use dict to build the Series
composer birth = {'Mahler': 1860, 'Beethoven': 1770, 'Puccini': 1858, 'S

hostakovich': 1906}
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In [12]: pd_composer _birth = pd.Series(composer birth)
pd _composer_birth

Out[12]: Beethoven 1770
Mahler 1860
Puccini 1858

Shostakovich 1906
dtype: int64

In [13]: pd_composer_birth['Puccini']

Out[13]: 1858

1.2 Dataframes

In most cases, one has to deal with more than just one variable, e.g. one has the birth year and the death year of a list of
composers. Also one might have different types of information, e.g. in addition to numerical variables (year) one might
have string variables like the city of birth. The Pandas structure that allow one to deal with such complex data is called a
Dataframe, which can somehow be seen as an aggregation of Series with a common index.

1.2.1 Creating a Dataframe

To see how to construct such a Dataframe, let's create some more information about composers:

In [14]: composer death = pd.Series({'Mahler': 1911, 'Beethoven': 1827, 'Puccini
': 1924, 'Shostakovich': 1975})
composer_city birth = pd.Series({'Mahler': 'Kaliste', 'Beethoven': 'Bonn
', 'Puccini': 'Lucques', 'Shostakovich': 'Saint-Petersburg'})

Now we can combine multiple series into a Dataframe by precising a variable name for each series. Note that all our
series need to have the same indices (here the composers' name):

In [15]: # MZ: put Series together into a Dataframe
composers_df = pd.DataFrame({'birth': pd composer birth, ‘'death': compos
er _death, 'city': composer city birth})
composers_df

Out[15]:
birth city [ death
Beethoven 1770 | Bonn 1827
Mahler 1860 | Kaliste 1911
Puccini 1858 | Lucques 1924
Shostakovich | 1906 | Saint-Petersburg | 1975

A more common way of creating a Dataframe is to construct it directly from a dictionary of lists:

In [16]: dict of list = {'birth': [1860, 1770, 1858, 1906], 'death':[1911, 1827,
1924, 19757,
'city':['Kaliste', 'Bonn', 'Lucques', 'Saint-Petersburg'l}
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In [17]: pd.DataFrame(dict of list)
# MZ: default indexes from 0 to 3

Out[171]:
birth city [ death
01860 | Kaliste 1911
111770 |Bonn 1827
21858 | Lucques 1924
31906 | Saint-Petersburg | 1975

However we now lost the composers name. We can enforce it by providing, as we did before for the Series, a list of
indices:

In [18]: pd.DataFrame(dict of list, index=['Mahler', 'Beethoven', 'Puccini', 'Sho
stakovich'])
# MZ: you can explicitly pass the index

Out[18]:
birth city [ death
Mahler 1860 | Kaliste 1911
Beethoven 1770 | Bonn 1827
Puccini 1858 | Lucques 1924
Shostakovich | 1906 | Saint-Petersburg | 1975

1.2.2 Accessing values

There are multiple ways of accessing values or series of values in a Dataframe. Unlike in Series, a simple bracket gives
access to a column and not an index, for example:

In [19]: composers df['city']

Out[19]: Beethoven Bonn
Mahler Kaliste
Puccini Lucques
Shostakovich Saint-Petersburg

Name: city, dtype: object

returns a Series. Alternatively one can also use the attributes synthax and access columns by using:

In [20]: composers df.city
# rather recommended to use the brackets

Out[20]: Beethoven Bonn
Mahler Kaliste
Puccini Lucques
Shostakovich Saint-Petersburg

Name: city, dtype: object
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The attributes synthax has some limitations, so in case something does not work as expected, revert to the brackets
notation.

When specifiying multiple columns, a DataFrame is returned:

In [21]: composers df[['city', 'birth']]

Out[21]:
city | birth
Beethoven Bonn 1770
Mahler Kaliste 1860
Puccini Lucques 1858
Shostakovich | Saint-Petersburg | 1906

One of the important differences with a regular Numpy array is that here, regular indexing doesn't work:

In [22]: #composers df[0,0]
Instead one has to use either the .iloc[] orthe . loc[] method. .1loc[] can be used to recover the regular
indexing:

In [23]: # MZ: recover by positions
composers_df.iloc[0,1]

Out[23]: 'Bonn'

While . Loc[] allows one to recover elements by using the explicit index, on our case the composers name:

In [24]: # MZ: recover by indices
composers_df.loc[ 'Mahler', 'death']

Out[24]: 1911

Remember that Loc and “iloc™™ use brackets [] and not parenthesis ().

Numpy style indexing works here too

In [25]: composers df.iloc[1:3,:]
Out[25]:

birth city [ death

Mahler | 1860 |Kaliste |1911

Puccini [ 1858 [ Lucques | 1924

If you are working with a large table, it might be useful to sometimes have a list of all the columns. This is given by the
.keys () attribute:

In [26]: composers _df.keys()
Out[26]: Index(['birth', 'city', 'death'], dtype='object')
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1.2.3 Adding columns

It is very simple to add a column to a Dataframe. One can e.g. just create a column a give it a default value that we can
change later:

In [27]1: # MZ: if pass a single value, add the same value everywhere
composers_df['country'] = 'default’

In [28]: composers df

Out[28]:
birth city | death | country
Beethoven 1770 | Bonn 1827 |default
Mahler 1860 | Kaliste 1911 [default
Puccini 1858 | Lucques 1924 |default
Shostakovich | 1906 | Saint-Petersburg | 1975 | default

Or one can use an existing list:
In [29]: country = ['Austria', 'Germany', 'Italy', 'Russia']
In [30]: composers df['country2'] = country

In [31]: composers df

Out[31]:
birth city [ death | country | country2
Beethoven 1770 | Bonn 1827 |default |Austria
Mahler 1860 | Kaliste 1911 |default [Germany
Puccini 1858 | Lucques 1924 |[default |ltaly
Shostakovich | 1906 | Saint-Petersburg [ 1975 |default |Russia
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2. Importing excel files

In [1]: dimport numpy as np
import pandas as pd
import matplotlib.pyplot as plt

import seaborn as sns

We have seen in the previous chapter what structures are offered by Pandas and how to create them. Another very
common way of "creating" a Pandas Dataframe is by importing a table from another format like CSV or Excel.

2.1 Simple import

An Excel table containing the same information as we had in Chapter 1 (01-Pandas_structures.ipynb) is provided in
composers.xlsx_(composers.xlsx) and can be read with the read _excel function. There are many more readers for
other types of data (csv, json, html etc.) but we focus here on Excel.

In [2]: pd.read excel('Datasets/composers.xlsx")

Out[2]:

composer | birth | death city

0 [ Mahler 1860|1911 |Kaliste

-

Beethoven 1770|1827 |Bonn

2| Puccini 1858 (1924 |Lucques

3| Shostakovich | 1906 | 1975 | Saint-Petersburg

The reader automatically recognized the heaers of the file. However it created a new index. If needed we can specify
which column to use as header:

In [3]: pd.read excel('Datasets/composers.xlsx', index col = 'composer')
# MZ: specify which column you want to be the index
Out[3]:
birth | death city
composer
Mahler 1860|1911 |Kaliste

Beethoven 1770|1827 |Bonn

Puccini 1858|1924 |Lucques

Shostakovich [ 1906 | 1975 | Saint-Petersburg

If we open the file in Excel, we see that it is composed of more than one sheet. Clearly, when not specifying anything, the
reader only reads the first sheet. However we can specify a sheet:
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In [4]: pd.read excel('Datasets/composers.xlsx', index col = 'composer',sheet na
me='Sheet2')
Out[4]:
birth death city
composer
Mahler 1860 1911 Kaliste

Beethoven 1770 1827 Bonn

Puccini 1858 1924 Lucques

Shostakovich | 1906 1975 Saint-Petersburg

Sibelius unknown | unknown [ unknown

Haydn NaN NaN Rohrau

For each reader, there is a long list of options to specify how the file should be read. We can see all these options using
the help (see below). Imagine that our tables contains a title and unnecessary rows: we can use the skiprows argument.
Imagine you have dates in your table: you can use the date_parser argument to specify how to format them etc.

In [5]: #use shift+tab within the parenthesis to see optional arguemnts
#pd.read excel()

2.2 Handling unknown values

As you can see above, some information is missing. Some missing values are marked as "unknown" while other are NaN.
NaN is the standard symbol for unknown/missing values and is understood by Pandas while "unknown" is just seen as
text. This is impractical as now we have e.g. columns with a mix of numbers and text which will make later computations
difficult. What we would like to do is to replace all "irrelevant” values with the standard NaN symbol that says "no
information”.

For this we can use the na_values argument to specify what should be a NaN. Let's compare the two imports:

In [6]: dimportl = pd.read excel('Datasets/composers.xlsx', index col = 'composer
',sheet name='Sheet2')
importl
Qut[6]:
birth death city
composer
Mahler 1860 1911 Kaliste

Beethoven 1770 1827 Bonn

Puccini 1858 1924 Lucques

Shostakovich | 1906 1975 Saint-Petersburg

Sibelius unknown | unknown | unknown

Haydn NaN NaN Rohrau
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In [7]:

Out([7]:

file:///home/marie/Documents/CAS data scienc...

# MZ: specify which values should be set to NA

pd.read _excel('Datasets/composers.xlsx', index col = 'composer

import2 =
',sheet name='Sheet2', na_values=['unknown'])
import2

birth| death city

composer

Mahler 1860.0|1911.0 | Kaliste
Beethoven 1770.0|1827.0 | Bonn
Puccini 1858.0 | 1924.0 | Lucques
Shostakovich | 1906.0 [ 1975.0 | Saint-Petersburg
Sibelius NaN [NaN [NaN
Haydn NaN |NaN |Rohrau

If we look now at one column, we can see that columns have been imported in different ways. One column is an object,
i.e. mixed types, the other contains floats.

In [8]:
Out[8]:

In [9]:
Out[9]:

importl.birth

composer
Mahler
Beethoven
Puccini
Shostakovich
Sibelius
Haydn

1860
1770
1858
1906
unknown
NaN

Name: birth, dtype: object

import2.birth

composer
Mahler
Beethoven
Puccini
Shostakovich
Sibelius
Haydn

Name: birth,

1860.0
1770.0
1858.0
1906.0
NaN

NaN
dtype:

float64

Handling bad or missing values is a very important part of data science. Taking care of the most common

occurrences at import is a good solution.

2.3 Column types

We see above that the birth column has been "classified" as a float. However we know that this is not the case, it's just an
integer. Here again, we can specify the column type already at import time using the dtype option and a dictionary:
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In [10]: # MZ: explicitly specify what types should be
# (e.g. to have faster computations using integers instead of floats)
import2 = pd.read excel('Datasets/composers.xlsx', index _col = 'composer
',sheet name='Sheetl', na values=['unknown'],
dtype={'composer':np.str, 'birth':np.int32, 'death
":np.int32, 'city':np.str})

In [11]: dimport2.birth

Out[11l]: composer

Mahler 1860
Beethoven 1770
Puccini 1858

Shostakovich 1906
Name: birth, dtype: int32

2.4 Modifications after import

Of course we don't have to do all these adjustement at import time. We can also do a default import and check what has
to be corrected afterward.

2.4.1 Create NaNs

If we missed some bad values at import we can just replace all those directly in the dataframe. We can achieve that by
using the replace () method and specifying what should be replaced:

In [12]: importl
Out[12]:

birth death city

composer

Mahler 1860 1911 Kaliste

Beethoven 1770 1827 Bonn

Puccini 1858 1924 Lucques

Shostakovich | 1906 1975 Saint-Petersburg

Sibelius unknown | unknown | unknown

Haydn NaN NaN Rohrau

In [13]: import nans = importl.replace('unknown', np.nan) # MZ: what replace, wit
h what to replace as arguments
import_nans.birth

Out[13]: composer

Mahler 1860.0
Beethoven 1770.0
Puccini 1858.0
Shostakovich 1906.0
Sibelius NaN
Haydn NaN

Name: birth, dtype: float64
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Note that when we fix "bad" values, e.g. here the "unknown" text value with NaNs, Pandas automatically adjust the type of
the column, allowing us for exampel to later do mathemtical operations.

In [14]: importl.birth.dtype
OQut[14]: dtype('0")

In [15]: import nans.birth.dtype
# MZ: was before mix type -> after fixing the 'unknown' -> automatically
update the type

Out[15]: dtype('float64')

2.4.2 Changing the type

We can also change the type of a column on an existing Dataframe:

In [16]: import2.birth

Out[16]: composer

Mahler 1860
Beethoven 1770
Puccini 1858

Shostakovich 1906
Name: birth, dtype: int32

In [17]: import2.birth.astype('float')

Out[17]: composer

Mahler 1860.0
Beethoven 1770.0
Puccini 1858.0

Shostakovich 1906.0
Name: birth, dtype: float64

If we look again at import2:

In [18]: import2.birth

Out[18]: composer

Mahler 1860
Beethoven 1770
Puccini 1858

Shostakovich 1906
Name: birth, dtype: int32

we see that we didn't actually change the type. Changes on a Dataframe are only effective if we reassign the column:

In [19]: import2.birth = import2.birth.astype('float')
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In [20]: import2.birth

Out[20]: composer

Mahler 1860.0
Beethoven 1770.0
Puccini 1858.0

Shostakovich 1906.0
Name: birth, dtype: float64

2.5 Plotting

We will learn more about plotting later, but let's see here some possibilities offered by Pandas. Pandas builds on top of
Matplotlib but exploits the knowledge included in Dataframes to improve the default output. Let's see with a simple
dataset.

In [21]: composers = pd.read excel('Datasets/composers.xlsx', sheet name='Sheet5
")
We can pass Series to Matplotlib which manages to understand them. Here's a default scatter plot:

In [22]: plt.plot(composers.birth, composers.death, 'o')
plt.show()
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Now we look at the default Pandas output. Different types of plots are accessible when using the data_frame.plot
function via the kind option. The variables to plot are column names passed as keywords instead of whole series like in
Matplotlib:
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In [23]: composers.plot(x = 'birth', y = 'death', kind = 'scatter')
# MZ: in this way you directly have the labels
plt.show()
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We see that the plot automatically gets axis labels. Another gain is that some obvious options like setting a title are directly
accesible when creating the plot:

In [24]: composers.plot(x = 'birth', y = 'death', kind = 'scatter',
title = 'Composer birth and death', grid = True, fontsize
= 15)
plt.show()
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One can add even more information on the plot by using more arguments used in a similar way as a grammar of graphics.
For example we can color the scatter plot by periods:
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In [25]: composers.plot(x

'birth', y = 'death',kind = 'scatter’',

Cc = composers.period.astype('category').cat.codes, colorm
ap = 'Reds', title = 'Composer birth and death', grid = True, fontsize =
15)
plt.show()
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Here you see already a limitation of the plotting library. To color dots by the peiod category, we had to turn the latter into a
series of numbers. We could then rename those to improve the plot, but it's better to use more specialized packages such
as Seaborn which allow to realize this kind of plot easily:

In [26]: sns.scatterplot(data = composers, x = 'birth', y = 'death', hue = 'perio
d') # MZ: 'hue' to get the colors with the dots
plt.show()
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Some additional plotting options are available in the plot () module. For example histograms:
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In [27]: composers.plot.hist(alpha = 0.5)

plt.show()
16 1w pirth
14 death
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Frequency
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0
1400

Here you see again the gain from using Pandas: without specifying anything, Pandas made a histogram of the two
columns containing numbers, labelled the axis and even added a legend to the plot.

All these features are very nice and very helpful when exploring a dataset. When anaylzing data in depth and creating
complex plots, Pandas's plotting might however be limiting and other options such as Seaborn or Plotnine can be used.

Finally, all plots can be "styled" down to the smallest detail, either by using Matplotlib options or by directly applying a style
e.g.

In [28]: plt.style.use('ggplot')

In [29]: composers.plot.hist(alpha = 0.5)

plt.show()
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3. Operations with Pandas objects

In [1]: dimport pandas as pd
import numpy as np

One of the great advantages of using Pandas to handle tabular data is how simple it is to extract valuable information from
them. Here we are going to see various types of operations that are available for this.

3.1 Matrix types of operations

The strength of Numpy is its natural way of handling matrix operations, and Pandas reuses a lot of these features. For
example one can use simple mathematical operations to opereate at the cell level:

In [2]: compo pd = pd.read excel('Datasets/composers.xlsx')

compo_pd
Out[2]:
composer | birth | death city
0| Mahler 1860|1911 |Kaliste
1|Beethoven [1770]1827 |Bonn

2| Puccini 1858 (1924 |Lucques

3 | Shostakovich [ 1906 [ 1975 | Saint-Petersburg

In [3]: compo pd['birth']*2

/usr/local/lib/python3.5/dist-packages/pandas/core/computation/check.py:1
9: UserWarning: The installed version of numexpr 2.4.3 is not supported i
n pandas and will be not be used

The minimum supported version is 2.6.1

ver=ver, min_ver=_MIN NUMEXPR VERSION), UserWarning)

Out[3]: © 3720
1 3540
2 3716
3
N

3812
ame: birth, dtype: int64

In [4]: np.log(compo pd['birth'])

Out[4]: © 7.528332
1 7.478735
2 7.527256
3 7.552762
Name: birth, dtype: float64

Here we applied functions only to series. Indeed, since our Dataframe contains e.g. strings, no operation can be done on
it:

In [5]: #compo pd+1
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If however we have a homogenous Dataframe, this is possible:

In [6]: compo pd[['birth', 'death']]*2
Out[6]:

birth | death

03720 (3822

—

3540 | 3654

23716 (3848

3138123950

3.2 Column operations

There are other types of functions whose purpose is to summarize the data. For example the mean or standard deviation.
Pandas by default applies such functions column-wise and returns a series containing e.g. the mean of each column:

In [7]: np.mean(compo pd)

Qut[7]: birth 1848.50
death 1909.25
dtype: float64

Note that columns for which a mean does not make sense, like the city are discarded. A series of commun functions like
mean or standard deviation are directly implemented as methods and can be accessed in the alternative form:

In [8]: compo_pd.mean()
Qut[8]: birth 1848.50

death 1909.25
dtype: float64

If you need the mean of only a single column you can of course chains operations:

In [9]: compo pd.birth.mean()
Out[9]: 1848.5

3.3 Operations between Series

We can also do computations with multiple series as we would do with Numpy arrays:

In [10]: compo pd['death']-compo pd['birth']
# operations between columns

Out[l0]: © 51

1 57
2 66
3 69

dtype: int64
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We can even use the result of this computation to create a new column in our Dataframe:

In [11]:

In [12]:
Out[12]:

compo_pd['age'] = compo _pd['death']-compo pd['birth']

file:///home/marie/Documents/CAS data scienc...

compo_pd

composer | birth | death city [age
0| Mahler 1860|1911 |Kaliste 51
1|Beethoven |1770]|1827 |Bonn 57
2| Puccini 1858|1924 |[Lucques 66
3 | Shostakovich [ 1906 [ 1975 | Saint-Petersburg | 69

3.4 Other functions

Sometimes one needs to apply to a column a very specific function that is not provided by default. In that case we can use
one of the different apply methods of Pandas.

The simplest case is to apply a function to a column, or Series of a DataFrame. Let's say for example that we want to

define the the age >60 as 'old' and <60 as 'young'. We can define the following general function:

In [13]:

In [14]:
Out[14]:

In [15]:
Out[15]:

def define age(x):

if x>60:

return 'old’
else:

return 'young'

define age(30)

‘young'

define age(70)

‘old'

We can now apply this function on an entire Series:

In [16]:

Out[16]:

compo _pd.age.apply(define age)

# MZ: apply take variable inputs and return variable outputs

# to apply, you can pass Series, DataFrame; can return DataFrame or sing
le numbers or list of numbers, etc.

0
1
2
3

young
young
old
old

Name: age, dtype: object
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In [17]1: # MZ: or using lambda function
compo_pd.age.apply(lambda x: x**2)

Out[17]: © 2601

1 3249
2 4356
3 4761

Name: age, dtype: int64

And again, if we want, we can directly use this output to create a new column:

In [18]: compo pd['age def'] = compo_pd.age.apply(define age)
compo_pd
# MZ: NB: you can also apply functions to rows of the dataframe
# can be useful to create categorical variables

Out[18]:
composer | birth | death city |age | age_def
0 | Mahler 1860|1911 |Kaliste 51 |young
1| Beethoven 17701827 |Bonn 57 |young
2| Puccini 185811924 |Lucques 66 |old
3 | Shostakovich | 1906 [ 1975 | Saint-Petersburg |69 | old

We can also apply a function to an entire DataFrame. For example we can ask how many composers have birth and death
dates within the XIXth century:

In [19]: def nineteen century count(x):
return np.sum((x>=1800)&(x<1900))
#def nineteen century count2(x):
# return np.sum((x>=1800)and(x<1900)) # does not work !!

In [20]: 5 < 10 and 5 < 6

Out[20]: True

In [21]: compo pd[['birth', 'death']].apply(nineteen _century count)
#compo pd[['birth', 'death']].apply(nineteen century count2)

Out[21]: birth 2
death 1
dtype: int64

The function is applied column-wise and returns a single number for each in the form of a series.

In [22]: def nineteen century true(x):
return (x>=1800)&(x<1900)
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In [23]: compo pd[['birth', 'death']].apply(nineteen_century true)

Out[23]:

birth | death

0| True |False

-

False | True

2| True |False

w

False | False

file:///home/marie/Documents/CAS data scienc...

Here the operation is again applied column-wise but the output is a Series.

There are more combinations of what can be the in- and output of the apply function and in what order (column- or row-
wise) they are applied that cannot be covered here.

3.5 Logical indexing

Just like with Numpy, it is possible to subselect parts of a Dataframe using logical indexing. Let's have a look again at an

example:

In [24]: compo_pd

Out[24]:
composer | birth | death city |age | age_def
0 [ Mahler 1860|1911 [Kaliste 51 |young
1|Beethoven |1770(1827 [Bonn 57 |young
2| Puccini 1858|1924 |Lucques 66 |old
3 | Shostakovich | 1906 | 1975 | Saint-Petersburg 69 | old

If we use a logical comprison on a series, this yields a logical Series:

In [25]: compo_pd['birth'] > 1859

Out[25]: O True
1 False
2 False
3 True

Name: birth, dtype:

bool
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In [26]: log _indexer = compo_pd['birth'] > 1859
log_indexer
compo_pd[log indexer]
# MZ: select the rows based on logical indexing
# MZ: to negate the logicals
compo_pd[~log_indexer]
# ! again here not is not working !
# compo_pd[not log indexer] # ERROR !

Out[26]:

composer | birth | death city |age [ age_def

-

Beethoven (1770|1827 |Bonn 57 |[young

2| Puccini 1858|1924 [Lucques|66 |old

Just like in Numpy we can use this logical Series as an index to select elements in the Dataframe:

In [27]: compo pd[compo pd['birth'] > 1859]
Qut[27]:

composer | birth | death city [age | age_def

0 [ Mahler 1860 (1911 [Kaliste 51 |young

3| Shostakovich | 1906 | 1975 | Saint-Petersburg [69 | old

We can also create more complex logical indexings:

In [28]: compo _pd[(compo pd['birth'] > 1859)&(compo_pd['age']>60)]
Out[28]:

composer | birth | death city |age | age_def

3 | Shostakovich | 1906 [ 1975 | Saint-Petersburg |69 | old

And we can create new arrays containing only these subselections:

In [29]: compos sub = compo _pd[compo pd['birth'] > 1859]
# MZ how the 2 are connected ??? tricky to know if Pandas create a copy

or not
# best to explicitly create a copy !

We can then modify the new array:

In [30]: compos sub.loc[0,'birth'] = 3000
# warning to tell that something might go wrong (because not used copy)

/usr/local/lib/python3.5/dist-packages/pandas/core/indexing.py:543: Setti

ngWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row indexer,col indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-doc
s/stable/indexing.html#indexing-view-versus-copy
self.obj[item] = s
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Note that we get this SettingWithCopyWarning warning. This is a very common problem hand has to do with how new
arrays are created when making subselections. Simply stated, did we create an entirely new array or a "view" of the old
one? This will be very case-dependent and to avoid this, if we want to create a new array we can just enforce it using the
copy () method (for more information on the topic see for example this explanation_(https://www.dataquest.io

In [31]: # MZ: better to explicitly create a copy
compos_sub2 = compo_pd[compo_pd['birth'] > 1859].copy()
compos_sub2.loc[0, 'birth'] = 3000
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04-Combining information in Pandas

In [1]:

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

Often information is comming from different sources and it is necessary to combine it into one object. We are going to see
the different ways in which information contained within separate Dataframes can be combined in a meaningful way.

4.1 Concatenation

The simplest way we can combine two Dataframes is simply to "paste” them together:

In [2]:

Out[2]:

In [3]:

Out[3]:

composersl =
r',sheet name='Sheetl')
composersl
birth | death city
composer
Mahler 1860|1911 |Kaliste
Beethoven 177011827 |Bonn
Puccini 1858 (1924 [Lucques
Shostakovich | 1906 | 1975 | Saint-Petersburg

composers2

r',sheet name='Sheet3"')

composers?2

birth | death city
composer
Verdi 1813|1901 [Roncole
Dvorak 184111904 |Nelahozeves
Schumann | 1810|1856 |Zwickau
Stravinsky [ 1882 (1971 |Oranienbaum
Mahler 1860 (1911 [Kaliste

To be concatenated, Dataframes need to be provided as a list:

In [4]:

all composers =

# columns have the same -> ok

pd.read excel('Datasets/composers.xlsx', index col='compose

pd.read excel('Datasets/composers.xlsx', index col='compose

pd.concat([composersl,composers2])
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In [5]:
Out[5]:

all composers

file:///home/marie/Documents/CAS data scienc...

birth | death city
composer

Mabhler 1860|1911 |Kaliste
Beethoven 177011827 |Bonn
Puccini 1858 (1924 [Lucques
Shostakovich | 1906 | 1975 | Saint-Petersburg
Verdi 1813 (1901 [Roncole
Dvorak 184111904 |Nelahozeves
Schumann 1810|1856 |Zwickau
Stravinsky 18821971 |Oranienbaum
Mahler 1860|1911 |Kaliste

One potential problem is that two tables contain duplicated information:

In [6]:

Out[6]:

It is very easy to get rid of it using:

In [7]:

Out[7]:

# be careful if same index

I'l can have twice the same index

# ! ensure to not have the same index
all _composers.loc['Mahler']

birth | death city
composer
Mahler 1860|1911 |Kaliste
Mahler 1860|1911 [Kaliste

all composers.drop duplicates()
# suppress duplicates from the table

birth | death city
composer

Mahler 1860|1911 |Kaliste
Beethoven 17701827 [Bonn
Puccini 1858 1924 [Lucques
Shostakovich [ 1906 | 1975 | Saint-Petersburg
Verdi 18131901 |Roncole
Dvorak 1841|1904 |[Nelahozeves
Schumann 1810|1856 |Zwickau
Stravinsky 1882|1971 | Oranienbaum

!
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4.2 Joining two tables

An other classical case is that of two list with similar index but containing different information, e.g.

In [8]: composersl = pd.read excel('Datasets/composers.xlsx', index col='compose
r',sheet name='Sheetl')

composersl
OQut[8]:
birth | death city
composer
Mahler 1860 (1911 [Kaliste

Beethoven 1770|1827 |Bonn

Puccini 18581924 |Lucques

Shostakovich | 1906 | 1975 | Saint-Petersburg

In [9]: composers2 = pd.read excel('Datasets/composers.xlsx', index col='compose
r',sheet name='Sheet4')
composers?

Out[9]:

first name

composer

Mahler Gustav

Beethoven | Ludwig van

Puccini Giacomo

Brahms Johannes

If we we use again simple concatenation, this doesn't help us much. We just end up with a large matrix with lots of NaN's:
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In [10]: pd.concat([composersl, composers2])

/usr/local/lib/python3.5/dist-packages/ipykernel launcher.py:1: FutureWar
ning: Sorting because non-concatenation axis is not aligned. A future ver
(S);Ogandas will change to not sort by default.

To accept the future behavior, pass 'sort=False'.

To retain the current behavior and silence the warning, pass 'sort=True'.

"""Entry point for launching an IPython kernel.

Out[10]:
birth city | death| first name
composer
Mahler 1860.0 | Kaliste 1911.0 [ NaN
Beethoven 1770.0 | Bonn 1827.0 [NaN
Puccini 1858.0 | Lucques 1924.0 | NaN

Shostakovich | 1906.0 | Saint-Petersburg | 1975.0 [ NaN

Mabhler NaN [NaN NaN [Gustav
Beethoven NaN NaN NaN Ludwig van
Puccini NaN [NaN NaN | Giacomo
Brahms NaN [NaN NaN |Johannes

The better way of doing this is to join the tables. This is a classical database concept avaialble in Pandas.

join() operates on two tables: the first one is the "left" table which uses join () as a method. The other table is the
"right" one.

Let's try the default join settings:

In [11]: composersl.join(composers2)
# get all elements of the 1st table, merged with the 2nd table
# everything based on the left table (what from the 2nd table and is not
in the 1st table is dropped)
# by default is left based

OQut[11]:
birth | death city | first name
composer
Mahler 1860|1911 |Kaliste Gustav
Beethoven 1770(1827 [Bonn Ludwig van
Puccini 18581924 |Lucques Giacomo
Shostakovich | 1906 | 1975 | Saint-Petersburg | NaN

We see that Pandas was smart enough to notice that the two tables had a index name and used it to combine the tables.
We also see that one element from the second table (Brahms) is missing. The reason for this is the way indices not
present in both tables are handled. There are four ways of doing this with two tables called here the "left" and "right" table.
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4.2.1. Join left

Here "left" and "right" just represent two Dataframes that should be merged. They have a common index, but not
necessarily the same items. For example here Shostakovich is missing in the second table, while Brahms is missing in the
first one. When using the "right" join, we use the first Dataframe as basis and only use the indices that appear there.

In [12]: composersl.join(composers2, how = 'left') # this is the default
Out[12]:
birth | death city | first name
composer

Mahler 1860|1911 | Kaliste Gustav

Beethoven 1770(1827 [Bonn Ludwig van

Puccini 18581924 |Lucques Giacomo

Shostakovich | 1906 | 1975 | Saint-Petersburg | NaN

Hence Brahms is left out.

4.2.2. Join right

We can do the the opposite and use the indices of the second Dataframe as basis:

In [13]: composersl.join(composers2, how = 'right')

Out[13]:

birth | death city | first name

composer

Mahler 1860.0(1911.0 | Kaliste [ Gustav

Beethoven (1770.0|1827.0 | Bonn Ludwig van

Puccini 1858.0|1924.0 | Lucques | Giacomo

Brahms NaN NaN NaN Johannes

Here we have Brahms but not Shostakovich.

4.2.3. Inner, outer

Finally, we can just say that we want to recover eihter only the items that appaer in both Dataframes (inner, like in a Venn
diagram) or all the items (outer).
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In [14]: composersl.join(composers2, how = 'inner')
# => take all indices of both tables
Out[14]:
birth | death city | first name
composer
Mahler 1860 (1911 |Kaliste |Gustav
Beethoven | 1770|1827 [Bonn Ludwig van
Puccini 1858|1924 |Lucques | Giacomo
In [15]: composersl.join(composers2, how = 'outer')
Out[15]:
birth| death city | first name
composer
Beethoven 1770.0|1827.0 | Bonn Ludwig van
Brahms NaN [NaN [NaN Johannes
Mahler 1860.0 [ 1911.0 | Kaliste Gustav
Puccini 1858.01924.0 | Lucques Giacomo
Shostakovich [ 1906.0 | 1975.0 | Saint-Petersburg | NaN

4.3.4 Joining on columns : merge

Above we have used join to join based on indices. However sometimes tables don't have the same indices but similar

contents that we want to merge. For example let's imagine whe have the two Dataframes below:

In [16]: composersl
")
composers?

)

In [17]: composersl

Out[17]:

composer | birth | death city

0| Mahler 1860|1911 |Kaliste

-

Beethoven 177011827 |Bonn

2| Puccini 1858|1924 |[Lucques

3 | Shostakovich [ 1906 [ 1975 | Saint-Petersburg

6 of 8

pd.read excel('Datasets/composers.xlsx', sheet name='Sheetl

pd.read excel('Datasets/composers.xlsx', sheet name='Sheet6
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In [18]: composers?

Out[18]:

last name | first name

0 | Puccini Giacomo

-

Beethoven | Ludwig van

2| Brahms Johannes

3| Mahler Gustav

The indices don't match and are not the composer name. In addition the columns containing the composer names have
different labels. Here we can use merge () and specify which columns we want to use for merging, and what type of

merging we need (inner, left etc.)

In [19]: # take left and right tables and can specify which column from each to p
erform the merge
pd.merge(composersl, composers2, left on='composer', right on='last name

)
Out[19]:

composer | birth | death city [ last name | first name

0| Mahler 1860|1911 |[Kaliste |Mahler Gustav

-

Beethoven [ 1770|1827 |Bonn Beethoven [ Ludwig van

2| Puccini 185811924 | Lucques | Puccini Giacomo

Again we can use another variety of join than the default inner:

In [20]: pd.merge(composersl, composers2, left on='composer', right on='last name

",how = 'outer')
Out[20]:

composer | birth| death city | last name | first name
0 [ Mahler 1860.0|1911.0 | Kaliste Mahler Gustav
1| Beethoven 1770.0(1827.0 [ Bonn Beethoven | Ludwig van
2| Puccini 1858.0 | 1924.0 | Lucques Puccini Giacomo
3 | Shostakovich | 1906.0 | 1975.0 | Saint-Petersburg [ NaN NaN
4| NaN NaN [NaN |NaN Brahms [Johannes

In [21]: pd.merge(composersl, composers2, left on='composer', right on='last name
",how = 'right")

Out[21]:

composer | birth| death city [ last name | first name

0 [ Mahler 1860.0(1911.0 [ Kaliste | Mahler Gustav

1| Beethoven | 1770.0| 1827.0 [ Bonn Beethoven [ Ludwig van

2| Puccini 1858.0 | 1924.0 | Lucques | Puccini Giacomo

3|NaN NaN |NaN |NaN Brahms Johannes
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In [22]:

Out[22]:

file:///home/marie/Documents/CAS data scienc...

# MZ: to remove the column that now contains duplicated information:

dtl = pd.merge(composersl, composers2, left on='composer', right on='las
t name')

dtl

# default is to drop rows, to drop columns set 1st axis

dtl.drop('last name', axis=1)

dtl
dtl.drop('last name', axis=1, inplace=True)
dtl

composer | birth | death city | first name

0 [ Mahler 1860|1911 |Kaliste |Gustav

-

Beethoven [ 17701827 |Bonn Ludwig van

2| Puccini 18581924 | Lucques | Giacomo
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5.Splitting data

Often one has tables that mix regular variables (e.g. the size of cells in microscopy images) with categorical variables (e.g.
the type of cell to which they belong). In that case, it is quite usual to split the data using the category to do computations.
Pandas allows to do this very easily.

In [1]: dimport numpy as np
import pandas as pd
import matplotlib.pyplot as plt

5.1 Grouping

Let's import some data and have a look at them

In [2]: composers = pd.read excel('Datasets/composers.xlsx', sheet name='Sheet5

)

In [3]: composers.head()

Out[3]:
composer | birth | death period | country
0 | Mahler 1860 [ 1911.0 | post-romantic | Austria
1| Beethoven 1770 1827.0 | romantic Germany
2| Puccini 1858 | 1924.0 | post-romantic | Italy
3 | Shostakovich | 1906 | 1975.0 | modern Russia
4 [ Verdi 1813|1901.0 | romantic Italy

In [4]: # MZ
# you don't have to explicitly go through the table and groupe elements
# simply use the 'groupby' function

5.1.1 Single level

What if we want now to count how many composers we have in each category? In classical computing we would maybe
do a for loop to count occurrences. Pandas simplifies this with the groupby () function, which actually groups elements
by a certain criteria, e.g. a categorical variable like the period:

In [5]: composer_grouped = composers.groupby('period')
composer_grouped
# MZ: create new type of object from Pandas

Out[5]: <pandas.core.groupby.generic.DataFrameGroupBy object at 0x7f5ff3cfbf60>

The output is a bit cryptic. What we actually have is a new object called a group which has a lot of handy properties. First
let's see what the groups actually are. As for the Dataframe, let's look at a summary of the object:
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In [6]: composer grouped.describe()
# MZ: get all the statistics by the groups created

# MZ: for example to see the different levels
composers.country.unique()

Qut[6]: array(['Austria', 'Germany', 'Italy', 'Russia', 'Czechia', 'Finland',
'France', 'RUssia', 'England', 'Belgium', 'Spain', 'USA'],
dtype=object)

So we have a dataframe with a statistical summary of the the contents. The "names" of the groups are here the indices of
the Dataframe. These names are simply all the different categories that were present in the column we used for grouping.
Now we can recover a single group:

In [7]: composer grouped.get group('baroque')

Out[7]:

composer | birth| death| period| country

14 | Haendel 1685 [ 1759.0 | baroque | Germany

16 | Purcell 1659 1695.0 | baroque | England

17 | Charpentier | 1643 | 1704.0 | baroque | France

20 | Couperin  [1626|1661.0 [ baroque | France

21| Rameau 1683 [ 1764.0 | baroque | France

28 | Caldara 1670 [ 1736.0 | baroque | ltaly

29 [ Pergolesi [1710|1736.0 [ baroque | Italy

30 | Scarlatti 1685 | 1757.0 | baroque | ltaly

31 | Caccini 1587 | 1640.0 | baroque | Italy

47 [ Bach 1685 [ 1750.0 | baroque | Germany

In [8]: composer _grouped.get group('post-romantic')

Out[8]:

composer | birth | death period | country

0 [Mahler 1860 [ 1911.0 | post-romantic | Austria

2 | Puccini 1858 [ 1924.0 | post-romantic | Italy

8 |Sibelius 1865 | 1957.0 | post-romantic | Finland

18 [ Bruckner |1824 (1896.0 | post-romantic | Austria

49 | Strauss 1864 | 1949.0 | post-romantic | Germany

5.2.2 Multi-level

If one has multiple categorical variables, one can also do a grouping on several levels. For example here we want to
classify composers both by period and country. For this we just give two column names to the groupby () function:
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In [9]: # MZ: groupping can be done on multiple columns
composer_grouped = composers.groupby(['period', 'country'])
composer_grouped.describe()

Out[9]:
birth
count [ mean std min 25% 50% |[75% max
period | country
baroque England |1.0 1659.000000 | NaN 1659.0 [ 1659.00|1659.0| 1659.00 [ 1659.0

France (3.0 1650.666667 [ 29.263174 | 1626.0| 1634.50 [ 1643.0 [ 1663.00 | 1683.0

Germany | 2.0 1685.000000 [ 0.000000 |1685.0|1685.00(1685.0(1685.00|1685.0

Italy 4.0 1663.000000 | 53.285395|1587.0| 1649.25(1677.5(1691.25|1710.0
classic Austria |2.0 1744.000000 [ 16.970563 | 1732.0| 1738.00 [ 1744.0 [ 1750.00 | 1756.0
Czechia |1.0 1731.000000 [ NaN 1731.011731.00(1731.0|1731.00|1731.0
Italy 1.0 1749.000000 | NaN 1749.0|1749.00(1749.0| 1749.00|1749.0
Spain 1.0 1754.000000 | NaN 1754.0|1754.00| 1754.0| 1754.00 | 1754.0
modern Austria |1.0 1885.000000 [ NaN 1885.0|1885.00 | 1885.0| 1885.00 | 1885.0
Czechia |1.0 1854.000000 | NaN 1854.0|1854.00 | 1854.0| 1854.00 | 1854.0

England [2.0 1936.500000 | 48.790368 | 1902.0| 1919.25(1936.5 [ 1953.75|1971.0

France |2.0 1916.500000 [ 12.020815|1908.0| 1912.25(1916.5[1920.75| 1925.0

Germany | 1.0 1895.000000 | NaN 1895.0|1895.00 | 1895.0| 1895.00 | 1895.0

RUssia |1.0 1891.000000 | NaN 1891.0(1891.00|1891.0|1891.00(1891.0

Russia |2.0 1894.000000 | 16.970563 | 1882.0| 1888.00 [ 1894.0 [ 1900.00 | 1906.0

USA |30 [1918.33333318.502252|1900.0 | 1909.00 | 1918.0 | 1927.50 | 1937.0
post- Austria |20 |1842.000000 |25.455844 | 1824.0 | 1833.00 | 1842.0 | 1851.00 | 1860.0
romantic | ciiiand [1.0 | 1865.000000 |NaN 1865.0 | 1865.00 | 1865.0 | 1865.00 | 1865.0
Germany 1.0  |1864.000000 |NaN 1864.0 | 1864.00 | 1864.0 | 1864.00 | 1864.0
Italy 1.0 |1858.000000 |NaN 1858.0 | 1858.00 | 1858.0 | 1858.00 | 1858.0

renaissance | Belgium (2.0 1464.500000)95.459415]1397.0 | 1430.75| 1464.5| 1498.25 [ 1532.0

England [2.0 1551.500000 | 16.263456 | 1540.0| 1545.75 [ 1551.5(1557.25| 1563.0

Italy 3.0 1552.666667 | 23.965253 | 1525.0| 1545.50 [ 1566.0 [ 1566.50 | 1567.0

romantic Czechia |2.0 1832.500000 [ 12.020815|1824.0| 1828.251832.5(1836.75| 1841.0

France (3.0 1821.000000 ( 19.672316 | 1803.0| 1810.50 [ 1818.0 [ 1830.00 | 1842.0

Germany | 4.0 1806.500000 [ 26.388129|1770.0| 1800.00(1811.5(1818.00| 1833.0

Italy 4.0 1817.250000 ( 28.004464 | 1797.0| 1800.00 [ 1807.0 [ 1824.25| 1858.0

Russia |2.0 1836.000000 | 4.242641 |1833.0|1834.50|1836.0|1837.50(1839.0

Spain 2.0 1863.500000 (4.949747 |1860.0|1861.75(1863.5(1865.25|1867.0
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In [10]: composer grouped.get group(('baroque', 'Germany'))

Out[10]:

composer | birth | death| period| country

14| Haendel |1685|1759.0 | baroque | Germany

47 | Bach 1685 | 1750.0 | baroque | Germany

5.2 Operations on groups

The main advantage of this Group object is that it allows us to do very quickly both computations and plotting without
having to loop through different categories. Indeed Pandas makes all the work for us: it applies functions on each group
and then reassembles the results into a Dataframe (or Series depending on output).

For example we can apply most functions we used for Dataframes (mean, sum etc.) on groups as well and Pandas
seamlessly does the work for us:
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In [11]:

Out[11]:

composer_grouped.mean()
# MZ: often you can directly apply the functions on the Pandas object

file:///home/marie/Documents/CAS data scienc...

birth death
period| country
baroque England [1659.000000 | 1695.000000
France [1650.666667 |1709.666667
Germany | 1685.000000 | 1754.500000
Italy 1663.000000 | 1717.250000
classic Austria | 1744.000000 | 1800.000000
Czechia |1731.000000 | 1799.000000
Italy 1749.000000 | 1801.000000
Spain 1754.000000 | 1806.000000
modern Austria | 1885.000000 | 1935.000000
Czechia |1854.000000 | 1928.000000
England [1936.500000 | 1983.000000
France 1916.500000 [ 2004.000000
Germany | 1895.000000 | 1982.000000
RUssia |1891.000000 | 1953.000000
Russia [1894.000000 |1973.000000
USA 1918.333333 | 1990.000000
post-romantic | Austria | 1842.000000 | 1903.500000
Finland |1865.000000 | 1957.000000
Germany | 1864.000000 | 1949.000000
Italy 1858.000000 | 1924.000000
renaissance |Belgium |1464.500000 | 1534.000000
England [1551.500000 | 1624.500000
Italy 1552.666667 | 1616.666667
romantic Czechia |1832.500000 | 1894.000000
France [1821.000000|1891.333333
Germany | 1806.500000 | 1865.750000
Italy 1817.250000 | 1875.750000
Russia |1836.000000 | 1884.000000
Spain 1863.500000 | 1912.500000
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In [12]:
Out[12]:

We can also design specific functions (again, like in the case of Dataframes) and apply them on groups:

In [13]:

composer_grouped.count()

file:///home/marie/Documents/CAS data scienc...

composer

birth

death

period

country

baroque

England

France

Germany

Italy

classic

Austria

Czechia

Italy

Spain

modern

Austria

—_

Czechia

—_

England

France

[ACI I \V)

Germany

RUssia

—_

Russia

USA

post-romantic

Austria

[\CTEN BN IR BN \V)

Finland

—_

—_

Germany

—_

—_

Italy

—_

renaissance

Belgium

England

Italy

romantic

Czechia

France

Germany

Italy

Russia

Spain

NN RO IO DN

NN BRI IND DN

N IND RO IO NN

def mult(ser):

return ser.max()

* 3
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In [14]: composer _grouped.apply(mult)
# MZ: most functions can be applied irrespectively of the object (DataFr
ame, group, Series, etc.)

70f11 1/22/20, 11:55 AM



05-Pandas splitting file:///home/marie/Documents/CAS data_scienc...

/usr/local/lib/python3.5/dist-packages/pandas/core/computation/check.py:1
9: UserWarning: The installed version of numexpr 2.4.3 is not supported i
n pandas and will be not be used

The minimum supported version is 2.6.1

ver=ver, min_ver=_MIN NUMEXPR VERSION), UserWarning)

Out[14]:
composer birth | death |period
period [ country
baroque England | PurcellPurcellPurcell 4977 [ 5085.0 | baroquebaroquebaroq
France |RameauRameauRameau 5049 | 5292.0 | baroquebaroquebaroq
Germany | HaendelHaendelHaendel 5055 |5277.0 | baroquebaroquebaroq
ltaly ScarlattiScarlattiScarlatti 5130|5271.0 | baroquebaroquebaroq
classic Austria | MozartMozartMozart 5268 | 5427.0 | classicclassicclassic
Czechia |DusekDusekDusek 5193 |5397.0 | classicclassicclassic
Italy CimarosaCimarosaCimarosa 5247 | 5403.0 | classicclassicclassic
Spain SolerSolerSoler 5262 [ 5418.0 | classicclassicclassic
modern Austria | BergBergBerg 5655 | 5805.0 | modernmodernmoderr
Czechia |JanacekJanacekJanacek 5562 | 5784.0 | modernmodernmoderr
England | WaltonWaltonWalton 5913 15949.0 | modernmodernmoderr
France |MessiaenMessiaenMessiaen 577516048.0 | modernmodernmoderr
Germany | OrffOrffOrff 5685 | 5946.0 | modernmodernmoderr
RUssia | ProkofievProkofievProkofiev 5673 | 5859.0 | modernmodernmoderr
Russia | StravinskyStravinskyStravinsky 5718 [5925.0 | modernmodernmoderr
USA GlassGlassGlass 5811 [5970.0 | modernmodernmoderr
rp:::mic Austria 1, ahlerMahlerMahler 5580 | 5733.0 f:;ta'lrn‘iirzammp“t'mm
Finland | SibeliusSibeliusSibelius 5505 | 5871.0 | POStromanticpost-rom
romantic
Germany | StraussStraussStrauss 5592 | 5847.0 post-romanticpost-rom
romantic
Italy PucciniPucciniPuccini 5574 (5772.0 post-ro_manticpost-rom
romantic
renaissance | Belgium | LassusLassuslLassus 4596 | 4782.0 | renaissancerenaissanc
England | DowlandDowlandDowland 4689 [ 4878.0 | renaissancerenaissanc
ltaly PalestrinaPalestrinaPalestrina 4701 ] 4929.0 | renaissancerenaissanc
romantic Czechia | SmetanaSmetanaSmetana 5523 [ 5712.0 | romanticromanticroma
France |MassenetMassenetMassenet 5526 | 5736.0 | romanticromanticroma
Germany | WagnerWagnerWagner 5499 [ 5691.0 [ romanticromanticroma
ltaly VerdiVerdiVerdi 5574 [ 5757.0 | romanticromanticroma

Russia | MussorsgskyMussorsgskyMussorsgsky [ 5517 [ 5661.0 | romanticromanticroma

Spain GranadosGranadosGranados 5601 | 5748.0 | romanticromanticroma
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5.3 Unstacking

file:///home/marie/Documents/CAS data scienc...

Let's have a look again at one of our grouped Dataframe on which we applied some summary function like a mean on the

age column:

In [15]:

In [16]:
Out[16]:

composers['age']= composers['death']-composers['birth']

composers.groupby(['country', 'period']).age.mean()

country
Austria

Belgium
Czechia

England

Finland
France

Germany

Italy

RUssia
Russia

Spain

USA

Name: age, dtype: float64

period
classic
modern
post-romantic
renaissance
classic
modern
romantic
baroque
modern
renaissance
post-romantic
baroque
modern
romantic
baroque
modern
post-romantic
romantic
baroque
classic
post-romantic
renaissance
romantic
modern

modern
romantic
classic
romantic
modern

56.
50.
61.
69.
68.
74.
61.
36.
81.
73.
92.
59.
87.
70.
69.
87.
85.
59.
54,
52.
66.
64.
58.
62.
79.
48.
52.
49.
81.

000000
000000
500000
500000
000000
000000
500000
000000
000000
000000
000000
000000
500000
333333
500000
000000
000000
250000
250000
000000
000000
000000
500000
000000
000000
000000
000000
000000
000000

Here we have two level of indices, with the main one being the country which contains all periods. Often for plotting we
however need to have the information in another format. In particular we would like each of these values to be one
observation in a regular table. For example we could have a country vs period table where all elements are the mean age.
To do that we need to unstack our multi-level Dataframe:

In [17]:

# MZ: to obtain regular 2dim object

composer_unstacked = composers.groupby(['country', 'period']).age.mean().

unstack()
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In [18]:
Out[18]:

composer_unstacked

file:///home/marie/Documents/CAS data scienc...

period baroque | classic | modern | post-romantic | renaissance | romantic
country

Austria |NaN 56.0 [50.0 61.5 NaN NaN
Belgium | NaN NaN NaN NaN 69.5 NaN
Czechia |NaN 68.0 74.0 NaN NaN 61.500000
England (36.00 NaN 81.0 NaN 73.0 NaN
Finland |NaN NaN NaN 92.0 NaN NaN
France |59.00 NaN |87.5 NaN NaN 70.333333
Germany | 69.50 NaN 87.0 85.0 NaN 59.250000
Italy 54.25 52.0 NaN 66.0 64.0 58.500000
RUssia [NaN NaN 62.0 NaN NaN NaN
Russia [NaN NaN 79.0 NaN NaN 48.000000
Spain NaN 52.0 NaN NaN NaN 49.000000
USA NaN NaN 81.0 NaN NaN NaN

5.4 Plotting groups

The possibility to create groups gives us also the opportunity to easily create interesting plots without writing too much

code. For example we can caluclate the average age of composers in each period and plot it as a bar plot:

In [19]:

Out[19]:

composers.groupby('period')['age'].mean().plot(kind = 'bar")
# MZ: group by period and plot the mean of the ages

<matplotlib.axes. subplots.AxesSubplot at 0x7f6024431278>

80 4

70 1

60

50

40

30

20 |

10 1

baroque

dassic

modern

post-romantic

period

renaissance

romantic

We can also use our unstacked table of country vs. period to automatically plot all average ages split by country and

period:
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In [20]: composer unstacked.plot(kind = 'bar');
# average age for each country and each period

period
- BN baroque
m dassic
B modern
60 BN post-romantic
1 B renaissance
BN romantic
40 4
20 1
0 T T T T T
o E ®m ©W W ¥ > > m©® ® c
E 3 § & 5§ 6 & E % a4 = 4
A = = = o [ = =] 5 &
i v § 2 E & E x «
] ¢ wuo Y &
country

There are much more powerful ways of using grouping-like features for plotting using the ggplot type grammar of graphics
where objects can be grouped within an "aeasthetic”. In the example above the "colour aesthetic" would e.g. be assigned
to the period variable. Such an approach removes the need to do explicit groupings as done here.
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6. Advanced plotting

In [1]: dimport pandas as pd
import numpy as np
import matplotlib.pyplot as plt

import seaborn as sns

We have seen already two options to plot data: we can use the "raw" Matplotlib which in principle allows one to create any
possible plot, however with lots of code, and we saw the simpler internal Pandas solution. While the latter solution is very
practical to quickly look through data, it is rather cumbersome to realise more complex plots.

Here we look at another type of plotting resting on the concepts of the grammar of graphics. This approach allows to
create complex plots where data can be simply split in a plot into color, shapes etc. without having to do a grouping
operation in beforehand. We will mainly look at Seaborn, and finish with an example with Plotnine, the port to Python of
ggplot.

Importing data

We come back here to the dataset of swiss towns. To make the dataset more interestig we add to it some categorical data.
First we attempt to add the main language for each town. It is a good example of the type of data wranglig one ofen has to
do by combining information from different sources.

In [2]: #load table indicating to which canton each town belongs
cantons = pd.read excel('Datasets/be-b-00.04-0sv-01.xls',sheet name=
1)[['KTKZ', 'ORTNAME']]

In [3]: #load general table with infos on towns
towns = pd.read excel('Datasets/2018.xls', skiprows=list(range(5))+list
(range(6,9)),
skipfooter=34, index_ col='Commune',na_values=['*
I' IXI ])
towns = towns.reset index()

In [4]: #merge tables using the town name. This adds the canton abbreviation to
the main table
towns canton = pd.merge(towns, cantons, left on='Commune', right on='ORT
NAME' ,how = 'inner')
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In [5]: #load data indicating languages of each canton
language = pd.read excel('Datasets/je-f-01.08.01.02.x1lsx',skiprows=[0,2,
3,4],skipfooter=11)
languages = language[['Allemand (ou suisse allemand)', 'Francais (ou pato
is romand)',

'Italien (ou dialecte tessinois/italien des grisons)']]

languages = languages.apply(pd.to _numeric, errors='coerce')
#check which language has majority in each canton
languages|[ 'language'] = np.argmax(languages.values.astype(float),axis=1)
code={0:'German', 1:'French', 2:'Italian'}
languages|[ 'Language'] = languages.language.apply(lambda x: code[x])
languages|['canton'] = language['Unnamed: 0']
languages = languages|[['canton', 'Language']]

#load table matching canton name to abbreviation

cantons_abbrev = pd.read excel('Datasets/cantons_abbrev.xlsx')
#add full canton name to table by merging on abbreviation
canton_language = pd.merge(languages, cantons abbrev,on='canton')

In [6]: #add language by merging on canton abbreviation
towns_language = pd.merge(towns canton, canton language, left on='KTKZ',
right on='abbrev')

In [7]: towns_language['town type'] = towns language['Surface agricole en %'].ap
ply(lambda x: 'Land' if x<50 else 'City')
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In [8]: #Create a new party column and a new party score column
parties = pd.melt(towns language,id vars=['Commune'], value vars=['UDC
",'PS','PDC'T,
var _name= 'Party', value name='Party score')
towns_language = pd.merge(parties, towns language, on='Commune')

towns_language
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out[8]:
Densité de
Part Variati la| Et
Commune | Party arty Code Habitants ariation . a| Eirangers
score | commune en%| population en%
par km?
0 ﬁﬁgﬁ am UDC |30.929249 | 1 1977 8.388158 |249.936789 |13.100658
1 :ﬁ:SSt am PS |18.645940 |1 1977 8.388158 |249.936789 |13.100658
Aeugst
2 Aﬁ)‘:gs am PDC |2.076428 |1 1977 8.388158 |249.936789 |13.100658
Affoltern am
I UDC |33.785785|2 11900  [7.294203 |1123.701605 |27.848740
Affoltern am
4 e PS |19.080314]2 11900  [7.294203 |1123.701605 | 27.848740
Affoltern am
5 | PDC |4.585387 |2 11900  [7.294203 |1123.701605 |27.848740
6 |Bonstetten UDC |29.100156 |3 5435 5349874 |731.493943 |14.149034
7 |Bonstetten PS |20.403265|3 5435 5349874 |731.493943 |14.149034
8 |Bonstetten PDC |3.378541 |3 5435 5349874 |731.493943 |14.149034
9 :l":‘;i’;e” aM  lupc |34.937369 |4 3571 6.279762 |262.573529 |14.533744
10 :;Li’ssen M Ips |19.393305 |4 3571 6.279762 |262.573529 |14.533744
1 :;‘i‘:e” am  Ippc |2.881915 |4 3571 6.279762 |262.573529 |14.533744
12 |Hedingen UDC |30.114599 |5 3687 8.123167 |564.624809 |14.971522
13 |Hedingen PS |22.478008|5 3687 8.123167 |564.624809 |14.971522
14 |Hedingen PDC |3.918166 |5 3687 8.123167 |564.624809 |14.971522
15 ;:fi’se' am UDC |48.615099|6 1110 20.915033 [ 140.151515 |18.018018
16 ﬁ?sd am PS |10.285425|6 1110 20.915033|140.151515 |18.018018
17 i;‘i’:e'am PDC |2.744469 |6 1110 20.915033 | 140.151515 |18.018018
18 |Knonau uUDC |32.876136|7 2168 20.444444 |335.085008 |17.158672
19 |Knonau PS |18.436553|7 2168 20.444444 |335.085008 |17.158672
20 |Knonau PDC |3.126052 |7 2168 20.444444 |335.085008 |17.158672
21 |Maschwanden |UDC |43.383446 |8 626 1.623377 |133.475480 |12.140575
22 |Maschwanden |PS [22.732529 8 626 1623377 |133.475480 |12.140575
23 |Maschwanden |PDC [3.502396 |8 626 1623377 |133.475480 |12.140575
24 | Mettmenstetten | UDC |35.671015 |9 4861 14.565166 | 373.062164 |14.873483
25 |Mettmenstetten |PS | 18.800282 |9 4861 14.565166 | 373.062164 | 14.873483
26 |Mettmenstetten | PDC |3.649155 |9 4861 14.565166 | 373.062164 | 14.873483
27 | Obfelden UDC |36.174029| 10 5131 0.496372 |680.503979 |20.015591
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Basic plotting

We finally have a table with mostly numerical information but also two categorical data: language and town type (land or
city). With Seaborn we can now easily make all sorts of plots. For example what are the average scores of the different
parties:

In [9]: sns.barplot(data = towns language, y='Party score', x = 'Party');

/usr/local/1lib/python3.5/dist-packages/scipy/stats/stats.py:1713: FutureW
arning: Using a non-tuple sequence for multidimensional indexing is depre
cated; use “arr[tuple(seq)]’ instead of “arr[seq] . In the future this wi
1l be interpreted as an array index, “arr[np.array(seq)] , which will res
ult either in an error or a different result.

return np.add.reduce(sorted[indexer] * weights, axis=axis) / sumval

35 A

30 4

25 A

20 A

Party score

15 4

10

Party

Do land towns vote more for the right-wing party ?

In [10]: g = sns.scatterplot(data = towns_ language, y='UDC', x = 'Surface agricol
e en %', s =10, alpha = 0.5);
g.

n
set x1lim([0,100]);

Surface agricole en %

Using categories as "aesthetics"
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The greate advantage of using these packages is that they allow to include categories as "aesthetics" of the plot. For
example we looked before at average party scores. But are they different between language regions ? We can just specify
that the hue (color) should be mapped to the town language:

In [11]: sns.barplot(data = towns language, y='Party score', x = 'Party', hue ="'
Language');

/usr/local/lib/python3.5/dist-packages/scipy/stats/stats.py:1713: FutureW
arning: Using a non-tuple sequence for multidimensional indexing is depre
cated; use “arr[tuple(seq)]’ instead of “arr[seq] . In the future this wi
1l be interpreted as an array index, “arr[np.array(seq)] , which will res
ult either in an error or a different result.

return np.add.reduce(sorted[indexer] * weights, axis=axis) / sumval

40 4 Language
B German

35 1 B French

30 1 BN |talian

Party score
N N
o w

]

Party

Similarly with scatter plots. Is the relation between land and voting on the right language dependent ?

In [12]: g = sns.scatterplot(data = towns_ language, y='UDC', x = 'Surface agricol
e en %', hue = 'Language',
s = 10, alpha = 0.5);
g.set xlim([0,1001);

[}

L. Language

80 - . ® German
e h, . e French

® % e ltalian

Surface agricole en %

Statistics

We see difference in the last plot, but it is still to clearly see the relation. Luckiliy these packages allow us to either create
summary statistics or to fit the data:
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In [13]: g = sns.lmplot(data = towns language, x = 'Surface agricole en %', y='UD
C', hue = 'Language', scatter=True,
scatter_kws={'alpha': 0.1});
g.ax.set xlim([0,100]);

/usr/local/lib/python3.5/dist-packages/scipy/stats/stats.py:1713: FutureW
arning: Using a non-tuple sequence for multidimensional indexing is depre
cated; use “arr[tuple(seq)]  instead of “arr[seql . In the future this wi
11 be interpreted as an array index, “arr[np.array(seq)]’, which will res
ult either in an error or a different result.

return np.add.reduce(sorted[indexer] * weights, axis=axis) / sumval

v

Language
German
French
Italian

0 20 40 60 80 100
Surface agricole en %

Now we can also do the same exercise for all parties. Does the relation hold?
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In [14]: g = sns.lmplot(data = towns language, x = 'Surface agricole en %', y='Pa
rty score',
hue = 'Party', scatter=True,
scatter kws={'alpha': 0.1});
g.ax.set xlim([0,100]);

/usr/local/lib/python3.5/dist-packages/scipy/stats/stats.py:1713: FutureW
arning: Using a non-tuple sequence for multidimensional indexing is depre
cated; use “arr[tuple(seq)]’ instead of “arr[seq]l’ . In the future this wi
11 be interpreted as an array index, “arr[np.array(seq)] , which will res
ult either in an error or a different result.

return np.add.reduce(sorted[indexer] * weights, axis=axis) / sumval

80 A
[

0 - o
v
§ Party
o uDc
& PS

PDC
0 20 40 60 80 100

Surface agricole en %

Adding eve more information

We can recover from some other place (Poste) the coordinates of each town. Again by merging we can add that
information to our main table:

In [15]: coords = pd.read csv('Datasets/plz_verzeichnis v2.csv', sep=';"')[['ORTBE
Z18', 'Geokoordinaten']]
coords['lat'] = coords.Geokoordinaten.apply(lambda x: float(x.split(',
')[0]) if type(x)==str else np.nan)
coords['long'] = coords.Geokoordinaten.apply(lambda x: float(x.split(',
')[1]) if type(x)==str else np.nan)

In [16]: towns language = pd.merge(towns language,coords, left on='Commune', righ

t_on='0ORTBEZ18"')

So now we can in addition look at the geography of these parameters. For example, who votes for the right-wing party ?
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In [17]: fix, ax = plt.subplots(figsize = (12,8))
sns.scatterplot(data = towns_language, x= 'long', y = 'lat', hue='UDC',

style = 'Language', palette='Reds');

file:///home/marie/Documents/CAS data scienc...

uoc
47.75 0.0
30.0
® 600
47.50 e 9.0
Language
® German
47.25 *  French
W [talian
'I
47.00 .
x
46.75 g
46.50
B
46.25 °
46.00
4575

In [18]: # MZ: if used to ggplot -> use 'plotnine'

# same grammar as ggplot

90f9

8

long

package
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7. Insight into Machine Learning

Several more advanced applications rely on Pandas structure to work. One example is the package scikit-learn, which has
become one of the dominant machine learning resource in data science. We are now going to have a very quick look at
how Pandas is used in that frame.

We are going to work again with our swiss towns infos and we will see if we can predict the result of a party based on that
information.

In [1]: dimport pandas as pd
import numpy as np
import matplotlib.pyplot as plt

import seaborn as sns

7.1 Data loading and features selection

We first load the data set:

In [2]: towns = pd.read excel('Datasets/2018.xls', skiprows=list(range(5))+list
(range(6,9)),
skipfooter=34, index col='Commune',na_values=['*
1 , IXI ] )
towns = towns.reset index()

Now we have to get select what featurs we are going to use to predict the vote for UDC. We have to remove the results of
the other parties, as those are of course correlated.

We also create a target by selecting only the UDC column

In [3]: features towns.drop('PDC', axis=1)

features = features.drop('PS', axis=1)

features = features.drop('Commune', axis=1)

features = features.drop('PVL', axis=1)

features = features.drop('PLR 2)', axis=1l)

features = features.drop('PBD', axis=1)

features = features.drop('PST/Sol.', axis=1)

features = features.drop('PEV/PCS', axis=1)

features = features.drop('PES', axis=1)

features = features.drop('Petits partis de droite', axis=1)
features = features.drop('Code commune', axis=1)

features = features.dropna()
targets = features['UDC']
features = features.drop('UDC', axis=1)
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In [4]: features.head()

Out[4]:

Densité de

Variation la| Etrangers 65 ans ou Taux| Ta

Habitants . 0-19 ans | 20-64 ans brut de
en % | population en % plus |

nuptialité | divc
par km?

0(1977 8.388158 | 249.936789 | 13.100658 [ 20.586748 | 62.822458 | 16.590794 | 2.526529 | 3.0t

1111900 7.294203 [ 1123.701605 [ 27.848740 | 20.285714 | 62.201681 | 17.512605 | 5.167740 (1.4«

2)5435 5.349874 | 731.493943 |14.149034 | 23.808648 |60.71757115.473781|5.389834 | 1.8¢
3|3571 6.279762 | 262.573529 |14.533744 (22.73872960.403248 [ 16.858023 | 4.540295 | 1.9¢
43687 8.123167 | 564.624809 |14.971522 (22.484405)62.110117[15.405479|7.622159 | 1.3¢

5 rows x 31 columns

In [5]: targets.head()

30.929249
33.785785
29.100156

Out[5]: ©
1
2
3 34.937369
4
N

30.114599
ame: UDC, dtype: float64

7.2 Splitting the data

We need to be able to test whether our ML algorithm is capable of making predictions on data is has not been trained on.
We therefore split our dataset into a training and a testing set. Luckily sklearn provides this out of the box if we pass the
right dataframes.

In [6]: from sklearn.model_selection import train test split
X, X _test, y, y test = train_test split(features, targets,
test size = 0.2,
random state = 42)

In [7]: len(X _test)/len(X)
Out[7]: 0.25

7.3 Choosing an ML method

Sklearn offers a wide range of ML methods. We are not entering into details here and choose a Random Forest
regression:

In [8]: from sklearn.ensemble import RandomForestRegressor

Then we instantiate the model and train it (fit):
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In [9]: random_ forrest = RandomForestRegressor(n_estimators=1000)
random_forrest.fit(X, y)

Out[9]: RandomForestRegressor(bootstrap=True, criterion='mse', max_depth=None,
max_features='auto', max_leaf nodes=None,
min impurity decrease=0.0, min impurity split=None,
min_samples_ leaf=1, min_samples_ split=2,
min_weight_ fraction_ leaf=0.0, n_estimators=1000, n_jobs=None,
oob_score=False, random state=None, verbose=0, warm_start=Fals
e)

Finally we can use it to make predictions. In particular we can apply it to our test sample and see how it performs:

In [10]: predictions = random forrest.predict(X test)
mae = np.mean(abs(predictions - y test))
print(mae)

7.092857784914048

/usr/local/lib/python3.5/dist-packages/pandas/core/computation/check.py:1
9: UserWarning: The installed version of numexpr 2.4.3 is not supported i
n pandas and will be not be used

The minimum supported version is 2.6.1

ver=ver, min_ver=_MIN NUMEXPR VERSION), UserWarning)

In [11]: sns.scatterplot(x = y test, y = predictions);

20 |

10 20 30 40 50 60 70

In [12]: import scipy.stats

In [13]: scipy.stats.pearsonr(y test,predictions)

Out[13]: (0.6900691335750526, 1.8302171574366992e-43)

7.4 Important features

A random forest classificer has the advantage that it can provide us information about how important each feature is. In
other terms which features help the most in predicting:
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In [14]: print(random forrest.feature importances )

[0.01642088 0.03087361 0.02929625 0.07733401 0.05875088 0.06434162
.02267082 0.03147107 0.02621289 0.02242997 0.02138494 0.01213671
.03465807 0.0244234 0.03648381 0.02957084 0.13884786 0.02812714
.02704483 0.02524017 0.01225019 0.02748501 0.01709968 0.01442152
.00932912 0.0553376 0.00979078 0.01229114 0.03309209 0.01542136
.035761741

[oNoNoNoNO]

The larger the number, the better its predictions power. We can sort this list and see to what features they correspond in
our feature Dataframe:

In [15]: features.keys()[np.argsort(random forrest.feature importances )]

Out[15]: Index(['Etablissements total', 'Secteur secondaire.l', 'Ménages privés',
'"Emplois total', 'Secteur tertiaire.l', 'Secteur tertiaire',
"Nouveaux logements construits pour 1000 habitants', 'Habitants',
'Secteur secondaire', 'Taux brut de mortalité', 'Taux brut de nata
lité',

'65 ans ou plus', 'Surface totale en km?', 'Surface improductive e
ns%',

'Taux brut de divortialité', 'Surface boisée en %', 'Secteur prima
ire',

'Variation en ha.l', 'Densité de la population par km?',

'Variation en ha', 'Variation en %', 'Taux brut de nuptialité',

'Taux de logements vacants', 'Taille moyenne des ménages en person
nes',

'Taux d'aide sociale', 'Surfaces d'habitat et d'infrastructure en

'Secteur primaire.l', '0-19 ans', '20-64 ans', 'Etrangers en %',

'Surface agricole en %'],
dtype='object"')

Finally, we can have a look at the actual correlations that seem to be indicated here. For this we select a few features and
create a long format table for plotting:

In [16]: towns melt = pd.melt(towns, id vars=['Commune', 'UDC'],
value vars=['Etrangers en %', 'Surface agricole en %
de mortalité'])

, 'Taux brut
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In [17]: sns.lmplot(data = towns melt, x = 'value', y = 'UDC', hue = 'variable',

scatter_kws={'alpha' : 0.1});

/usr/local/lib/python3.5/dist-packages/scipy/stats/stats.py:1713: FutureW
arning: Using a non-tuple sequence for multidimensional indexing is depre
cated; use “arr[tuple(seq)]” instead of “arr[seq] . In the future this wi
11 be interpreted as an array index, “arr[np.array(seq)]’, which will res
ult either in an error or a different result.

return np.add.reduce(sorted[indexer] * weights, axis=axis) / sumval

variable
Etrangers en %
Surface agricole en %
Taux brut de mortalité

0 20 40 60 80 100

There are indeed strong correlations where they are expected! Notice alos that we can learn things here: the right-wing
party is most successful where there's the least foreigners...
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In [1]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

Exercise

For these exercices we are using a dataset (https://www.kaggle.com/dgomonov/new-york-city-airbnb-open-data/kernels)
provided by Airbnb for a Kaggle competition. It describes its offer for New York City in 2019, including types of
appartments, price, location etc.

1. Create a dataframe

Create a dataframe of a few lines with objects and their poperties (e.g fruits, their weight and colour). Calculate the mean
of your Dataframe.

In [2]: dict of list = {'fruit name': ["apple", "pear", "watermelon"], 'weight
':[100, 94, 95], 'colour':['green', "yellow", "rosa"l}
fruits = pd.DataFrame(dict of list)

In [3]: fruits.describe()
# calculates common statistical values
# and makes it only for the columns that make sense

Out[3]:

weight

count | 3.000000

mean | 96.333333

std 3.214550

min [94.000000

25% |94.500000

50% [95.000000

75% |97.500000

max | 100.000000

In [4]: fruits.mean()

Out[4]: weight 96.333333
dtype: float64

2. Import

® Import the table called AB_NYC 2019.csv as a dataframe. It is located in the Datasets folder. Have a look at

the beginning of the table (head).
® Create a histogram of prices
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In [5]: mydata = pd.read csv('Datasets/AB NYC 2019.csv')
# mydata

In [6]: plt.style.use('ggplot')
mydatal['price'].plot.hist(alpha = 0.5)
plt.show()
# to have nicer plot (more bars)
mydatal['price'].plot.hist(alpha = 0.5, bins=range(0,1000,10))
plt.show()

50000 -

Frequency

10000 -

2000 4000 6000 8000 10000

‘equency

Fr

1000 -

500 -

200 400 600 800 1000

3. Operations

Create a new column in the dataframe by multiplying the "price" and "availability_365" columns to get an estimate of the
maximum yearly income.

In [7]: mydata['max_yearly income'] = mydata['price'] * mydata['availability 365
"1
/usr/local/lib/python3.5/dist-packages/pandas/core/computation/check.py:1
9: UserWarning: The installed version of numexpr 2.4.3 is not supported i
n pandas and will be not be used
The minimum supported version is 2.6.1

ver=ver, min_ver=_MIN NUMEXPR VERSION), UserWarning)

In [8]: # what can be done with numpy can be done
# np.log(mydata['price'])

In [9]: # mydata
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3b. Subselection and plotting

Create a new Dataframe by first subselecting yearly incomes between 1 and 100'000. Then make a scatter plot of yearly
income versus number of reviews

In [10]: #mydata sub = mydata[ (mydatal'max yearly income'] >= 1) and (mydata['ma
X _yearly income'] <= 100000) ]

#mydata sub = mydata[ (mydata.max yearly income >= 1) and (mydata.max ye
arly income <= 100000) ]

mydata sub = mydata[ (mydata['max yearly income'] >= 1) & (mydatal'max_y
early income'] <= 100000) ].copy()

# mydatal[ (mydata.max yearly income>=1)&(mydata.max yearly income <= 1000
00)].copy()
# mydata_sub

In [11]: mydata sub.plot(x = 'number of reviews', y = 'max yearly income',kind =
‘scatter’)
max (mydata sub['max_yearly income'])

Out[11]: 999060
100000 -

80000 -

Q
£
[«]
(&}
£ 60000 -
>
S 40000
8 i
>
o
[ — on -
20000 © e,
e ®
O.
0 100 200 300 400 500 600

number_of reviews

4. Combine

We provide below an additional table that contains the number of inhabitants of each of New York's boroughs
("neighbourhood_group” in the table). Use merge to add this population information to each element in the original
dataframe.

In [12]: borough dt = pd.read excel('Datasets/ny boroughs.xlsx")
#borough dt

In [13]: #mydata

In [14]: merged dt = pd.merge(mydata, borough dt, left on='neighbourhood group'
right on='borough', how='left"')
#merged dt

5. Groups
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® Using groupby calculate the average price for each type of room (room_type) in each neighbourhood_group.

What is the average price for an entire home in Brooklyn ?
® Unstack the multi-level Dataframe into a regular Dataframe with unstack () and create a bar plot with the

resulting table

In [15]: merged dt.groupby(['neighbourhood group', 'room_type']).price.mean()

Out[15]: neighbourhood group
Bronx

Brooklyn

Manhattan

Queens

Staten Island

Name: price, dtype:

room_type
Entire home/apt
Private room
Shared room
Entire home/apt
Private room
Shared room
Entire home/apt
Private room
Shared room
Entire home/apt
Private room
Shared room
Entire home/apt
Private room
Shared room

float64

127.
66.
59.

178.
76.
50.

249.

116.
88.

147.
71.
69.

173.
62.
57.

506596
788344
800000
327545
500099
527845
239109
776622
977083
050573
762456
020202
846591
292553
444444

In [16]: merged dt.groupby(['neighbourhood group', 'room type']).price.mean()['Bro
oklyn']J['Entire home/apt']

Out[16]: 178.32754472225128

In [17]: merged dt.groupby(['neighbourhood group', 'room type'])['price'].mean()["’
Brooklyn']['Entire home/apt']

Out[17]: 178.32754472225128

In [18]: unstd dt = merged dt.groupby(['neighbourhood group', 'room type'l).price.

mean () .unstack()
unstd dt.plot(kind =

250 -

200

il

v

yn

>

Bronx

Brookl

'bar');

room_type
BN Entire home/apt

BN Private room
W Shared room

h

"
wv

an
n

'
,

ee

Manhatt
Que

neighbourhood_group

6. Advanced plotting
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In [19]: fig, ax = plt.subplots(figsize=(10,8))
g = sns.scatterplot(data = merged dt, y = 'latitude', x = 'longitude', h

ue = 'price’',
hue norm=(0,200), s=10, palette='inferno')
price
409
40.8
@
©
£ 407
X
o S
406 -
o - i3
S
40.5
-74.2 741 -74.0 -73.9 -73.8 -73.7
longitude

Using Seaborn, create a scatter plot where x and y positions are longitude and lattitude, the color reflects price and the
shape of the marker the borough (neighbourhood_group). Can you recognize parts of new york ? Does the map make

sense ?
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In [1]: import pandas as pd
import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

Exercise

file:///home/marie/Documents/CAS data scienc...

For these exercices we are using a dataset (https://www.kaggle.com/dgomonov/new-york-city-airbnb-open-data/kernels)
provided by Airbnb for a Kaggle competition. It describes its offer for New York City in 2019, including types of
appartments, price, location etc.

1. Create a dataframe

Create a dataframe of a few lines with objects and their poperties (e.g fruits, their weight and colour). Calculate the mean

of your Dataframe.

In [2]: fruits =
t':[20, 200,

In [3]: fruits
Out[3]:

pd.DataFrame({'fruits':['strawberry', 'orange',k 'melon'], 'weigh

100017,

'color':

color

fruits

weight

0|red

strawberry

20

-

orange

orange

200

2| yellow

melon

1000

In [4]: fruits.mean()

Out[4]: weight

2. Import

406.666667
dtype: float64

['red','orange', 'yellow']})

® Import the table called AB_NYC 2019.csv as a dataframe. It is located in the Datasets folder. Have a look at
the beginning of the table (head).
® Create a histogram of prices

In [5]: airbnb = pd.read csv('Datasets/AB NYC 2019.csv')

In [6]: # airbnb.head()
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In [7]: airbnb.price.plot(kind = 'hist', bins = range(0,1000,10))
Out[7]: <matplotlib.axes. subplots.AxesSubplot at 0x7f4dl1f5ef28>

3500 1
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2000 |

Frequency
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w
(=}
(=]

1000 -

500 1

800 1000

3. Operations

Create a new column in the dataframe by multiplying the "price" and "availability_365" columns to get an estimate of the

maximum yearly income.

In [8]: airbnb['yearly income'] = airbnb['price']l*airbnb['availability 365']

/usr/local/lib/python3.5/dist-packages/pandas/core/computation/check.py:1
9: UserWarning: The installed version of numexpr 2.4.3 is not supported i
n pandas and will be not be used

The minimum supported version is 2.6.1

ver=ver, min_ver= MIN NUMEXPR_VERSION), UserWarning)

In [9]: # airbnb['yearly income']

3b. Subselection and plotting

Create a new Dataframe by first subselecting yearly incomes between 1 and 100'000 and then by suppressing cases with
0 reviews. Then make a scatter plot of yearly income versus number of reviews

In [10]: sub_airbnb = airbnb[(airbnb.yearly income>1)&(airbnb.yearly income<10000
0)].copy()
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In [11]: sub_airbnb.plot(x = 'number_of reviews', y = 'price', kind = 'scatter',
alpha = 0.01)
plt.show()

3000 1
2500 1
2000

g 1500

g

1000 A

500 A I
0 )
0 00 200 300 400 500 600
number_of _reviews

4. Combine

We provide below and additional table that contains the number of inhabitants of each of New York's boroughs
("neighbourhood_group” in the table). Use merge to add this population information to each element in the original
dataframe.

In [12]: boroughs = pd.read excel('Datasets/ny boroughs.xlsx')

In [13]: boroughs
Out[13]:

borough | population

0| Brooklyn 2648771

1 [ Manhattan 1664727

Queens 2358582

2
3 | Staten Island | 479458
4| Bronx 1471160

In [14]: merged = pd.merge(airbnb, boroughs, left on = 'neighbourhood group', rig
ht on='borough')
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In [15]: merged.head()

OQut[15]:
id name | host_id | host_name | neighbourhood_group | neighbourhood | latitude

Clean & quiet

02539 | apt home by 2787 John Brooklyn Kensington 40.64749
the park
Cozy Entire

113831 | Floor of 4869 LisaRoxanne | Brooklyn Clinton Hill 40.68514
Brownstone

Bedford-
2|5121 | BlissArtsSpace! | 7356 Garon Brooklyn edford 40.68688
Stuyvesant

Lovely Room 1,
Garden, Best .

315803 9744 Laurie Brooklyn South Slope 40.66829
Area, Legal
rental
Only 2 stops to

46848 | Manhattan 15991 | Allen & Irina | Brooklyn Williamsburg 40.70837
studio

5. Groups

® Using groupby calculate the average price for each type of room (room_type) in each neighbourhood_group.
What is the average price for an entire home in Brooklyn ?

® Unstack the multi-level Dataframe into a regular Dataframe with unstack () and create a bar plot with the
resulting table

In [16]: summary = airbnb.groupby(['neighbourhood group', 'room type']).mean().pri
ce

In [17]1: summary[('Brooklyn', 'Entire home/apt')]
Out[17]: 178.32754472225128
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In [18]: summary.unstack().plot(kind = 'bar', alpha = 0.5)

plt.show()
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6. Advanced plotting

Using Seaborn, create a scatter plot where x and y positions are longitude and lattitude, the color reflects price and the
shape of the marker the borough (neighbourhood_group). Can you recognize parts of new york ? Does the map make
sense ?

In [19]: fig, ax = plt.subplots(figsize=(10,8))
g = sns.scatterplot(data = airbnb, y = 'latitude', x = 'longitude', hue

= 'price',
hue norm=(0,200), s=10, palette='inferno')
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