01-Pandas structures file:///home/marie/Documents/CAS data_scienc...

1. Pandas objects

In [1]: dimport numpy as np
import pandas as pd
import matplotlib.pyplot as plt

If you have already used Python, you know about its standard data structures (list, dicts etc). If you use Python for
science, you also probably know Numpy arrays which underlying almost all other specialized scientific packages.

None of these structures offers a simple way to handle database style data, nor to easily do standard database
operations. This is why Pandas exists: it offers a complete ecosystem of structures and functions dedicated to handle large

tables with inhomogeneous contents.

In this first chapter, we are going to learn about the two main structures of Pandsa: Series and Dataframes.

1.1 Series

1.1.1 Simple series

Series are a the Pandas version of 1-D Numpy arrays. To understand their specificities, let's create one. Usually Pandas
structures (Series and Dataframes) are creates from other simpler structures like Numpy arrays or dictionaries:

(MZ: Pandas builds on numpy; Series are equivalent of a list)
In [2]: numpy array = np.array([4,8,38,1,6])
In [3]: # MZ:

numpy_array**2

Out[3]: array([16, 64, 1444, 1, 36])

The function pd.Series () allows us to convert objects into Series:

In [4]: pd_series = pd.Series(numpy_array)
pd series
on the left => the indices; can be anything, e.g. names of towns

Out[4]: © 4
1 8
2 38
3 1
4 6
dtype: int64

The underlying structure can be recovered with the . values attribute:

1of6 1/22/20, 11:50 AM

01-Pandas structures file:///home/marie/Documents/CAS data_scienc...

In [5]: pd_series.values
MZ: output is numpy array

Out[5]: array([4, 8, 38, 1, 6])

Otherwise, indexing works as for regular arrays:

In [6]: pd_series[1]
Out[6]: 8

1.1.2 Indexing

On top of accessing values in a series by regular indexing, one can create custom indices for each element in the series:

In [7]: pd_series2 = pd.Series(numpy array, index=['a', 'b', 'c', 'd','e'])
MZ: force the index to be what we give
MZ: to retrieve the indexes (keys)
pd series2.keys()

Out[7]: Index(['a', 'b', 'c', 'd', 'e']l, dtype='object')

In [8]: pd_series2

4
8
38

Out[8]: a
b
c
d 1
e
d

6
type: int64

Now a given element can be accessed either by using its regular index:
In [9]: pd series2[1]
Out[9]: 8
or its chosen index:
In [10]: pd series2['b']
Qut[le]: 8
A more direct way to create specific indexes is to transform as dictionary into a Series:

In [11]: # MZ: use dict to build the Series
composer birth = {'Mahler': 1860, 'Beethoven': 1770, 'Puccini': 1858, 'S

hostakovich': 1906}

20f6 1/22/20, 11:50 AM

01-Pandas structures file:///home/marie/Documents/CAS data_scienc...

In [12]: pd_composer _birth = pd.Series(composer birth)
pd _composer_birth

Out[12]: Beethoven 1770
Mahler 1860
Puccini 1858

Shostakovich 1906
dtype: int64

In [13]: pd_composer_birth['Puccini']

Out[13]: 1858

1.2 Dataframes

In most cases, one has to deal with more than just one variable, e.g. one has the birth year and the death year of a list of
composers. Also one might have different types of information, e.g. in addition to numerical variables (year) one might
have string variables like the city of birth. The Pandas structure that allow one to deal with such complex data is called a
Dataframe, which can somehow be seen as an aggregation of Series with a common index.

1.2.1 Creating a Dataframe

To see how to construct such a Dataframe, let's create some more information about composers:

In [14]: composer death = pd.Series({'Mahler': 1911, 'Beethoven': 1827, 'Puccini
': 1924, 'Shostakovich': 1975})
composer_city birth = pd.Series({'Mahler': 'Kaliste', 'Beethoven': 'Bonn
', 'Puccini': 'Lucques', 'Shostakovich': 'Saint-Petersburg'})

Now we can combine multiple series into a Dataframe by precising a variable name for each series. Note that all our
series need to have the same indices (here the composers' name):

In [15]: # MZ: put Series together into a Dataframe
composers_df = pd.DataFrame({'birth': pd composer birth, ‘'death': compos
er _death, 'city': composer city birth})
composers_df

Out[15]:
birth city [death
Beethoven 1770 | Bonn 1827
Mahler 1860 | Kaliste 1911
Puccini 1858 | Lucques 1924
Shostakovich | 1906 | Saint-Petersburg | 1975

A more common way of creating a Dataframe is to construct it directly from a dictionary of lists:

In [16]: dict of list = {'birth': [1860, 1770, 1858, 1906], 'death':[1911, 1827,
1924, 19757,
'city':['Kaliste', 'Bonn', 'Lucques', 'Saint-Petersburg'l}

3 0f6 1/22/20, 11:50 AM

01-Pandas structures file:///home/marie/Documents/CAS data_scienc...

In [17]: pd.DataFrame(dict of list)
MZ: default indexes from 0 to 3

Out[171]:
birth city [death
01860 | Kaliste 1911
111770 |Bonn 1827
21858 | Lucques 1924
31906 | Saint-Petersburg | 1975

However we now lost the composers name. We can enforce it by providing, as we did before for the Series, a list of
indices:

In [18]: pd.DataFrame(dict of list, index=['Mahler', 'Beethoven', 'Puccini', 'Sho
stakovich'])
MZ: you can explicitly pass the index

Out[18]:
birth city [death
Mahler 1860 | Kaliste 1911
Beethoven 1770 | Bonn 1827
Puccini 1858 | Lucques 1924
Shostakovich | 1906 | Saint-Petersburg | 1975

1.2.2 Accessing values

There are multiple ways of accessing values or series of values in a Dataframe. Unlike in Series, a simple bracket gives
access to a column and not an index, for example:

In [19]: composers df['city']

Out[19]: Beethoven Bonn
Mahler Kaliste
Puccini Lucques
Shostakovich Saint-Petersburg

Name: city, dtype: object

returns a Series. Alternatively one can also use the attributes synthax and access columns by using:

In [20]: composers df.city
rather recommended to use the brackets

Out[20]: Beethoven Bonn
Mahler Kaliste
Puccini Lucques
Shostakovich Saint-Petersburg

Name: city, dtype: object

40f6 1/22/20, 11:50 AM

01-Pandas structures file:///home/marie/Documents/CAS data_scienc...

The attributes synthax has some limitations, so in case something does not work as expected, revert to the brackets
notation.

When specifiying multiple columns, a DataFrame is returned:

In [21]: composers df[['city', 'birth']]

Out[21]:
city | birth
Beethoven Bonn 1770
Mahler Kaliste 1860
Puccini Lucques 1858
Shostakovich | Saint-Petersburg | 1906

One of the important differences with a regular Numpy array is that here, regular indexing doesn't work:

In [22]: #composers df[0,0]
Instead one has to use either the .iloc[] orthe . loc[] method. .1loc[] can be used to recover the regular
indexing:

In [23]: # MZ: recover by positions
composers_df.iloc[0,1]

Out[23]: 'Bonn'

While . Loc[] allows one to recover elements by using the explicit index, on our case the composers name:

In [24]: # MZ: recover by indices
composers_df.loc['Mahler', 'death']

Out[24]: 1911

Remember that Loc and “iloc™™ use brackets [] and not parenthesis ().

Numpy style indexing works here too

In [25]: composers df.iloc[1:3,:]
Out[25]:

birth city [death

Mahler | 1860 |Kaliste |1911

Puccini [1858 [Lucques | 1924

If you are working with a large table, it might be useful to sometimes have a list of all the columns. This is given by the
.keys () attribute:

In [26]: composers _df.keys()
Out[26]: Index(['birth', 'city', 'death'], dtype='object')

50f6 1/22/20, 11:50 AM

01-Pandas structures file:///home/marie/Documents/CAS data_scienc...

1.2.3 Adding columns

It is very simple to add a column to a Dataframe. One can e.g. just create a column a give it a default value that we can
change later:

In [27]1: # MZ: if pass a single value, add the same value everywhere
composers_df['country'] = 'default’

In [28]: composers df

Out[28]:
birth city | death | country
Beethoven 1770 | Bonn 1827 |default
Mahler 1860 | Kaliste 1911 [default
Puccini 1858 | Lucques 1924 |default
Shostakovich | 1906 | Saint-Petersburg | 1975 | default

Or one can use an existing list:
In [29]: country = ['Austria', 'Germany', 'Italy', 'Russia']
In [30]: composers df['country2'] = country

In [31]: composers df

Out[31]:
birth city [death | country | country2
Beethoven 1770 | Bonn 1827 |default |Austria
Mahler 1860 | Kaliste 1911 |default [Germany
Puccini 1858 | Lucques 1924 |[default |ltaly
Shostakovich | 1906 | Saint-Petersburg [1975 |default |Russia

6 of 6 1/22/20, 11:50 AM

