```
In [1]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

Exercise

For these exercices we are using a <u>dataset (https://www.kaggle.com/dgomonov/new-york-city-airbnb-open-data/kernels)</u> provided by Airbnb for a Kaggle competition. It describes its offer for New York City in 2019, including types of appartments, price, location etc.

1. Create a dataframe

Create a dataframe of a few lines with objects and their poperties (e.g fruits, their weight and colour). Calculate the mean of your Dataframe.

```
In [2]: dict_of_list = {'fruit_name': ["apple", "pear", "watermelon"], 'weight
':[100, 94, 95], 'colour':['green', "yellow", "rosa"]}
fruits = pd.DataFrame(dict_of_list)
```

```
In [3]: fruits.describe()
    # calculates common statistical values
    # and makes it only for the columns that make sense
```

Out[3]:

	weight
count	3.000000
mean	96.333333
std	3.214550
min	94.000000
25%	94.500000
50%	95.000000
75%	97.500000
max	100.000000

2. Import

- Import the table called AB_NYC_2019.csv as a dataframe. It is located in the Datasets folder. Have a look at the beginning of the table (head).
- Create a histogram of prices

```
In [5]: mydata = pd.read_csv('Datasets/AB_NYC_2019.csv')
# mydata
```

```
In [6]: plt.style.use('ggplot')
   mydata['price'].plot.hist(alpha = 0.5)
   plt.show()
   # to have nicer plot (more bars)
   mydata['price'].plot.hist(alpha = 0.5, bins=range(0,1000,10))
   plt.show()
```


3. Operations

Create a new column in the dataframe by multiplying the "price" and "availability_365" columns to get an estimate of the maximum yearly income.

/usr/local/lib/python3.5/dist-packages/pandas/core/computation/check.py:1 9: UserWarning: The installed version of numexpr 2.4.3 is not supported i n pandas and will be not be used The minimum supported version is 2.6.1

ver=ver, min_ver=_MIN_NUMEXPR_VERSION), UserWarning)

In [8]: # what can be done with numpy can be done
np.log(mydata['price'])

```
In [9]: # mydata
```

3b. Subselection and plotting

Create a new Dataframe by first subselecting yearly incomes between 1 and 100'000. Then make a scatter plot of yearly income versus number of reviews

```
In [10]: #mydata_sub = mydata[ (mydata['max_yearly_income'] >= 1) and (mydata['ma
x_yearly_income'] <= 100000) ]
    #mydata_sub = mydata[ (mydata.max_yearly_income >= 1) and (mydata.max_ye
    arly_income <= 100000) ]
    mydata_sub = mydata[ (mydata['max_yearly_income'] >= 1) & (mydata['max_y
    early_income'] <= 100000) ].copy()
    # mydata[(mydata.max_yearly_income>=1)&(mydata.max_yearly_income <= 1000
    00)].copy()
    # mydata_sub</pre>
```

```
In [11]: mydata_sub.plot(x = 'number_of_reviews', y = 'max_yearly_income',kind =
    'scatter')
    max(mydata_sub['max_yearly_income'])
```

Out[11]: 99900

4. Combine

We provide below an additional table that contains the number of inhabitants of each of New York's boroughs ("neighbourhood_group" in the table). Use merge to add this population information to each element in the original dataframe.

```
In [12]: borough_dt = pd.read_excel('Datasets/ny_boroughs.xlsx')
#borough_dt

In [13]: #mydata

In [14]: merged_dt = pd.merge(mydata, borough_dt, left_on='neighbourhood_group', right_on='borough', how='left')
#merged_dt
```

5. Groups

- Using groupby calculate the average price for each type of room (room_type) in each neighbourhood_group. What is the average price for an entire home in Brooklyn?
- Unstack the multi-level Dataframe into a regular Dataframe with unstack () and create a bar plot with the resulting table

```
In [15]: | merged dt.groupby(['neighbourhood group','room type']).price.mean()
                               room_type
Out[15]: neighbourhood group
         Bronx
                                Entire home/apt
                                                    127.506596
                                                     66.788344
                                Private room
                                                     59.800000
                                Shared room
         Brooklyn
                                Entire home/apt
                                                    178.327545
                                                     76.500099
                                Private room
                                                     50.527845
                                Shared room
         Manhattan
                                Entire home/apt
                                                    249.239109
                                Private room
                                                    116.776622
                                Shared room
                                                     88.977083
         Queens
                                                    147.050573
                                Entire home/apt
                                Private room
                                                     71.762456
                                                     69.020202
                                Shared room
         Staten Island
                                Entire home/apt
                                                    173.846591
                                Private room
                                                     62.292553
                                Shared room
                                                     57.444444
         Name: price, dtype: float64
In [16]: | merged_dt.groupby(['neighbourhood_group','room_type']).price.mean()['Bro
          oklyn']['Entire home/apt']
Out[16]: 178.32754472225128
In [17]: | merged dt.groupby(['neighbourhood group','room type'])['price'].mean()['
          Brooklyn']['Entire home/apt']
Out[17]: 178.32754472225128
In [18]:
         unstd dt = merged dt.groupby(['neighbourhood group','room type']).price.
          mean().unstack()
          unstd dt.plot(kind = 'bar');
          250
                                           room_type
                                          Entire home/apt
                                           Private room
          200
                                          Shared room
          150
```


6. Advanced plotting

Using Seaborn, create a scatter plot where x and y positions are longitude and lattitude, the color reflects price and the shape of the marker the borough (neighbourhood_group). Can you recognize parts of new york? Does the map make sense?