01-Introduction file:///home/marie/Documents/CAS data scienc...

1. Introduction

This course assumes some familiarity with Python, Jupyter notebooks and python scientific packages such as Numpy.
There are many great resources to learn Python, including within Jupyter environements. For example this
(https://gitlab.erc.monash.edu.au/andrease/Python4Maths/tree/master/Intro-to-Python) is a great introduction that you can
follow to refresh your memories if needed.

The course will mostly focus on image processing using the package scikit-image, which is 1) easy to install, 2) offers a
huge choice of image processing functions and 3) has a simple syntax. Other tools that you may want to explore are
OpenCV (https://opencv.org/) (focus on computer vision) and ITK (https://itkpythonpackage.readthedocs.io/en/latest/)
(focus on medical image processing). Finally, it has recently become possible to "import" Fiji (ImageJ)_(https:/github.com
/imagej/pyimagej) into Jupyter, which may be of interest if you rely on specific plugins that are not implemented in Python
(this is however in very beta mode).

1.1 Installation

1.1.1 Running the course material remotely

To avoid loosing time at the beginning of the course with faulty installations, we provide every attendee access to a
JupyterHub allowing to remotely run the notebooks (links will be provided in time). This possibility is only offered for the
duration of the course. The notebooks can however be permanently accessed and executed through the mybinder
(https://mybinder.org/) service that you can activate by clicking on the badge below that is also present on the repository. If
you want to "full experience" you can also install all the necessary packages on your own computer (see below).

@ launch ' binder

1.1.2 Local installation

10f12 1/23/20, 11:29 AM

01-Introduction file:///home/marie/Documents/CAS data_scienc...

Python and Jupyter can be installed on any operating system. Instead of manually installing all needed components, we
highly recommend using the environment manager conda_(https://conda.io/docs/user-guide/index.html) by installing either
Anaconda or Miniconda (https://conda.io/docs/user-guide/install/index.html#) (follow instructions on the website). This will
install Python, Python tools (e.g. pip), several important libraries (including e.g. Numpy) and finally the conda tool itself.
For Mac/Linux users: Anaconda is quite big so we recommend installing Miniconda, and then installing additional
packages that you need from the Terminal. For Windows users: Anaconda might be better for you as it installs a command
prompt (Anaconda prompt) from which you can easily issue conda commands.

The point of using conda is that it lets you install various packages and even versions of Python within closed
environments that don't interfere with each other. In such a way, once you have an environment that functions as intended,
you don't have to fear messing it up when you need to install other tools for you next project.

Once conda is installed, you should create a conda environment for the course. We have automated this process and you
can simply follow the instructions below:

® Clone or download _(https://github.com/guiwitz/PylmageCourse/archive/master.zip) and unzip this repository.
® Open a terminal and cd to it.

® Create the conda environment by typing:

conda env create -f binder/environment.yml
® Activate the environment:
conda activate improc_env

® Several imaging datasets are used during the course. The download of these data is automated through the
following command (the total size is 6Gb so make sure you have a good internet connection and enough disk
space):

python installation/download data.py

Note that if you need an additional package for that environment, you can still install it using conda or pip. To make it
accessible within the course environment don't forget to type:

conda activate improc_env

before you conda or pip install anything. Alternatively you can type your instructions directly from a notebook
e.g.:

I pip install mypackage

Whenever you close the terminal where notebooks are running, don't forget to first activate the environment before you
want to run the notebooks next time:

conda activate improc_env

1.2 Some Python refresh

| give here a very short summary of basic Python, focusing on structures and operations that we will use during this
lecture. So this is not an exhaustive Python introduction. There are many many operations that one can do on basic
Python structures, however as we are mostly going to use Numpy arrays, those operations are not desribed here.

1.2.1 Variables and structures

20f12 1/23/20, 11:29 AM

01-Introduction file:///home/marie/Documents/CAS data_scienc...

There are multiple types of Python variables:

In [56]: myint = 4

myfloat 4.0
mystring ='Hello'
print(myint)
print(myfloat)
print(mystring)

4

4.0

Hello

The type of your variable can be found using type():

In [57]: type(myint)
Out[57]: int

In [58]: type(myfloat)
Out[58]: float
These variables can be assembled into various Python structures:

In [59]: mylist = [7,5,9]

mydictionary = {'elementl': 1, 'element2':

print(mylist)
print(mydictionary)

[7, 5, 9]
{'element2': 2, 'elementl': 1}

Elements of those structures can be accessed through zero-based indexing:

In [60]: mylist[1]
Out[60]: 5

In [61]: mydictionary['element2']
Qut[61]: 2
One can append elements to a list:
In [62]: mylist.append(1)
print(mylist)
[7I 5’ 9! 1]
Measure its length:

In [63]: len(mylist)
Out[63]: 4

3o0f12

2}

1/23/20, 11:29 AM

01-Introduction file:///home/marie/Documents/CAS data_scienc...

Ask if some value exists in a list:

In [64]: 5 in mylist
Out[64]: True

In [65]: 4 in mylist
Out[65]: False

1.2.2 Basic operations

A lot of operations are included by default in Python. You can do arithmetic:

In [66]: a 2
b 3
#addition
print(a+b)
#multiplication
print(a*b)
#powers
print(a**2)

5
6
4

Logical operations returning booleans (True/False)

In [67]: a>b
Out[67]: False

In [68]: a<b
Out[68]: True

In [69]: a<b and 2*a<b
Out[69]: False

In [70]: a<b and 1.4*a<b
Out[70]: True

In [71]: a<b or 2*a<b
Out[71]: True
Operations on strings:
In [72]: mystring = 'This is my string'

mystring

Out[72]: 'This is my string'

4 0f12 1/23/20, 11:29 AM

01-Introduction file:///home/marie/Documents/CAS data_scienc...

In [73]: mystring+ ' and an additional string'

OQut[73]: 'This is my string and an additional string'

In [74]: mystring.split()
Qut[74]: ['This', 'is', 'my', 'string']

1.2.2 Functions and methods

In Python one can get information or modify any object using either functions or methods. We have already seen a few
examples above. For example when we asked for the length of a list we used the len() function:

In [75]: len(mylist)
Out[75]: 4

Python variables also have so-called methods, which are functions associated with particular object types. Those methods
are written as variable.method(). For example we have seen above how to append an element to a list:

In [76]: mylist.append(20)
print(mylist)

[7, 5, 9, 1, 20]

The two examples above involve only one argument, but any number can be used. All Python objects, inculding those
created by other packages like Numpy function on the same scheme.

There are two ways to ask for help on funtions and methods. First, if you want to know how a specific function is supposed
to work you can simply type:

In [77]1: help(len)

Help on built-in function len in module builtins:

len(obj, /)
Return the number of items in a container.

This shows you that you can pass any container to the function len() (list, dictionary etc.) and it tells you what comes out.
We will see later some more advanced examples of help information.

Second, if you want to know what methods are associated with a particular object you can just type:

In [111]: #%dir(mylist)

This returns a list of all possible methods. At the moment, only consider those not starting with an underscore. If you need
help on one of those methods, you can type

50f12 1/23/20, 11:29 AM

01-Introduction file:///home/marie/Documents/CAS data scienc...

In [79]: help(mylist.append)

Help on built-in function append:

append(...) method of builtins.list instance
L.append(object) -> None -- append object to end

Finally, whenever writing a function you can place the cursor in the empty function parenthesis and hit Command+Shift
which will open a window with the help information looking like this:

In []: mylist.append()

~ + x
ure: mylist.append(object, /)
ng: Append object to the end of the list.

builtin_function_or_method

1.2.2 For, if

Loops and conditions are classical programming features. In python, one can write them in a very natural way. A for loop:

In [80]: for i in [1,2,3,4]:
print(i)

A WN R

An if condition:

In [81]: a=>5
if a>6:
print('large')
else:
print('small')

small

A mix of those:

In [82]: for i in [1,2,3,4]:
if i>3:
print(i)

Note that indentation of blocks is crucial in Python.

1.2.3. Mixing lists, for's and if's

6 0of 12 1/23/20, 11:29 AM

01-Introduction file:///home/marie/Documents/CAS data_scienc...

A very useful feature of Python is the very simple way it allows one to create lists. For exampel to create a list containing
squares of certain values, in a classical programming languange one would do something like:

In [83]: my initial list = [1,2,3,4]
my list to create = []#initialize list
for i in my initial list:

my list to create.append(i*i)
print(my list to create)

[1, 4, 9, 16]

Python allows one to do that in one line through a comprehension list, which is basically a compressed for loop:

In [84]: [i*i for i in my initial list]

Out[84]: [1, 4, 9, 1l6]

In a lot of cases, the list that the for loop goes through is not an explicit list but another function, typically range() which
generate either numbers from 0 to N (range(N)) or from M to N in steps of P (range(M,N,P)):

In [85]: [i for i in range(10)]
Out[85]1: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

In [86]: [i for i in range(0,10,2)]
Out[86]: [0, 2, 4, 6, 8]

If statements can be introduced in comprehension lists:

In [87]: [i for i in range(0,10,2) if i>3]
Out[87]: [4, 6, 8]

In [88]: [i if i>3 else 100 for i in range(0,10,2)]
Out[88]: [100, 100, 4, 6, 8]

A last very useful trick offered by Python is the function enumerate. Often when traversing a list, one needs both the actual
value and the index of that value:

In [89]: for ind, val in enumerate([8,4,9]1):
print('index: '+str(ind))
print('value: ' + str(val))

index:
value:
index:
value:
index:
value:

ON_RFR OO

7 of 12 1/23/20, 11:29 AM

01-Introduction file:///home/marie/Documents/CAS data_scienc...

1.2.4 Using packages

Python comes with a default set of data structures and operations. For particular applications like matrix calculations
(image processing) or visulaization, we are going to need additional resources. Those exist in the form of python
packages, ensembles of functions and data structures whose defintiions can be simply imported in any Python program.

For example to do matrix operations, we are going to use Numpy, so we run:

In [90]: dimport numpy
All functions of a package can be called by using the package name followed by a dot and a parenthesis numpy . xxx ().
Most functions are used with an argument and either "act" on the argument e.g. to find the maximum in a list:

In [91]: numpy.max([1,2])
Out[91]: 2

or use the arguments to create a new object e.g. a 4x3 matrix of zeros:
In [92]: mymat = numpy.zeros((4,3))

In [93]: mymat

Out[93]: array([[0O.,
[o.,
(0.,
[0' ’

[cNoNoNo)
[cNoNoNo)

— e
—_— o~ o~
~

To avoid lengthy typing, package names are usually abbreviated by giving them another name when loading them:

In [94]: dimport numpy as np

Within packages, some additional tools are grouped as submodules and are typically called e.g for numpy as
numpy .submodule name.xxx (). For example, generating random numbers can be done using the numpy.random
submodule. An array of ten uniform random numbers can be for example generated using:

In [95]: np.random.rand(10)

Out[95]: array([0.00738174, 0.82510957, 0.59643586, 0.92919436, 0.46570716,
0.92526076, 0.17081481, 0.03715798, 0.12744829, 0.35009797])

To avoid lengthy typing, specific functions can be directly imported, which allows one to call them without specifying their
source module:
In [96]: from numpy.random import rand

rand(10)

Out[96]: array([0.81812159, 0.97452756, 0.4383594 , 0.91854004, 0.37517642,
0.11077294, 0.66271078, 0.8482131 , 0.70100188, 0.44337187])

8 of 12 1/23/20, 11:29 AM

01-Introduction file:///home/marie/Documents/CAS data scienc...

This should be used very cautiously, as it makes it more difficult to debgug code, once it is not clear anymore that a given
function comes from a module.

1.3 Matplotlib

To quickly look at images, we are mostly going to use the package Matplotlib. We review here the bare minimum function
calls needed to do a simple plot. First let's import the pyplot submodule:

In [97]: import matplotlib.pyplot as plt

1.3.1 Plotting images

Using numpy we create a random 2D image of integers of 30x100 pixels (we will learn more about Numpy in the next
chapters):

In [98]: image = numpy.random.randint(0,255,(30,100))

The variable image is a Numpy array, and we'll see in the next chapter what that exactly is. For the moment just consider it
as a 2D image.

To show this image we are using the plt.imshow() command which takes an Numpy array as argument:

In [99]: plt.imshow(image)
Out[99]: <matplotlib.image.AxesImage at 0x7f7496c27160>

PRk, e
E,_L | i ¥

L
-

L "l-'.'J'.!i'E:' !;;;'I‘E;"r‘-fi:-;
(R e s T
"sn:-quﬂ:_,;.; T #l.!b_-:

In order to suppress the matplotlib figure reference, you can end the line with

In [100]: plt.imshow(image);

' "
Fans :343? '3—. = *.

el g e

= -l| Ii"
il e Ty
[.""F'l:":;r'-: 'i'ﬁ="c

e

When plotting outside of an interactive environment like a notebook you will also have to use the show() command. If you
use it in a notebook you won't have to use ;:

9o0f12 1/23/20, 11:29 AM

01-Introduction file:///home/marie/Documents/CAS data scienc...

In [101]: plt.imshow(image)
plt.show()

.l" Wr'l:-' 1T -'-1 Lo
ks "l.-| |rl'
l'!:r:]._ l""" L

_*_W'-L '-" 't

k] g AL S AR

The rows and number indices are indicates on the left and the bottom and actually correspond to pixel indices. The image
is just a gray-scale image, and Matplotlib used its default lookup table (or color map) to color it (LUT in Fiji). We can
change that by specifiy another LUT (you can find the list of LUTs here (hitps://matplotlib.org/examples/color
[colormaps_reference.html) by using the argument cmap (color map):

In [102]: plt.imshow(image, cmap = 'gray');

- e
’ =?ET§':’.’:;£‘£; i’-“?:"r-

20

""1"1"*il' _r'l-' 5 ey ‘-‘Hf_i_ !H- Ty

P il L

Note that you can change the default color map used by matplotlib using a command of the type plt.yourcolor, e.g. for gray
scale:

In [103]: plt.gray()
<Figure size 432x288 with 0 Axes>

Sometimes we want to see a slightly larger image. To do that we have to add another line that specifies options for the
figure.

In [104]: plt.figure(figsize=(10,10))
plt.imshow(image);

Sometimes we want to show an array of figures to compare for example an original image and its segmentations. We use
the subplot() function and pass three arguments: number of rows, number of columns and index of plot. We use it for each
element and increment the plot index. There are multiple ways of creating complex figures and you can refer to the
Matplotlib documentation for further information:

10 of 12 1/23/20, 11:29 AM

01-Introduction file:///home/marie/Documents/CAS data scienc...

In [105]: plt.subplot(1l,2,1)
plt.imshow(image, cmap =
plt.subplot(1,2,2)
plt.imshow(image, cmap =

The imshow() function takes basically two types of data. Either single planes as above, or images with three planes. In the
latter case, imshow() assumes that the image is in RGB format (Red, Green, Blue) and uses those colors.

Finally, one can superpose various plot elements on top of each other. One very useful option in the frame of this course,
is the possibility to ovelay an image in transparency on top of another using the alpha argument. We create a gradient

image and then superpose it:

In [106]: image grad = np.ones((30,100))*np.linspace(0, 1, 100)[None, :]

plt.subplot(1,2,1)

plt.imshow(image, cmap = 'gray')
plt.subplot(1,2,2)
plt.imshow(image grad, cmap = 'Reds');

In [107]: plt.imshow(image, cmap = 'gray')
plt.imshow(image grad, cmap = 'Reds', alpha = 0.2);

1.3.2 Plotting histograms

One thing that we are going to do very often is looking at histograms, typically of pixel values, for example to determine a
threshold from background to signal. For that we can use the plt.hist() command.

If we have a list of numbers we can simply called the plt.hist () function on it (we will see more options later). We
crate again a list of random numbers:

In [108]: 1list number = np.random.randint(0,100,100000)

11 of 12 1/23/20, 11:29 AM

01-Introduction file:///home/marie/Documents/CAS data scienc...

In [109]: plt.hist(list number);

10000 H

8000 -

6000

4000 -

2000 A

Once we have an idea of the distribution of values, we can refine the binning:

In [110]: plt.hist(list number, bins = np.arange(0,255,2));

2000 A
1750 A
1500 -
1250 A
1000 A
750 A
500 4
250 A

150 200 250

12 of 12 1/23/20, 11:29 AM

02-Numpy images file:///home/marie/Documents/CAS data_scienc...

2. Numpy with images

All images are essentially matrices with a variable number of dimensions where each element represents the value of one
pixel. The different dimensions and the pixel values can have very different meanings depending on the type of image
considered, but the structure is the same.

Python does not allow by default to gracefully handle multi-dimensional data. In particular it is not desgined to handle
matrix operations. Numpy was developed to fill in this blank and offers a very similar framework as the one offered by
Matlab. It is underlying a large number of packages and has become abolsutely essential to Python scientific
programming. In particular it underlies the functions of scikit-image. The latter in turn forms the basis of other software like
CellProfiler. It is thus essential to have a good understanding of Numpy to proceed.

Instead of introducing Numpy in an abstract way, we are going here to present it through the lense of image processing in
order to focus on the most useful features in the context of this course.

2.1 Exploring an image

Some test images are provided directly in skimage, so let us look at one (we'll deal with the details of image import later).
First let us import the necessary packages.

In [1]: import numpy as np
import skimage
import matplotlib.pyplot as plt
plt.gray(); # MZ: nsure it will use gray scale for the plotting

In [2]: image = skimage.data.coins()

submodule skimage.data => provide images

In [3]: # MZ: added to have all outputs
from IPython.core.interactiveshell import InteractiveShell

InteractiveShell.ast_node_interactivity = "all"
a=5
a
b=2
b
=> will print 5 and 2 and not only 2
Out[3]: 2

2.1.1 Image size

The first thing we can do with the image is simply look at the output:

10f16 1/23/20, 11:30 AM

02-Numpy images file:///home/marie/Documents/CAS data scienc...

In [4]: image # MZ: it is a numpy arrray

OQut[4]: array([[47, 123, 133, ..., 14, 3, 121,
[93, 144, 145, ..., 12, 7, 71,
[126, 147, 143, ..., 2, 13, 3],
[81, 79, 74, ..., 6, 4, 71,
[88, 82, 74, ..., 5, 7, 81,
[91, 79, 68, ..., 4, 10, 711, dtype=uint8)

We see that Numpy tells us we have an array and we don't have a simple list of pixels, but a list of lists representing the
fact that we are dealing with a two-dimensional object. Each list represents one row of pixels. Numpy smartly only shows
us the first/last rows/columns. We can use the . shape method to check the size of the array:

In [5]: image.shape # MZ: give the dimension
Out[5]: (303, 384)
This means that we have an image of 303 rows and 384 columns. We can also visualize the image using matplotlib:

In [6]: plt.imshow(image);

0

oe®@a@

100

‘XYY R K]

150 >
Hooooa®
= TN 7, -

M R NS

300

In [7]: 9%matplotlib inline
%smatplotlib notebook
with notebook -> you can zoom, convenient for notebook
MZ: magic lines for jupyter with %

2.1.2 Image type

In [8]: image

Out[81: array([[47, 123, 133, ..., 14, 3, 121,
[93, 144, 145, ..., 12, 7, 71,
[126, 147, 143, ..., 2, 13, 3],
[81, 79, 74, ..., 6, 4, 71,
[88, 82, 74, ..., 5, 7, 8],
[91, 79, 68, ..., 4, 10, 711, dtype=uint8)

In the output above we see that we have one additional piece of information: the array has dtype = uint8, which
means that the image is of type unsigned integer 8 bit. We can also get the type of an array by using:

20f16 1/23/20, 11:30 AM

02-Numpy images file:///home/marie/Documents/CAS data_scienc...

In [9]: image.dtype # MZ: dtype is an attribute of "image" (// shape)
Qut[9]: dtype('uint8')

Standard formats we are going to see are 8bit (uint8), 16bit (uint16) and non-integers (usually float64). The type of the
image pixels set what values they can take. For example 8bit means values from 0 to 28 — 1 = 256 — 1 = 255. Just
like for example in Fiji, one cane change the type of the image. If we know we are going to do operations requiring non-
integers we can turn the pixels into floats trough the .astype () function.

In [10]: # MzZ:
a bit more careful with types of images !
1f integer or not it really matters !
numpy different from Python philosophy and dynamic typing
be careful, e.g. if values > 255 -> can behave weird

In [11]: image float = image.astype(float)

Notice the '.":

In [12]: image float

OQut[12]: array([[47., 123., 133., ..., 14., 3., 12.1,
[93., 144., 145., ..., 12., 7., 7.1,
[126., 147., 143., ..., 2., 13., 3.1,
[81., 79., 74., ..., 6., 4., 7.1,
[88., 82., 74., ..., 5., 7., 8.1,
[91., 79., 68., ..., 4., 10., 7.11)

In [13]: image_ float.dtype
Out[13]: dtype('float64')

The importance of the image type goes slightly against Python's philosophy of dynamics typing (no need to specify a type
when creating a variable), but a necessity when handling images. We are going to see now what types of operations we
can do with arrays, and the importance of types is going to be more obvious.

2.2 Operations on arrays

2.2.1 Arithmetics on arrays

Numpy is written in a smart way such that it is able to handle operations between arrays of different sizes. In the simplest
case, one can combine a scalar and an array, for example through an addition:

In [14]: image

Out[14]: array([[47, 123, 133, ..., 14, 3, 121,
[93, 144, 145, ..., 12, 7, 71,
[126, 147, 143, ..., 2, 13, 31,
[81, 79, 74, ..., 6, 4, 71,
[88, 82, 74, ..., 5, 7, 81,
[91, 79, 68, ..., 4, 10, 711, dtype=uint8)

30f16 1/23/20, 11:30 AM

02-Numpy images file:///home/marie/Documents/CAS data_scienc...

4 of 16

In [15]: image+10 # add 10 to each element of the array
MZ: advantage of using nupy ! will not work with list ! here it works
pixel-wise

Out[15]: array([[57, 133, 143, ..., 24, 13, 22],
[1e3, 154, 155, ..., 22, 17, 17],
[136, 157, 153, ..., 12, 23, 13],
[91, 89, 84, ..., 16, 14, 17],
[98, 92, 84, ..., 15, 17, 18],
[161, 89, 78, ..., 14, 20, 17]], dtype=uint8)

Here Numpy automatically added the scalar 10 to each element of the array. Beyond the scalar case, operations between
arrays of different sizes are also possible through a mechanism called broadcasting. This is an advanced (and sometimes
confusing) features that we won't use in this course but about which you can read for example here
(https://jakevdp.github.io/PythonDataScienceHandbook/02.05-computation-on-arrays-broadcasting.html).

The only case we are going to consider here is operations between arrays of same size. For example we can multiply the
image by itself. We use first the float version of the image:

In [16]: image sq = image float*image float
MZ:
does not perform matrix multiplication !, but multiply each pixel with
each pixel at the same position
(will not perform like in linear algebra) (will have to use other nump
y functions)

In [17]: image_sq

Out[17]: array([[2.2090e+03, 1.5129e+04, 1.7689%e+04, ..., 1.9600e+02, 9.0000e+00,
1.4400e+02],
[8.6490e+03, 2.0736e+04, 2.1025e+04, ..., 1.4400e+02, 4.9000e+01,
4.9000e+017,
[1.5876e+04, 2.1609e+04, 2.0449e+04, ..., 4.0000e+00, 1.6900e+02,
9.0000e+007],
[6.5610e+03, 6.2410e+03, 5.4760e+03, ..., 3.6000e+01, 1.6000e+01,
4.9000e+017,
[7.7440e+03, 6.7240e+03, 5.4760e+03, ..., 2.5000e+01, 4.9000e+01,
6.4000e+01],
[8.2810e+03, 6.2410e+03, 4.6240e+03, ..., 1.6000e+01, 1.0000e+02,

4.9000e+01]])

In [18]: image_ float

OQut[18]: array([[47., 123., 133., ..., 14., 3., 12.1,
[93., 144., 145., ..., 12., 7., 7.1,
[126., 147., 143., ..., 2., 13., 3.1,
[81., 79., 74., ..., 6., 4., 7.1,
[88., 82., 74., ..., 5., 7., 8.1,
[91., 79., 68., ..., 4., 10., 7.11)

Looking at the first row we see 47% = 2209 and 1232 = 15129 etc. which means that the multiplication operation has
happened pixel-wise. Note that this is NOT a classical matrix multiplication. We can also see that the output has the
same size as the original arrays:

In [19]: image_sq.shape
Out[19]: (303, 384)

1/23/20, 11:30 AM

02-Numpy images

50f16

file:///home/marie/Documents/CAS data scienc...

In [20]: image float.shape

Out[20]: (303, 384)

Let's see now what happens when we square the original 8bit image:

In [21]: image*image
Out[21]: array([[161, 25, 25, ..., 196, 9, 144],
[201, 0, 33, ..., 144, 49, 49],
[4, 105, 225, ..., 4, 169, 9],
[161, 97, 100, ..., 36, 16, 49],
[64, 68, 100, ..., 25, 49, 64],
[89, 97, 16, ..., 16, 100, 49]]1, dtype=uint8)

We see that we don't get at all the expected result. Since we multiplied two 8bit images, Numpy assumes we want an 8bit
output. And therefore the values are bound between 0-255. For example the first value is just the remainder of the modulo
256:

In [22]: # MZ:

what is above 255 get reassigned to a 0-255 value

as numpy assumed that we have 8bit int !!!

1f you want > 255 values -> first make the matrix as float
In [23]: 2209%256
Out[23]: 161

The same thing happens e.g. if we add an integer scaler to the matrix:

In [24]: print(image+230)
[[21 97 107 ... 244 233 242]
[67 118 119 ... 242 237 237]
[100 121 117 ... 232 243 233]
[55 53 48 ... 236 234 237]
[62 56 48 ... 235 237 238]
[65 53 42 . 234 240 237]]

Clearly something went wrong as we get values that are smaller than 230. Again any value "over-flowing" above 255 goes

back to 0.

This problem can be alleviated in different ways. For example we can combine a integer array with a float scaler and
Numpy will automatically give a result using the "most complex” type:

In [25]: image plus_ float = image+230.0

1/23/20, 11:30 AM

02-Numpy images

6 of 16

In [26]: print(image plus float)

[[277.
[323.
[356.
[311.
[318.
[321.

353.
374.
377.

309.
312.
309.

363.
375.
373.

304.
304.
298.

244,
242,
232.

236.
235.
234,

MZ:

233.
237.
243,

234.
237.
240.

file:///home/marie/Documents/CAS data scienc...

e.g. has removed 256: 277-256 = 21

242.
237.
233.

237.
238.
237.

[SR— p—

To be on the safe side we can also explicitely change the type when we know we might run into this kind of trouble. This
can be done via the .astype () method:

In [27]: # MZ:

combine integer with float -> Python logic,

use the most complex type

will convert int to float and the output will be float

In [28]: image_ float

In [29]: image float.dtype

image.astype(float)

Out[29]: dtype('float64')

Again, if we combine floats and integers the output is going to be a float:

In [30]: image float+230

Out[30]: array([[277., 353.
[323.
[356.

[311.
[318.
[321.

2.2.2 Logical operations

’

’

374.
377.

309.
312.
309.

363.
375.
373.

304.
304.
298.

244

242.
232.

236.
235.
234.

., 233.
, 237.
, 243.

, 234.
, 237.
, 240.

, 242.
, 237.
, 233.

, 237.
, 238.
, 237.

A set of important operations when processing images are logical (or boolean) operations that allow to create masks for
features to segment. Those have a very simple syntax in Numpy. For example, let's compare pixel intensities to some

value a:

In [31]: threshold =

In [32]: image > threshold

Out[32]: array([[False,
[False,
[True,

[False,
[False,
[False,

100

True,
True,
True,

False,
False,
False,

True,
True,
True,

False,
False,
False,

False,
False,
False,

False,
False,
False,

False,
False,
False,

False,
False,
False,

False],
False],
Falsel],

False],
False],
False]l)

We see that the result is again a pixel-wise comparison with a, generating in the end a boolean or logical matrix. We can

directly assign this logical matrix to a variable and verify its shape and type and plot it:

1/23/20, 11:30 AM

02-Numpy images

7 of 16

file:///home/marie/Documents/CAS data scienc...

In [33]: image_threshold = image > threshold
In [34]: image threshold.shape
Out[34]: (303, 384)
In [35]: image_ threshold.dtype
Out[35]: dtype('bool"')
In [36]: image threshold
Out[36]: array([[False, True, True, ..., False, False, Falsel],
[False, True, True, ..., False, False, Falsel,
[True, True, True, ..., False, False, Falsel],
[False, False, False, ..., False, False, False],
[False, False, False, ..., False, False, False],
[False, False, False, ..., False, False, False]l])
In [37]: plt.imshow(image threshold);
0 - p—
oo 0 od
000000
150
Noeoo0a®
G0 000
300 '
50 100 150 200 250 300 350
Of course other logical operator can be used (<, >, ==, |=) and the resulting boolean matrices combined:
In [38]: thresholdl = 70
threshold2 = 100
image thresholdl = image > thresholdl
image_threshold2 = image < threshold2
In [39]: # MZ
logical: often use of masks
e.g. you have a mask for dog and a mask for houses -> apply the masks
to the images using logicals
In [40]: # MZ: here we deal with logical matrices

image AND =
rices

image XOR = image thresholdl ~ image threshold2 # MZ: what is True in 1
matrix but not in the other one

image_thresholdl & image threshold2 # MZ: True in the 2 mat

1/23/20, 11:30 AM

02-Numpy images file:///home/marie/Documents/CAS data_scienc...

In [41]: # MZ: multiple panels on matplot
plt.figure(figsize=(15,15)) # set the figure sizes
plt.subplot(1,4,1) # how many 1 row, 4 columns, and what is the 1st elem
ent
plt.imshow(image thresholdl)
plt.subplot(1,4,2) # in the subplot where 1 row and 4 columns, what shou
ld be the 2nd element
plt.imshow(image threshold2)
plt.subplot(1,4,3)
plt.imshow(image AND)
plt.subplot(1,4,4)
plt.imshow(image XOR);

2.3 Numpy functions

To broadly summarize, one can say that Numpy offers three types of operations: 1. Creation of various types of arrays, 2.
Pixel-wise modifications of arrays, 3. Operations changing array dimensions, 4. Combinations of arrays.

2.3.1 Array creation

Often we are going to create new arrays that later transform them. Functions creating arrays usually take arguments
spcifying both the content of the array and its dimensions.

Some of the most useful functions create 1D arrays of ordered values. For example to create a sequence of numbers
separated by a given step size:

In [42]: np.arange(0,20,2) # MZ: from where to where in step of what
OQut[42]: array([6, 2, 4, 6, 8, 10, 12, 14, 16, 18])

Or to create an array with a given number of equidistant values:
In [43]: np.linspace(0,20,5)

Out[43]: array([0., 5., 10., 15., 20.1)

In higher dimensions, the simplest example is the creation of arrays full of ones or zeros. In that case one only has to
specify the dimensions. For example to create a 3x5 array of zeros:

In [44]: np.zeros((3,5))

Out[44]: array([[0., 0., 0., 0., 0.1,
[6., 0., 0., 0., 0.1,
[6., 0., 0., 0., 0.1])

Same for an array filled with ones:

8 of 16 1/23/20, 11:30 AM

02-Numpy images file:///home/marie/Documents/CAS data_scienc...

In [45]: np.ones((3,5))

OQut[45]: array([[1., 1., 1., 1., 1.1,
(1., 1., 1., 1., 1.1,
(1., 1., 1., 1., 1.11)

Until now we have only created one-dimensional lists of 2D arrays. However Numpy is designed to work with arrays of
arbitrary dimensions. For example we can easily create a three-dimensional "ones-array" of dimension 5x8x4:

In [46]: array3D = np.ones((2,6,5))

In [47]1: array3D

Out[47]: array([[[1.,
[1-1
[1.,
[1.,
[1-r
[1-r

cooo0r
Prrnen
Prrnen
RO
il

—_—— o~ o~ o~ o~

([1.,
(1.,
[1'I
[1"
[1.,
[1.,

— e e

[-
[= I gy Sy
el
e < < < .

o

1)

In [48]: array3D.shape
MZ: you should decide which dimension is the channel/volume (usually t
he 1st or the last)

MZ: numpy functions can easily deal with any dimension
(e.g. it is easy to convert code written for 2D to code for 3D object
s)

Out[48]: (2, 6, 5)

And all operations that we have seen until now and the following ones apply to such high-dimensional arrays exactly in the
same way as before:

In [49]: array3D*5

Out[49]: array([[[5.,
[5'7
[5.,
[5.,
[5'7
[5'I

bbb
moomns
pooons
poouns

—_—— o~ o~ o~ o~

[[5.,
(5.,
[5'I
[5"
[5"
(5.,

qonnny
somnn
sooonn
wooons

e e

—_—~ s o~~~

1)

We can also create more complex arrays. For example an array filled with numbers drawn from a normal distribution:

9 of 16 1/23/20, 11:30 AM

02-Numpy images file:///home/marie/Documents/CAS data_scienc...

In [50]: np.random.standard normal((3,5))

Out[50]: array([[0.51920188, -1.74490051, 0.19059971, -1.22782172, -0.08362917],
[-1.91288875, -1.46339209, -0.29266003, 1.58959264, 1.39652976],
[-2.23327794, 0.4977774 , -0.04227832, 0.97826304, -0.9933275

611)

As mentioned before, some array-creating functions take additional arguments. For example we can draw samples from a
gaussian distribution whose mean and variance we can specify.

In [51]: np.random.normal(10, 2, (5,2))
MZ: NB "Tab" for auto-completion; "Shift+Tab" to get the help for the

function

Out[51]: array([[11.59504334, 10.84820206],
[11.21592976, 9.461070671,
[8.06999708, 10.02220069],
[10.15008664, 11.81826128],
[7.92993365, 11.43523018]])

2.3.2 Pixel-wise operations

Numpy has a large trove of functions to do all common mathematical operations matrix-wise. For example you can take
the cosine of a matrix:

In [52]: angles = np.random.random_sample(5)
angles
Out[52]: array([0.94436116, 0.77710703, 0.8668537 , 0.68759525, 0.25572394])
In [53]: np.cos(angles)
Out[53]: array([0.58626054, 0.71294513, 0.64722816, 0.7727745 , 0.96748043])
Or to calculate exponential values:
In [54]: np.exp(angles)

Out[54]: array([2.57117028, 2.17517045, 2.37941273, 1.98892691, 1.29139618])

And many many more.

2.2.3 Operations changing dimensions

Some functions are accessible in the form of method, i.e. they are called using the dot notation. For example to find the
maximum in an array:

In [55]: angles.max() # MZ: return the max value inside the array

Out[55]: 0.9443611558667749

Alternatively there's also a maximum function:

10 of 16 1/23/20, 11:30 AM

02-Numpy images file:///home/marie/Documents/CAS data_scienc...

In [56]: np.max(angles) # MZ: same as above but calling directly as a function

Out[56]: 0.9443611558667749

The max function like many others (min, mean, median etc.) can also be applied to a given axis. Let's imagine we have a
3D image (multiple planes) of 10x10x4 pixels:

In []: volume = np.random.random((10,10,4))
#volume

If we want to do a maximum projection along the third axis, we can specify:

In [58]: projection = np.max(volume, axis = 2)
MZ: specify an axis
#012
maximum along the 3 -> axis = 2
creates a projection

In [59]: projection.shape
Out[59]: (10, 10)

In [60]: projection2 = np.max(volume, axis = 0)
projection2.shape

Out[60]: (10, 4)

In [61]: projection3 = np.max(volume, axis = 1)

projection3.shape

Out[61]: (10, 4)

We see that we have indeed a new array with one dimension less because of the projection.

2.3.4 Combination of arrays

Finally arrays can be combined in multiple ways. For example if we want to assemble to images with the same size into a
stack, we can use the stack function:

In [62]: imagel
image2

np.ones((4,4))
np.zeros((4,4))

stack = np.stack([imagel, image2],axis = 2)

In [63]: stack.shape
Out[63]1: (4, 4, 2)

2.3 Slicing and indexing

11 of 16 1/23/20, 11:30 AM

02-Numpy images file:///home/marie/Documents/CAS data scienc...

Just like broadcasting, the selection of parts of arrays by slicing or indexing can become very sophisticated. We present
here only the very basics to avoid confusion. There are often multiple ways to do slicing/indexing and we favor here easier
to understant but sometimes less efficient solutions.

To simplify the visualisation, we use here a natural image included in the skimage package.
In [64]: image = skimage.data.chelsea()

In [65]: image.shape # MZ: 300x451 pixels and 3 planes: RGB
Out[65]: (300, 451, 3)

We see that the image has three dimensions, probably it's a stack of three images of size 300x400. Let us try to have a
look at this image hoping that dimensions are handled gracefully:

In [66]: plt.imshow(image); # MZ: if pass an image with 3 planes as last dim -> i
mplicitly assumes it is an RGB image

0

50
100
150
200
250

300

So we have an image of a cat with dimensions 300x400. The image being in natural colors, the three dimensions probably
indicate an RGB (red, green, blue) format, and the plotting function just knows what to do in that case.

2.3.1 Array slicing

Let us now just look at one of the three planes composing the image. To do that, we are going the select a portion of the
image array by slicing it. One can give:

® a single index e.g. O for the first element
® arange e.g. 0:10 for the first 10 elements
® take all elements using a semi-column :

What portion is selected has to be specified for each dimensions of an array. In our particular case, we want to select all
rows, all columns and a single plane of the image:

In [67]: image.shape
Out[67]: (3060, 451, 3)

In [68]: imagel:,:,1].shape # MZ: select only the 2nd plane
Out[68]: (300, 451)

12 of 16 1/23/20, 11:30 AM

02-Numpy images file:///home/marie/Documents/CAS data scienc...

In [69]: plt.imshow(image[:,:,0],cmap='gray')
MZ: cmap argument -> here redondant with plt.gray();
different colormaps provided by matplotlib (map pixel-values to color
s)
plt.title('First plane: Red');

We see now the red layer of the image. We can do the same for the others by specifying planes 0, 1, and 2:

In [70]: plt.figure(figsize=(10,10))
plt.subplot(1,3,1)
plt.imshow(image[:,:,0],cmap="'gray')
plt.title('First plane: Red')
plt.subplot(1,3,2)
plt.imshow(image[:,:,1],cmap="'gray')
plt.title('Second plane: Green')
plt.subplot(1,3,3)
plt.imshow(image[:,:,2],cmap="'gray')
plt.title('Third plane: Blue');

MZ:

no physical meaning to the colormaps, you can put what ever you want a
s colors

1is only the rendering of the pixel values

First plane: Red Third plane: Blue

TN ‘{\
B 2 ¢4

Second plane: Green

200 300 400

Logically intensities are high for the red channel and low for the blue channel as the image has red/brown patterns. We
can confirm that by measuring the mean of each plane. To do that we use the same function as above but apply it to a
singel sliced plane:

In [71]: image0® = image[:,:,0] # MZ: retain only 1st dim

In [72]: np.mean(image0®) # MZ: mean of all pixels
Out[72]: 147.67308943089432

13 of 16 1/23/20, 11:30 AM

02-Numpy images file:///home/marie/Documents/CAS data scienc...

and for all planes using a comprehension list:

In [73]: [np.mean(imagel:,:,i]) for i in range(3)] # MZ: calculat the mean of ev
ery plane

Out[73]: [147.67308943089432, 111.44447893569844, 86.79785661492978]

To look at some more details let us focus on a smaller portion of the image e.g. one of the cat's eyes. For that we are
going to take a slice of the red image and store it in a new variable and display the selection. We consider pixel rows from
80 to 150 and columns from 130 to 210 of the first plane (0).

In [74]: image _red = image[80:150,130:210,0]
plt.imshow(image red,cmap='gray');

04

8 8 8

There are different ways to select parts of an array. For example one can select every n'th element by giving a step size. In
the case of an image, this subsamples the data:

In [75]: image subsample = image[80:150:3,130:210:3,0]
plt.imshow(image subsample,cmap='gray');

04

10 A

2.3.2 Array indexing

14 of 16 1/23/20, 11:30 AM

02-Numpy images file:///home/marie/Documents/CAS data_scienc...

In addition to slicing an array, we can also select specific values out of it. There are many_(https://docs.scipy.org
/doc/numpy-1.13.0/reference/arrays.indexing.html) different ways to achieve that, but we focus here on two main ones.

First, one might have a list of pixel positions and one wishes to get the values of those pixels. By passing two lists of the
same size containing the rows and columns positions of those pixels, one can recover them:

In [76]: row position
col position

nn
—_—

print(image red[0:5,0:5])
MZ: pass the 2 lists -> assumes that you mean the pixels you want

image red[row_position,col position]
MZ: output is just a list of pixels, not in 3 dim anymore ! output is
1D

MZ => you can extract either with 3-dot notation or by passing a list

[[166 162 169 174 185]
[183 192 185 183 173]
[179 178 168 175 176]
[187 184 187 189 185]
[195 192 187 181 169]]

OQut[76]: array([166, 192, 179, 184], dtype=uint8)

Alternatively, one can pass a logical array of the same dimensions as the original array, and only the True pixels are
selected. For example, let us create a logical array by picking values above a threshold:

In [77]: threshold image = image red>120

Let's visualize it. Matplotlib handles logical arrays simply as a binary image:

In [78]: plt.imshow(threshold image)
plt.title('Thresholded logical image');

Thresholded logical image

0 1 -— -—
-

We can recover the value of all the "white" (True) pixels in the original image by indexing one array with the other:

15 of 16 1/23/20, 11:30 AM

02-Numpy images file:///home/marie/Documents/CAS data_scienc...

In [79]: selected pixels = image red[threshold image]
MZ:
create a mask with logical array
pass another image, of the same size, should be a boolean array and
instead of passing explicit lists of rows/columns -> direct pass an ar
ray
output is again a list
useful e.g. for segmentation (create a mask where you have the cells o
nly to extract
from other panes where you have light emission and average the light e
mission)
print(selected pixels)

[166 162 169 ... 148 137 132]

And now ask how many pixels are above threshold and what their average value is.

In [80]: len(selected pixels)
Out[80]: 2585

In [81]: np.mean(selected pixels)

Out[81]: 153.59381044487426

In [82]: threshold image # MZ: mask is a boolean array 2D

Out[82]: array([[True, True, True, ..., True, True, Truel,
[True, True, True, ..., True, True, Truel,
[True, True, True, ..., True, True, Truel,
[True, False, False, ..., False, False, False],
[True, True, True, ..., False, False, False],
[True, True, True, ..., False, False, False]ll)

In [83]: np.argwhere(threshold image)
MZ: 2 dim arrays -> gives where are the True values in x,y coordinates

Out[83]: array([[0, 0],

[0’ 1]’
[o, 2],
(69, 651,
[69, 66],
[69, 6711)

In [1: # MZ: to have all attributes and functions associated with an object
#dir(threshold image)

In [1: # MZ: same works for packages
#dir(np)

We now know that there are 2585 pixels above the threshold and that their mean is 153.6

In [86]: # to plot with transprency: (e.g. to plot 1 fig on the top of another)
imshow(alpha=0.5)

16 of 16 1/23/20, 11:30 AM

03-Image import file:///home/marie/Documents/CAS data_scienc...

3. Image import/export

For the moment, we have only used images that were provided internally by skimage. We are however normally going to
use data located in the file system. The module skimage.io deals with all in/out operations and supports a variety of
different import mechanisms.

In [4]: dimport numpy as np
import matplotlib.pyplot as plt
import skimage.io as io

3.1 Simple case

Most of the time the simples command imread() will do the job. One has just to specifiy the path of the file or a url. In
general your path is going to look something like:

image = io.imread('/This/is/a/path/MyData/Klee.jpg"')

In [5]: file_path = 'Data/Klee.jpg'’
print(file path)

Data/Klee.jpg

Here we only use a relative path, knowing that the Data folder is in the same folder as the notebook. However you can
also give a complete path. We can also check what's the complete path of the current file:

In [6]: import os
print(os.path.realpath(file path))

/home/marie/Documents/CAS data science/CAS 21.01.2020 Python Image Proces
sing/PyImageCourse-master/Data/Klee. jpg

Now we can import the image:
In [7]: image = io.imread(file path)

In [8]: image.shape

Out[8]: (643, 471, 3)

lof11 1/23/20, 11:30 AM

03-Image import file:///home/marie/Documents/CAS data scienc...

In [9]: plt.imshow(image);
0

100 1

200

300

400 A

500 4

600 1

0 100 200 300 400

Now with a url:

In [18]: image = io.imread('https://upload.wikimedia.org/wikipedia/commons/0/09/F
luorescentCells.jpg')

In [19]: plt.imshow(image)
plt.show()

0
100
200
300
400

500

3.2 Series of images (.tif)

Popular compressed formats such as jpg are usually used for natural images e.g. in facial recognition. The reason for that
is that for those applications, in most situations one does not care about quantitative information and effects of information
compression occurring in jpg are irrelevant. Also, those kind of data are rarely multi-dimensional (except for RGB).

In most other cases, the actual pixel intensity gives important information and one needs a format that preserves that
information. Usually this is the .tif format or one of its many derivatives. One advantage is that the .tif format allows to save
multiple images within a single file, a very useful feature for multi-dimensional acquisitions.

You might encounter different situations.

3.2.1 Series of separate images

20f11 1/23/20, 11:30 AM

03-Image import file:///home/marie/Documents/CAS data_scienc...

In the first case, you would have multiple single if files within one folder. In that case, the file name usually contains
indications about the content of the image, e.g a time point or a channel. The general way of dealing with this kind of
situation is to use regular expressions, a powerful tool to parse information in text. This can be done in Python using the

re module.

Here we will use an approach that identifies much simpler patterns.

Let's first see what files are contained within a folder of a microscopy experiment containing images acquired at two

wavelengths using the 0s module:

In [10]: import glob
import os

In [11]: folder = 'Data/BBBC0O07 v1 images/A9'

Let's list all the files contained in the folder

In [13]: files = os.listdir(folder) # MZ: list all files that are within the dire

ctory
print(files)

['A9 plOf.tif', 'A9 p5f.tif', 'A9 pod.tif',

A9 plOd.tif', 'A9 p9f.tif', 'A9 p5d.tif']

‘A9 p7f.tif',

‘A9 p7d.tif',

The two channels are defined by the last character before .tif. Using the wild-card sign we can define a pattern to select
only the 'd' channel: d.tif. We complete that name with the correct path. Now we use the native Python module glob to

parse the folder content using this pattern:

In [14]: d _channel = glob.glob(folder+'/*d.tif")
d channel

Out[14]: ['Data/BBBCOO7 v1 images/A9/A9 pod.tif',
'Data/BBBCOO7 _v1 images/A9/A9 p7d.tif',
'Data/BBBCOO7 v1 images/A9/A9 plOd.tif',
'Data/BBBCO07_v1 images/A9/A9 p5d.tif']

Then we use again the imread () function to import a specific file:

In [15]: imagel = io.imread(d channel[0])

In [16]: imagel.shape
Out[16]: (450, 450)

3ofll

1/23/20, 11:30 AM

03-Image import file:///home/marie/Documents/CAS data scienc...

In [17]: plt.imshow(imagel);

0

50
100
150
200
250
300
350
400

450

These two steps can in principle be done in one step using the imread collection () function of skimage.

We can also import all images and put them in list if we have sufficient memory:

In [18]: channell list = []
for x in d channel:
temp_im = io.imread(x)
channell list.append(temp_im)

Let's see what we have in that list of images by plotting them:

In [94]: channell 1ist[0].shape
Out[94]: (450, 450)

In [106]: plt.imshow(channell list[0]);

0

50
100
150
200
250
300
350
400

4 of 11 1/23/20, 11:30 AM

03-Image import file:///home/marie/Documents/CAS data_scienc...

In [105]: num_plots = len(channell list)
plt.figure(figsize=(20,30))
for i in range(num plots):
plt.subplot(1l,num plots,i+l)
plt.imshow(channell list[i],cmap = 'gray')

0 0

50 4 50
100 100
150 150
200
250
300
350

400

3.2.2 Multi-dimensional stacks

We now look at a more complex multi-dimensional case taken from a public dataset (J Cell Biol. 2010 Jan
11;188(1):49-68) that can be found here (http:/flagella.crbs.ucsd.edu/images/30567).

We already provide it in the datafolder:

In [19]: file = 'Data/30567/30567.tif"
MZ: tif can contain many data and also can contain metadata -> very us
eful

In [21]: image = io.imread(file)

The dataset is a time-lapse 3D confocal microscopy acquired in two channels, one showing the location of tubulin, the
other of lamin (cell nuclei).

All _tif variants have the same basic structure: single image planes are stored in individual "sub-directories" within the file.
Some meta information is stored with each plane, some is stored for the entire file. However, how the different dimensions
are ordered within the file (e.g. all time-points of a given channel first, or alternatively all channels of a given time-point)
can vary wildly. The simplest solution is therefore usually to just import the file, look at the size of various dimensions and
plot a few images to figure out how the data are organized.

In [22]: image.shape

Out[22]: (72, 2, 5, 512, 672)

We know we have two channels (dimension 2), and five planes (dimension 3). Usually the large numbers are the image
dimension, and therefore 72 is probably the number of time-points. Using slicing, we look at the first time point, of both
channels, of the first plane, and we indeed get an appropriate result:

50f11 1/23/20, 11:30 AM

03-Image import file:///home/marie/Documents/CAS data scienc...

In [23]: plt.figure(figsize=(20,10))
plt.subplot(1,2,1)
plt.imshow(image[0,0,0,:,:],cmap = 'gray')
plt.subplot(1,2,2)
plt.imshow(image[0,1,0,:,:],cmap

‘gray');

We can check that our indexing works by checking the dimensions of the sliced image:

In [24]: # where are the metadata and how to access them -> data-specific
image[0,0,0,:,:].shape

Out[24]: (512, 672)

As we have seen in the Numpy chapter, we can do various operations on arrays. In particular we saw that we can do
projections. Let's extract all planes of a given time point and channel:

In [109]: stack = image[0,0,:,:,:]
stack.shape

Out[109]: (5, 512, 672)

Here, to do a max projection, we now have to project all the planes along the first dimension, hence:

In [25]: maxproj = np.max(image[0,0,:,:,:],axis = 0)
#MZ: 1st time point, 1st channel, but all the planes; take all max alon
g 1st dimension -> projection
project on the 1st dimension (axis=0)
maxproj.shape

Out[25]: (512, 672)

60f11 1/23/20, 11:30 AM

03-Image import file:///home/marie/Documents/CAS data scienc...

70f11

In [26]: plt.imshow(maxproj,cmap = 'gray')
plt.show()

0
100
200
300
400

500

skimage allows one to use specific import plug-ins for various applications (e.g. gdal for geographic data, FITS for
astronomy etc.).

In particular it offers a lower-lever access to tif files through the tifffile module. This allows one for example to import only a
subset of planes from the dataset if the latter is large.

In [27]: # load only what you want (e.g. the 1st time point)
so you don't need to load all the timepoints in memory

tif -> most often used format for this kind of data

In [28]: from skimage.external.tifffile import TiffFile

data = TiffFile(file)

Now the file is open but not imported, and one can query information about it. For example some metadata:

In [29]: data.info()

Out[29]: 'TIFF file: 30567.tif, 473 MiB, big endian, ome, 720 pages\n\nSeries 0: 7
2x2x5x512x672, uintl6, TCZYX, 720 pages, not mem-mappable\n\nPage 0: 512x
672, uintl6, 16 bit, minisblack, raw, ome|contiguous\n* 256 image width
(1H) 672\n* 257 image length (1H) 512\n* 258 bits per_sample (1H) 16\n* 2
59 compression (1H) 1\n* 262 photometric (1H) 1\n* 270 image description
(3320s) b\'<?xml version="1.0" encoding="UTF-8"?><!-- Wa\n* 273 strip off
sets (86I) (182, 8246, 16310, 24374, 32438, 40502, 48566, 56630,\n* 277 s
amples _per pixel (1H) 1\n* 278 rows per_strip (1H) 6\n* 279 strip byte co
unts (86I) (8064, 8064, 8064, 8064, 8064, 8064, 8064, 8064, \n* 282 x res
olution (2I) (1, 1)\n* 283 y resolution (2I) (1, 1)\n* 296 resolution uni
t (1H) 1\n* 305 software (17s) b\'LOCI Bio-Formats\''

Some specific planes:

1/23/20, 11:30 AM

03-Image_import file:///home/marie/Documents/CAS data scienc...

8ofl1l

In [30]: plt.imshow(data.pages[6].asarray())
plt.show()

0
100
200
300
400

500

In [31]: image = [data.pages[x].asarray() for x in range(3)]

In [32]: plt.figure(figsize=(20,10))
for i in range(3):
plt.subplot(1,3,i+1)
plt.imshow(image[i])
plt.show()

0
100
200
300
400

500

3.2.3 Alternative formats

While a large majority of image formats is somehow based on tif, instrument providers often make their own tif version by
creating a proprietary format. This is for example the case of the Zeiss microscopes which create the .czi format.

In almost all cases, you can find an dedicated library that allows you to open your particular file. For example for czi, there

More generally your research field might use some particular format. For example Geospatial data use the format GDAL,
and for that there is of course a dedicated package (https:/pypi.org/project/GDAL/).

Note that a lot of biology formats are well handled by the tifffile package. io.imread() tries to use the best plugin to
open a format, but sometimes if fails. If you get an error using the default io.imread() you can try to specific what
plugin should open the image, .e.g

image = io.imread(file, plugin='tifffile"')

3.3 Exporting images

1/23/20, 11:30 AM

03-Image import file:///home/marie/Documents/CAS data scienc...

There are two ways to save images. Either as plain matrices, which can be written and re-loaded very fast, or as actual
images.

Just like for loading, saving single planes is easy. Let us save a small region of one of the images above:

In [119]: image[0].shape
Out[119]: (512, 672)
In [33]: io.imsave('Data/region.tif',image[0][200:300,200:300]) # MZ: specify wh

at you want to save
io.imsave('Data/region.jpg',image[0][200:300,200:300])

/usr/local/lib/python3.5/dist-packages/skimage/util/dtype.py:141: UserWar
ning: Possible precision loss when converting from uintl6 to uint8
.format(dtypeobj in, dtypeobj out))

In [34]: reload im = io.imread('Data/region.jpg') # MZ: jpg not good for scientif
ic purposes

In [35]: plt.imshow(reload im,cmap='gray')
plt.show()

0

Saving multi-dimensional .tif files is a bit more complicated as one has of course to be careful with the dimension order.
Here again the tifffile module allows to achieve that task. We won't go through the details, but here's an example of how to
save a dataset with two time poins, 5 stacks, 3 channels into a file that can then be opened as a hyper-stack in Fiji:

In [36]: from skimage.external.tifffile import TiffWriter

data = np.random.rand(2, 5, 3, 301, 219)#generate random images
data = (data*100).astype(np.uint8)#transform data in a reasonable 8bit r
ange

with TiffWriter('Data/multiD set.tif', bigtiff=False, imagej=True) as ti
f:
for i in range(data.shape[0]):
tif.save(datal[il])

3.4 Interactive plotting

Jupyter offers a solution to interact with various types of plots: ipywidget

9o0f11 1/23/20, 11:30 AM

03-Image import file:///home/marie/Documents/CAS data_scienc...

In [125]: from ipywidgets import interact, IntSlider

The interact() function takes as input a function and a value for that function. That function should plot or print some
information. interact() then creates a widget, typically a slider, executes the plotting function and adjusts the ouptut when
the slider is moving. For example:

In [126]: def square(num=1):
print(str(num)+' squared is: '+str(num*num))

In [127]: square(3)

3 squared is: 9

In [128]: interact(square, num=(0,20,1));

Depending on the values passed as arugments, interact() will create different widgets. E.g. with text:

In [129]: def f(x):
return x
interact(f, x='Hi there!');

An important note for our imaging topic: when moving the slider, the function is continuously updated. If the function does
some computationally intensitve work, this might just overload the system. To avoid that, one can explicitly specifiy the
slider type and its specificities:

In [130]: def square(num=1):
print(str(num)+' squared is: '4str(num*num))
interact(square, num = IntSlider(min=-10,max=30,step=1,value=10,continuo
us_update = False));

If we want to scroll through our image stack we can do just that. Let's first define a function that will plot the first plane of
the channel 1 at all time points:

In [131]: image = io.imread(file)

In [132]: def plot plane(t):
plt.imshow(image[t,0,0,:,:1)
plt.show()

In [133]: interact(plot plane, t = IntSlider(min=0,max=71,step=1,value=0,continuou
s update = False));

Of course we can do that for multiple dimensions:

10 of 11 1/23/20, 11:30 AM

03-Image import file:///home/marie/Documents/CAS data_scienc...

In [134]: def plot plane(t,c,z):
plt.imshow(image[t,c,z,:,:1)
plt.show()

interact(plot plane, t = IntSlider(min=0,max=71,step=1,value=0,continuou
s _update = True),
¢ = IntSlider(min=0,max=1,step=1,value=0,continuous _update

Tr
ue),

z = IntSlider(min=0,max=4,step=1,value=0,continuous update Tr

ue));

And we can make it as fancy as we want:

In [135]: def plot plane(t,c,z):

if ¢ == 0:

plt.imshow(image[t,c,z,:,:], cmap = 'Reds')
else:

plt.imshow(image[t,c,z,:,:], cmap = 'Blues')
plt.show()

interact(plot_plane, t = IntSlider(min=0,max=71,step=1,value=0,continuou
s _update = True),

c = IntSlider(min=0,max=1,step=1,value=0,continuous update Tr

ue),

z = IntSlider(min=0,max=4,step=1,value=0,continuous update Tr

ue));

11 of 11 1/23/20, 11:30 AM

04-Filtering thresholding file:///home/marie/Documents/CAS data_scienc...

4. Basic Image processing: Filtering, scaling,
thresholding

Almost all image processing pipelines start with some basic procedures like thresholding, scaling, or projecting a multi-
dimensional image.

Let us import again all necessary packages:

In [1]: dimport numpy as np
import matplotlib.pyplot as plt
import skimage.io as io
from skimage.external.tifffile import TiffFile

Most filtering functions will come out from the filters module of scikit-image:

In [2]: import skimage.filters as skf

A specific region size/shape has often to be specified for filters. Those are defined in the morphology module:

In [3]: import skimage.morphology as skm
Additionally, this module offers a set of binary operators essential to operate on the masks resulting from segmentation.

We will start working on a single plane of the dataset seen in chapter 3 (3-Image _import.ipynb)

10f10 1/23/20, 11:30 AM

04-Filtering thresholding file:///home/marie/Documents/CAS data scienc...

In [4]: #load image
data = TiffFile('Data/30567/30567.tif")
image = data.pages[3].asarray()
#plot image
plt.figure(figsize=(10,10))
plt.imshow(image,cmap = 'gray');

0

100

200

300

400

500

4.1 Filtering

A large set of filters are offered in scikit-image. Filtering is a local operation, where a value is calculated for each pixel and
its surrounding region according to some function. For example a median filter of size 3, calculates for each pixel the
median value of the 3x3 region around it.

Most filters take as input a specified region to consider for the calculation (e.g. 3x3 region). Those can be defined using
the morphology module e.g.

In [5]: disk = skm.disk(10)
diamond = skm.diamond(5)
plt.subplot(1l,2,1)
plt.imshow(disk,cmap = 'gray')
plt.subplot(1,2,2)
plt.imshow(diamond,cmap = 'gray');

0

10
15

20

20f 10 1/23/20, 11:30 AM

04-Filtering thresholding file:///home/marie/Documents/CAS data scienc...

In [6]: image mean = skf.median(image,selem=skm.disk(3)) # MZ: selem = selectio
n element

/usr/local/lib/python3.5/dist-packages/skimage/filters/rank/generic.py:10
2: UserWarning: Bitdepth of 14 may result in bad rank filter performance
due to large number of bins.

"performance due to large number of bins." % bitdepth)

In [7]: plt.figure(figsize=(10,10))
plt.imshow(image mean,cmap = 'gray');

0

100

200

300

400

500

Similar filters can be defined for a large range of operations: sum, min, max, mean etc.

More specific filters are also provide in skimage. For example finding the gradient of intensity in an image can be done
with a Sobel filter. Here for horizontal, vertical and their sum:

In [8]: image gradienth skf.sobel h(image) # MZ: sobel filter, applied horizon

tally

image_gradientv = skf.sobel v(image) # MZ: same filter, applied vertical
ly

image gradient = np.sqrt(image gradientv**2+image gradienth**2) # combin
e both

30f10 1/23/20, 11:30 AM

04-Filtering thresholding file:///home/marie/Documents/CAS data scienc...

In [9]: plt.figure(figsize=(20,10))
plt.subplot(1,3,1)

plt.imshow(image gradienth,cmap = 'gray')
plt.subplot(1,3,2)
plt.imshow(image gradientv,cmap = ‘'gray')
plt.subplot(1,3,3)
plt.imshow(image gradient,cmap = 'gray')

MZ: highlight the edges horizontally (1) and vertically (2)
(3) combined, the edges are highlighted

Qut[9]: <matplotlib.image.AxesImage at Ox7f7f96116a90>

0o

100

200

300

400

500

Finally, some functions can be used to filter the image, and one can pass function parameters to the filter. For example to
filter with a Gaussian of large standard deviation o = 10:

In [10]: image gauss = skf.gaussian(image, sigma=10)#, preserve range=True)
MZ: Gaussian with really large sigma (e.g. highlight the nuclei)
MZ: to just filter noise: use much smaller sigma
plt.imshow(image gauss,cmap = 'gray');
Gaussian filter automatically re-scales the image between the 0 and 1

0
100
200
300
400

500

A warning regarding filters: some filters can change the type and even the range of intensity of the image. Typically the
gaussian filter used above rescales the image between 0 and 1:

In [11]: print(image.dtype)
print(image.max())
print(image.min())

uintl6
20303
2827

4 0f10 1/23/20, 11:30 AM

04-Filtering thresholding file:///home/marie/Documents/CAS data scienc...

50f10

In [12]: print(image_gauss.dtype)
print(image_gauss.max())
print(image _gauss.min())

float64
0.12531917375072713
0.054386287321711344

In many cases, one can specify whether the original range should be preserved:

In [13]: image gauss preserve = skf.gaussian(image, sigma=10, preserve range=Tru

e)
MZ: use preserve_range, so that values are not re-scaled
plt.imshow(image gauss preserve,cmap = 'gray');

print(image gauss preserve.dtype)
print(image gauss preserve.max())
print(image gauss preserve.min())

float64
8212.792051753902
3564.2053396283527

0
100
200
300
400

500

4.2 Intensity re-scaling

A very common operation to do in an image processing pipeline, is to rescale the intensity of images. The reason can be
diverse: for example, one might want to remove an offset added to each pixel by the camera, or one might want to
homogenize multiple images with slightly varying exposures.

The simplest thing to do is to rescale from min to max in the range 0-1. To create a histogram of the pixel values of an
image, we first have to "flatten" the array, i.e. remove the dimensions, so that the plotting function doesn't believe we have
a series of separate measurements.

In [14]: np.ravel(image).shape
MZ convert 2D to 1D array -> flatten to have 1 big list of pixels
(needed to draw one single histogram for all values)

Out[14]: (344064,)

1/23/20, 11:30 AM

04-Filtering thresholding

6 of 10

In [15]:

In [16]:

file:///home/marie/Documents/CAS data scienc...

plt.hist(np.ravel(image), bins = np.arange(0,15000,500))
plt.show()

print("min val: "+ str(np.min(image)))

print("max val: "+ str(np.max(image)))

80000
70000 -
60000 -
50000 -
40000
30000 -
20000 -

10000 H

min val:
max val:

2000 4000 6000 8000 10000 12000 14000

2827
20303

image_minmax = (image-image.min())/(image.max()-image.min())
image _minmax[image minmax>1] = 1

One problem that might emerge is that a few pixels might be affected by rare noise events that give them abnormal values.
One way to remedy that is to use a small median filter in order to suppress those aberrant values:

In [17]:

image median = skf.median(image,selem=np.ones((2,2)))
print("min val: "+ str(np.min(image median)))
print("max val: "+ str(np.max(image median)))

image_median_rescale = (image_median-image median.min())/(image_median.m
ax()-image median.min())
image median rescale[image minmax>1] =1

/usr/local/lib/python3.5/dist-packages/skimage/filters/rank/generic.py:10
2: UserWarning: Bitdepth of 14 may result in bad rank filter performance
due to large number of bins.

"performance due to large number of bins." % bitdepth)

min val:
max val:

3084
20046

1/23/20, 11:30 AM

04-Filtering thresholding

In [18]:

plt.
plt.
plt.
plt.
plt.

0))

plt.

100

200

300

400

500

file:///home/marie/Documents/CAS data scienc...

figure(figsize=(10,5))
subplot(1,2,1)
imshow(image median rescale,cmap = 'gray')
subplot(1,2,2)
hist(np.ravel(image median rescale))#, bins = np.arange(0,15000,50
show()
175000 A

200

300 400 500

600

150000 -

125000 -

100000 -

75000 1

50000 1

25000 1

0-

0.0

02 04 0.6 0.8 10

Note that the skimage.exposure module offers several functions to adjust the image intensity distribution.

4.3 Thresholding

Another common operation is to try isolating regions of an image based on their intensity by using an intensity threshold:
one can create a maks object where all values larger than a threshold are 1 and the other 0. It is usually better to use a
smoothed version of the image (e.g. median or gaussian filtering) to avoid including noisy pixels in the maks.

Let us imagine that we want to isolate the nuclei in our current image. To do that we can try to use their bright contour.
Based on the intensity histogram, let's try to pick a threshold manually:

7 of 10

1/23/20, 11:30 AM

04-Filtering thresholding file:///home/marie/Documents/CAS data_scienc...

In [19]: # MZ: thresholded image to only keep values above a given threshold
threshold manual = 8000
#create a mask using a logical operation
image_threshold = image median>threshold manual # MZ: create a boolean

array

plt.imshow(image threshold, cmap ='gray')
plt.show()

0
100
200
300
400

500

Instead of picking manually the threshold, one can use one of the many automatic methods available in skimage,
In [20]: image otsu threshold = skf.threshold otsu(image median)

In [21]: image otsu threshold

OQut[21]: 7196

In [22]: image otsu_threshold = skf.threshold otsu(image median)
print(image otsu_threshold)

image 1i threshold = skf.threshold li(image median)
print(image 1i threshold)

7196
6416.599708799512

Knowing that threshold value we can create a binary image setting all pixels higher than the threshold to 1.

8 of 10 1/23/20, 11:30 AM

04-Filtering thresholding file:///home/marie/Documents/CAS data_scienc...

In [23]: image otsu = image median > image otsu threshold
plt.figure(figsize=(10,10))
plt.imshow(image otsu, cmap = 'gray')
plt.show()

0

100

200

300

400

500

Since the illumination is uneven accross the image, all standard thresholding methods are going to fail in some region of
the image. What we could try to do instead is using a local thresholding, by repeating a standard thresholding method in
sub-regions of the image:

In [24]: image local threshold = skf.threshold local(image median,block size=51)

In [25]: image local threshold.shape
Out[25]: (512, 672)

In [26]: image local threshold = skf.threshold local(image median,block size=51)
image local = image median > image local threshold

9 0f 10 1/23/20, 11:30 AM

04-Filtering thresholding file:///home/marie/Documents/CAS data_scienc...

In [27]: plt.figure(figsize=(10,10))
plt.imshow(image local, cmap = 'gray')
plt.show()

0

100

200

300 {

400

We see that now each contour of the nuclei is recovered much better, however there is a lot of spurious background signal.

4.4 Note on higher-dimensional cases

Some functions of scikit-image are only designed for 2D images, and will generate an error message when used with 3D
images. An alternative package to use in those cases is scipy and specifically scipy.ndimage and scipy.filtering

10 of 10 1/23/20, 11:30 AM

05-Binary operations file:///home/marie/Documents/CAS data_scienc...

1o0f13

5. Binary operations, regions

Binary operations are an important class of functions to modify mask images (composed of 0's and 1's) and that are
crucial when working segmenting images.

Let us first import the necessary modules:

In [1]: import numpy as np
import matplotlib.pyplot as plt
plt.gray();
import skimage.io as io
from skimage.external.tifffile import TiffFile

import skimage.morphology as skm
import skimage.filters as skf

And we relaod the image from the last chapter and apply some thresholding to it:

In [2]: #load image
data = TiffFile('Data/30567/30567.tif")
image = data.pages[3].asarray()
image = skf.rank.median(image,selem=np.ones((2,2)))
image otsu threshold = skf.threshold otsu(image)
image otsu = image > image otsu threshold
plt.imshow(image otsu);

/usr/local/lib/python3.5/dist-packages/skimage/filters/rank/generic.py:10
2: UserWarning: Bitdepth of 14 may result in bad rank filter performance
due to large number of bins.

"performance due to large number of bins." % bitdepth)

0
100
200
300

400

5.1 Binary operations

Binary operations assign to each pixel a value depending on it's neighborhood. For example we can erode or dilate the
image using an area of radius 5. Erosion: If a white pixel has a black neighbor in its region it becomes black (erode).
Dilation: any black pixel which as a white neighbour becomes white:

1/23/20, 11:30 AM

05-Binary operations file:///home/marie/Documents/CAS data_scienc...

In [3]: image erode = skm.binary erosion(image otsu, selem = skm.disk(1))
image dilate = skm.binary dilation(image otsu, selem = skm.disk(10))
plt.figure(figsize=(15,10))
plt.subplot(1,3,1)
plt.imshow(image otsu,cmap = 'gray')
plt.title('Original')
plt.subplot(1,3,2)
plt.imshow(image erode,cmap = 'gray')
plt.title('Erode"')
plt.subplot(1,3,3)
plt.imshow(image dilate,cmap = 'gray')
plt.title('Dilate');

Original

100
200
300

400

400 500 600

500 100 200 300 400 500

In [4]: image _erodel = skm.binary erosion(image otsu, selem = skm.disk(1))
image erodelb = skm.binary erosion(image otsu, selem = skm.disk(5)
image erode2 = skm.binary erosion(image otsu, selem = skm.disk(10)
plt.subplot(1,3,1)

)
)

plt.imshow(image erodel,cmap = 'gray')
plt.subplot(1,3,2)
plt.imshow(image erodelb,cmap = 'gray')
plt.subplot(1,3,3)
plt.imshow(image erode2,cmap = 'gray')

Out[4]: <matplotlib.image.AxesImage at 0x7f06ca6d8bel>

If one is only interested in the path of those shapes, one can also thin them to the maximum:

20f13 1/23/20, 11:30 AM

05-Binary operations file:///home/marie/Documents/CAS data_scienc...

In [30]: plt.figure(figsize=(10,10))
plt.imshow(skm.skeletonize(image otsu));

0

100

200

300

400

500

Those operations can also be combined to "clean-up" an image. For example one can first erode the image to suppress
isoltated pixels, and then dilate it again to restore larger structures to their original size. After that, the thinning operation
gives a better result:

In [6]: image open
image_thin

skm.binary opening(image otsu, selem = skm.disk(2))
skm.skeletonize(image open)

30f13 1/23/20, 11:30 AM

05-Binary operations file:///home/marie/Documents/CAS data_scienc...

In [7]: plt.figure(figsize=(15,15))
plt.subplot(2,1,1)
plt.imshow(image open)
plt.subplot(2,1,2)
plt.imshow(image thin);

100

200

300

400

500

100

200

300

400

500

The result of the segmentation is ok but we still have nuclei which are broken or not clean. Let's see if we can achieve a
better result using another tool: region properties

5.2 Region properties

4 0f 13 1/23/20, 11:30 AM

05-Binary operations file:///home/marie/Documents/CAS data_scienc...

50f13

In [8]: from skimage.measure import label, regionprops
MZ: labeling and region properties
you have sth to segment (a mask); you want to mesure them individually
-> needs labeling
1 object for all pixels linked together, and label it (connected compo
nents)

When using binary masks, one can make use of functions that detect all objects (connected regions) in the image and
calculate a list of properties for them. Using those properties, one can filer out unwanted objects more easily.

Thanks to this additional tool, we can now use the local thresholding method which preserved better all the nuclei but
generated a lot of noise:

In [9]: image local threshold = skf.threshold local(image,block size=51)
image local = image > image local threshold

plt.figure(figsize=(10,10))
plt.imshow(image local);

200 3

As the image id very noisy, there are a large number of small white regions, and applying the region functions on it will be
very slow. So we first do some filtering and remove the smallest objects:

1/23/20, 11:30 AM

05-Binary operations file:///home/marie/Documents/CAS data_scienc...

In [10]: # MZ: still lot of noise !
remove really small pixels with erosion
to harsh erosion -> will remove also the patterns of interest, so only
soft erosion
image local eroded = skm.binary erosion(image_local, selem= skm.disk(1))

plt.figure(figsize=(10,10))
plt.imshow(image local eroded);

0 e

100

200

300

400

To measure the properties of each region, we need a lablled image, i.e. an image in which each individual object is
attributed a number. This is achieved usin the skimage.measure.label() function.

6 of 13 1/23/20, 11:30 AM

05-Binary operations

In [11]:

In [12]:

file:///home/marie/Documents/CAS data scienc...

image labeled = label(image_local eroded)
MZ: check all neighbors

#code snippet to make a random color scale
vals = np.linspace(0,1,256)
np.random.shuffle(vals)

7 of 13

Out[12]:

In [13]:
Out[13]:

cmap = plt.cm.colors.ListedColormap(plt.cm.jet(vals))
plt.figure(figsize=(10,10)) # MZ: to have bigger figure
plt.imshow(image labeled,cmap = cmap);
0 ——— - — -
P [AL |’< o Pt =t
AT e i Ty 1
. ;:;’m M.‘) ,"" ’. . 'ﬂov»t;t ’ S
I et 0 o .s_.» v H
100 |+ E (::; . . 3 . ‘:
:.‘.. . :: . 6 o . ' o
200477 <::) - o ‘:’ B ‘:"?
Y » ’ . q'
O O, Q0"
oe A <:> s .
_ 0 0% @
300 . <:) .
ro YO 00
O L ‘ > “y o o o C
wo_}*a (:> i (:> é% . -5 ~
L’.:_- ; .-; ‘. ° . ’;J, &
» o 4('.’ ",.. - ,-"‘.‘5 e '__ ’"'{'_‘I-‘r .
o .‘;_'u, v‘“' : ikl ',.NA')‘QQJIM i A
& ’-“0 -ww,*r LSRR ”f‘y’ B
500 e u S BN ARSI rid
0 300 400 500 600
image_ labeled
MZ: it is again an array
array([I 0, 0, 0, ..., 0, 0, 0],
[01 01 0! LAY) 0! 01 0]1
[0, 0, 0,) 0, 0, 01,
[o, 0, 0, - 0, 0, 0],
[0, 0, 0, .y 0, 0, 2894],
[0’ 0’ 0’ - 0’ OI 0]])
image_labeled.max()

2902

And now we can measure all the objects' properties

In [14]:

Out[14]:

MZ: now that we have regions -> we can use regionprops
measure differences within each regions
(we will get properties for each of the colored regions here above)

our_regions =
len(our_regions)

2902

regionprops(image labeled)

1/23/20, 11:30 AM

05-Binary operations file:///home/marie/Documents/CAS data_scienc...

We see that we have a list of 2902 regions. We can look at one of them more in detail and check what attributes exist:
In [15]: # MZ: output is a list of structures, look at 1 element
our regions[10]
Out[15]: <skimage.measure. regionprops. RegionProperties at Ox7f06ca5b7b38>

In [29]: # MZ: each region as a set of measurements associated with it
#dir(our_regions[10])

There are four types of information:

® geometric information on each shape (area, extent, perimeter, bounding box, etc.)
® vector information (pixel coordinates, centroid)

® region image information (average intensity, minimal intensity etc.)

® image-type information: the image enclosed in the bounding-box

Let us look at one region:

In [17]: # MZ: a lot of other measurements (e.g. eccentricity, etc.)
our_regions[706].area
Out[17]: 526

In [18]: # MZ: extract the image region that corresponds to the label
our regions[706].1image

Out[18]: array([[False, False, False, ..., False, False, False],
[False, False, False, ..., False, False, False],
[False, True, False, ..., False, False, False],
[False, False, False, ..., False, False, False],
[False, False, False, ..., False, False, False],
[False, False, False, ..., False, False, Falsel]])

8 of 13 1/23/20, 11:30 AM

05-Binary operations file:///home/marie/Documents/CAS data_scienc...

In [19]: print(our_regions[706].area)
print(our_regions[706].coords)

plt.imshow(our regions[706].1image);
526
[[69 342]

[69 343]

[70 335]

[99 350]

[100 346]

[100 347]]

0

5
10
15
20

25

30

Using the coordinates information we can then for example recreate an image that contains only that region:

In [20]: our_regions[706].coords

Out[20]1: array([[69, 3421,

[69, 343],
[70, 335],
[99, 350],
[100, 346],

[160, 347]11])

In [21]: #create a zero image
newimage = np.zeros(image.shape)
#fill in using region coordinates
newimage[our regions[706].coords[:,0],our_regions[706].coords[:,1]] =1
#plot the result
plt.imshow(newimage) ;

0
100
200
300
400

500

90f13 1/23/20, 11:30 AM

05-Binary operations file:///home/marie/Documents/CAS data_scienc...

In general, one has an idea about the properties of the objects that are interesting. For example, here we know that
objects contain at least several tens of pixels. Let us recover all the areas and look at their distributions:

In [22]: areas = [x.area for x in our_regions]
plt.hist(areas)
plt.show()

2500 A

2000 A

1500 -

1000 A1

500 4

0 100 200 300 400 500 600

We see that we have a large majority of regions that are very small and that we can discard. Let's create a new image
where we do that:

In [23]: #create a zero image
newimage = np.zeros(image.shape) # MZ: create O-array, and then put 1 o
nlx where area > 200 (clean smaller stuff)
#fill in using region coordinates
for x in our_regions:
if x.area>200:
newimage[x.coords[:,0],x.coords[:,1]] =1
#plot the result
plt.imshow(newimage)
MZ: create a new image containing only the regions that have area > 20
0

Out[23]: <matplotlib.image.AxesImage at 0x7f06ca59fd30>

100
200
300
400

500

We see that we still have some spurious signal. We can measure again properties for the remaining regions and try to find
another parameter for seleciton:

In [24]: newimage lab
our_regions2

label(newimage)
regionprops(newimage_ lab)

10 of 13 1/23/20, 11:30 AM

05-Binary operations file:///home/marie/Documents/CAS data scienc...

Most of our regions are circular, a property measures by the eccentricity. We can verifiy if we have outliers for that
parameter:

In [25]: plt.hist([x.eccentricity for x in our_regions2]);

/usr/local/lib/python3.5/dist-packages/skimage/measure/ regionprops.py:25
0: UserWarning: regionprops and image moments (including moments, normali
zed moments, central moments, and inertia tensor) of 2D images will chang
e from xy coordinates to rc coordinates in version 0.16.
See http://scikit-image.org/docs/0.14.x/release _notes and installation.ht
ml#deprecations for details on how to avoid this message.
warn(XY_TO RC DEPRECATION MESSAGE)
/usr/local/lib/python3.5/dist-packages/skimage/measure/ regionprops.py:26
0: UserWarning: regionprops and image moments (including moments, normali
zed moments, central moments, and inertia tensor) of 2D images will chang
e from xy coordinates to rc coordinates in version 0.16.
See http://scikit-image.org/docs/0.14.x/release notes and installation.ht
ml#deprecations for details on how to avoid this message.
warn(XY_TO RC_DEPRECATION_ MESSAGE)

15.0 1

12,5 1

10.0 1

75 A

5.0 1

25 A

0.0 -

Let's discard regions that are too oblong (>0.8):

11 of 13 1/23/20, 11:30 AM

05-Binary operations

12 of 13

In [26]:

In [27]:

file:///home/marie/Documents/CAS data scienc...

MZ: now create a new image to clean up using eccentricity

#create a zero image
newimage = np.zeros(image.shape)

#fill in using region coordinates
for x in our_regions2:
if x.eccentricity<0.8:
newimage[x.coords[:,0],x.coords[:,1]] =1

#plot the result
plt.imshow(newimage);

100
200
300
400

500

This is a success! We can verify how good the segmentation is by superposing it to the image. A trick to superpose a
mask on top of an image without obscuring the image, is not set all 0 elements of the mask to np. nan.

newimage[newimage == 0] = np.nan

1/23/20, 11:30 AM

05-Binary operations file:///home/marie/Documents/CAS data scienc...

In [28]: plt.figure(figsize=(10,10))
plt.imshow(image,cmap = 'gray')
plt.imshow(newimage,alpha = 0.4,cmap = 'Reds', vmin = 0, vmax = 2);

0

100

200

300

400

500

13 0f 13 1/23/20, 11:30 AM

06-Applicatio satellite image file:///home/marie/Documents/CAS data_scienc...

6. Applications: Satellite image

In [1]: dimport numpy as np
import matplotlib.pyplot as plt
import skimage.io as io

Looking at non-biology data

Most of this course focuses on biological data. To show the generality of the presented approaches, we show here short
example based on satellite imagery.

Satellite imaging programs such as NASA's Landsat continuously image the earth and one can get retrieve data for free
on several portals. We will deal here with images from a single region and use our basic image processing knowledge to
do some vegetation analysis and image correction.

Let's first look at what a Landsat region data contains:

In [2]: landsatfolder = 'Data/geography/landsat/LC80340322016205-5C2017012716072
8/crop/"

In [3]: dimport glob

In [4]: glob.glob(landsatfolder+'*tif')

Out[4]: ['Data/geography/landsat/LC80340322016205-5C20170127160728/crop/LC8034032
2016205LGNOO_sr _band3 crop.tif',
'Data/geography/landsat/LC80340322016205-5C20170127160728/crop/LC8034032
2016205LGNOO sr_band5 crop.tif',
'Data/geography/landsat/LC80340322016205-5C20170127160728/crop/LC8034032
2016205LGNOO_sr_bandl crop.tif',
'Data/geography/landsat/LC80340322016205-5C20170127160728/crop/LC8034032
2016205LGNOO sr band4 crop.tif',
'Data/geography/landsat/LC80340322016205-5C20170127160728/crop/LC8034032
2016205LGNOO_sr_ipflag crop.tif',
'Data/geography/landsat/LC80340322016205-5C20170127160728/crop/LC8034032
2016205LGNOO sr cloud crop.tif',
'Data/geography/landsat/LC80340322016205-5C20170127160728/crop/LC8034032
2016205LGNOO sr_band6 crop.tif',
‘Data/geography/landsat/LC80340322016205-5SC20170127160728/crop/LC8034032
2016205LGNOO cfmask crop.tif',
'Data/geography/landsat/LC80340322016205-5C20170127160728/crop/LC8034032
2016205LGNOO_sr_band2 crop.tif',
'Data/geography/landsat/LC80340322016205-5C20170127160728/crop/LC8034032
2016205LGNOO_cfmask conf crop.tif',
'Data/geography/landsat/LC80340322016205-5C20170127160728/crop/LC8034032
2016205LGNOO sr band7 crop.tif',
'Data/geography/landsat/LC80340322016205-5C20170127160728/crop/LC8034032
2016205LGNOO_bga crop.tif']

The Landsat satellites acquires images in a series of wavelengths or "bands". Let us keep only those band files and sort
them:

10f12 1/23/20, 11:31 AM

06-Applicatio satellite image file:///home/marie/Documents/CAS data_scienc...

In [5]: band files = sorted(glob.glob(landsatfolder+'*band*tif'))
band files

Out[5]: ['Data/geography/landsat/LC80340322016205-5C20170127160728/crop/LC8034032
2016205LGNOO _sr _bandl crop.tif',
'Data/geography/landsat/LC80340322016205-5C20170127160728/crop/LC8034032
2016205LGNOO_sr_band2 crop.tif',
'Data/geography/landsat/LC80340322016205-5C20170127160728/crop/LC8034032
2016205LGNOO_sr_band3 crop.tif',
'Data/geography/landsat/LC80340322016205-5C20170127160728/crop/LC8034032
2016205LGNOO sr band4 crop.tif',
'Data/geography/landsat/LC80340322016205-5C20170127160728/crop/LC8034032
2016205LGNOO_sr_band5 crop.tif',
'Data/geography/landsat/LC80340322016205-5C20170127160728/crop/LC8034032
2016205LGNOO sr band6 crop.tif',
'Data/geography/landsat/LC80340322016205-5C20170127160728/crop/LC8034032
2016205LGNOO_sr_band7 crop.tif']

Now we can import all images and stack them into a Numpy array:

In [6]: list images = [io.imread(x) for x in band files]
image_stack = np.stack(list _images)
image_stack.shape

Out[6]: (7, 177, 246)

We see that we created an 3D array with the 7 different wavelength bands. Let's look at those:

20f12 1/23/20, 11:31 AM

06-Applicatio_satellite image file:///home/marie/Documents/CAS data scienc...

In [7]: fig, axarr = plt.subplots(3,3, figsize = (10,8))
for i in range(9):
if i<7:
axarr[int(i/3),np.mod(i,3)].imshow(image stack[i,:,:],cmap = 'gr
ay', vmin=0, vmax = 500)
axarr[int(i/3),np.mod(i,3)].set title('Band'+str(i+l))
axarr[int(i/3),np.mod(i,3)].axis('off")

0, w pad = 0)

fig.tight layout(h pad

Bandl

From the Landsat information we know that bands 4,3 and 2 are RGB. So let's select those to create a natural image and
try plotting it as RGB image:

In [8]: image_ stack.shape

Out[8]: (7, 177, 246)
In [9]: image RGB = image stack[[3,2,1],:,:]

In [10]: image RGB.shape
Out[10]: (3, 177, 246)

In [13]: # plt.imshow(image RGB)
plt.show()
TypeError: Invalid dimensions for image data

Oups, the dimensions are not correct:

3of12 1/23/20, 11:31 AM

06-Applicatio satellite image file:///home/marie/Documents/CAS data_scienc...

In [14]: image RGB.shape
Out[14]: (3, 177, 246)

We created a stack where the leading dimension are the different bands. However in the RGB format, the different colors
are the last dimension! So we have to move the first axis to the end to be able to plot it:

In [15]: np.moveaxis(image RGB,0,2).shape

Out[15]: (177, 246, 3)

In [41]: # plt.imshow(np.moveaxis(image RGB,0,2))
plt.show()

Clipping input data to the valid range for imshow with RGB data ([0..
1] for floats or [0..255] for integers).

In [43]: image_ RGB

Out[43]: array([[[535, 597, 576, ..., 242, 279, 281],
[483, 547, 549, ..., 283, 321, 364],
[436, 424, 432, ..., 324, 399, 481],
[667, 832, 854, ..., 425, 413, 433],
[985, 745, 764, ..., 372, 385, 397],
[455, 415, 352, ..., 388, 380, 384]],

[[514, 537, 525, ..., 311, 338, 364],
[488, 516, 510, ..., 327, 354, 407],
[484, 490, 463, ..., 364, 411, 477],
[594, 727, 701, ..., 403, 403, 409],
[738, 662, 710, ..., 364, 401, 425],
[429, 354, 277, ..., 353, 375, 413]],

[[263, 300, 292, ..., 141, 158, 156],
[238, 268, 275, ..., 148, 172, 176],
[203, 208, 209, ..., 163, 172, 188],
[303, 429, 392, ..., 183, 172, 189],
[443, 314, 410, ..., 169, 170, 179],
[230, 188, 118, ..., 162, 164, 166111, dtype=intl6)

Next problem: the values of the pixels are not between 0-1 (floats) or 0-255 (ints). So we have to correct for that. We could
do it manually, but skimage has some function to help us where we can say what should be the output scale:

In [18]: from skimage.exposure import rescale intensity

4 0f12 1/23/20, 11:31 AM

06-Applicatio satellite image file:///home/marie/Documents/CAS data scienc...

In [19]: plt.imshow(rescale _intensity(np.moveaxis(image RGB,0,2), out range = (0O,
1)));

0

20

3

100
120
140

160

Now it starts looking like something reasonable. However the exposure is still not optimal. Let's clip values around the the
dimmest and brightest pixels and pass that as an argument to the rescaling function:

In [20]: v_min, v_max = np.percentile(image RGB, (0.2, 99.8))
plt.imshow(rescale intensity(np.moveaxis(image RGB,0,2),in range=(v_min,
v_max), out range=(0,1)));

100
120
140
160

So that's much better. Note that we don't modify the image data. We just use the correcting functions within the plotting
function. Indeed, we only want to improve the visual impression, not change the underlaying data.

Let us look at the images of the other day provided in the data for which we have the same bands:

50f12 1/23/20, 11:31 AM

06-Applicatio satellite image file:///home/marie/Documents/CAS data scienc...

In [21]: 1landsatfolder = 'Data/geography/landsat/LC80340322016189-5C2017012809115
3/crop/'
band files = sorted(glob.glob(landsatfolder+'*band*tif'))
band files

Out[21]: ['Data/geography/landsat/LC80340322016189-SC20170128091153/crop/LC8034032
2016189LGNOO_sr _bandl crop.tif',
'Data/geography/landsat/LC80340322016189-5C20170128091153/crop/LC8034032
2016189LGNOO_sr_band2 crop.tif',
'Data/geography/landsat/LC80340322016189-5C20170128091153/crop/LC8034032
2016189LGNOO_sr band3 crop.tif',
'Data/geography/landsat/LC80340322016189-5C20170128091153/crop/LC8034032
2016189LGNOO_sr_band4 crop.tif',
'Data/geography/landsat/LC80340322016189-5C20170128091153/crop/LC8034032
2016189LGNOO sr band5 crop.tif',
'Data/geography/landsat/LC80340322016189-5C20170128091153/crop/LC8034032
2016189LGNOO_sr_band6_crop.tif',
‘Data/geography/landsat/LC80340322016189-5C20170128091153/crop/LC8034032
2016189LGNOO sr band7 crop.tif']

In [22]: 1list images = [io.imread(x) for x in band files]
image stack2 = np.stack(list images)

fig, axarr = plt.subplots(3,3, figsize = (10,8))
for i in range(9):
if i<7:
axarr[int(i/3),np.mod(i,3)].imshow(image stack2[i,:,:],cmap = 'g
ray', vmin=0, vmax = 500)
axarr[int(i/3),np.mod(i,3)].set title('Band'+str(i+l))
axarr[int(i/3),np.mod(i,3)].axis('off")

fig.tight layout(h pad = 0, w _pad = 0)

Bandl

Band5 Band6

6 0of 12 1/23/20, 11:31 AM

06-Applicatio satellite image file:///home/marie/Documents/CAS data scienc...

We see that there is a cloud in the image. In addition the cloud is casting a shadow. If our goal was to compare the
evolution of the vegetation between these two days, we would somehow have to remove those areas from our dataset.
Let's first try to plot our image in real colors:

In [23]: image RGB = image stack2[[3,2,1],:,:]
v_min, v_max = np.percentile(image RGB, (0.2, 99.8))
plt.imshow(rescale intensity(np.moveaxis(image RGB,0,2).astype(float),in
_range=(v_min, v_max),out range=(0, 1)))
plt.show()

100
120
140

160

Because the cloud is so bright, the exposure in the rest of the image is really dim. We can manually clip the maximal
values to be able to visualize our data:

In [24]: plt.imshow(rescale _intensity(np.moveaxis(image RGB,0,2).astype(float),in
_range=(v_min, 0.2*v_max),out _range=(0, 1)))
plt.show()

100
120 -Sae
140

160

Now let us try to remove the cloud and it's shadow. Fortunately, we see that in band1 the clouds clearly appear as much
brighter than the rest of the image. The histogram shows that most pixels are below ~1000. To avoid picking a value
manually we can use the Otsu threshold and verify our mask

In [25]: from skimage.filters import threshold otsu

7 of 12 1/23/20, 11:31 AM

06-Applicatio satellite image

8 of 12

In [26]:

In [27]:

plt.hist(np.ravel(image stack2[0,:,:1))#, bins = np.arange(0,20000,100))
plt.show()

40000 A

35000 -

30000

25000

20000

15000 H

10000 H

5000

0 y f u
0 2000 4000 6000 8000

otsu th = threshold otsu(image stack2[0,:,:])
plt.imshow(image stack2[0,:,:]1>otsu _th,cmap = 'gray')
plt.show()

0

100
120
140

160

The shadow on the other side, appears as a clear dark region in band 7. The histogram shows clearly that we have a set
of pixels that have been clipped in the lower range. If we create a maks just above, we get:

In [28]:

plt.hist(np.ravel(image stack2[6,:,:]1), bins = np.arange(0,5000,100))
plt.show()

3000 A

2500

2000

1500 4

1000 A

500 4

4000 5000

1/23/20, 11:31 AM

file:///home/marie/Documents/CAS data scienc...

06-Applicatio satellite image

9o0f12

In [29]:

file:///home/marie/Documents/CAS data scienc...

plt.imshow(image stack2[6,:,:]<100,cmap = 'gray')

plt.show()

100
120
140

160

Now we have two masks that we can combine into one logical mask using Numpy logical operations

In [30]:

In [31]:

global mask = (image_stack2[0,:,:]>otsu_th) | (image stack2[6,:,:1<100)

plt.imshow(global mask)

plt.show()

100
120
140

160

We do in addition one round of binary closing/opening to close holes in our maks and remove small pixels:

In [32]:

In [33]:

from skimage.morphology import binary closing, disk, binary opening

global mask = binary opening(binary closing(global mask, selem=disk(5)),

selem= disk(1))

1/23/20, 11:31 AM

06-Applicatio satellite image file:///home/marie/Documents/CAS data_scienc...

In [34]: plt.imshow(global mask, cmap = 'gray')
plt.show()

0

20

3

100
120
140

160

We can now apply the mask to our entire image stack, and use the fact that the 2D mask will be reproduced along the
leading dimension of the stack

In [35]: image stack2 masked = image stack2*~global mask

Normally now we should be able to plot our RGB image without having to correct for the very bright cloud pixels:

In [36]: image RGB = image stack2 masked[[3,2,1],:,:]
v_min, v_max = np.percentile(image RGB, (0.2, 99.8))
plt.imshow(rescale intensity(np.moveaxis(image RGB,0,2).astype(float),in
_range=(v_min, v_max),out range=(0, 1)));

100
120 §
140

160

Calculating the effect of fire

By comparing two channels reflecting vegetation areas and burned/earth areas, we can estimate where fire caused
dammage. One typical value that is measured is Band5-Band7/(Band5+Band7)

10 of 12 1/23/20, 11:31 AM

06-Applicatio_satellite image file:///home/marie/Documents/CAS data scienc...

In [37]: burn_dayl = (image_ stack2 masked[4]-image stack2 masked[6])/(image_ stack
2 masked[4]+image stack2 masked[6])
burn_day2 = (image_stack[4]-image stack[6])/(image stack[4]+image stack
[61)
difference = burn_dayl-burn_day2

MZ: to compare the 2 images to see where it has burnt

/usr/local/lib/python3.5/dist-packages/ipykernel launcher.py:1l: RuntimeWa
rning: invalid value encountered in true divide

"""Entry point for launching an IPython kernel.
/usr/local/lib/python3.5/dist-packages/ipykernel launcher.py:2: RuntimeWa
rning: invalid value encountered in true _divide

In [38]: f, axarr = plt.subplots(1l,3, figsize= (15,10))
axarr[0].imshow(burn_dayl,cmap = 'hot')
axarr[0].axis('off")
axarr[0].set _title('Dayl')
axarr[1l].imshow(burn_dayl,cmap = 'hot')
axarr[l].axis('off"')
axarr[l].set title('Day2')
axarr[2].imshow(difference,cmap = 'hot')
axarr[2].axis('off")
axarr[2].set _title('Difference')

OQut[38]: Text(0.5, 1.0, 'Difference')

Difference

In [39]: plt.hist(np.ravel(difference));

/usr/local/lib/python3.5/dist-packages/numpy/lib/histograms.py:754: Runti
meWarning: invalid value encountered in greater_equal

keep = (tmp_a >= first edge)
/usr/local/lib/python3.5/dist-packages/numpy/lib/histograms.py:755: Runti
meWarning: invalid value encountered in less equal

keep &= (tmp_a <= last_edge)

30000 1

25000 -

20000 A

15000 -

10000 H

5000 -

-050 -025 000 025 050 075 100 125

11 of 12 1/23/20, 11:31 AM

06-Applicatio satellite image file:///home/marie/Documents/CAS data scienc...

In [40]: plt.imshow(difference>0.5)

/usr/local/lib/python3.5/dist-packages/ipykernel launcher.py:1l: RuntimeWa
rning: invalid value encountered in greater
"""Entry point for launching an IPython kernel.

Out[40]: <matplotlib.image.AxesImage at 0x7f65240aaef0>

100
120
140

160

12 of 12 1/23/20, 11:31 AM

07-Functions file:///home/marie/Documents/CAS data scienc...

7. Functions

In the previous chapter we developped a small procedure to segment our image of nuclei. If you develop such a routine
you are going to re-use it multiple times, so it makes sense to package it into a re-usable unit.

We will summarize here how to achieve that in this brief chapter.

In [1]: #importing packages
import numpy as np
import matplotlib.pyplot as plt
plt.gray();
from skimage.external.tifffile import TiffFile

import skimage.morphology as skm
import skimage.filters as skf

In [2]: #load the image to process
data = TiffFile('Data/30567/30567.tif")
image = data.pages[3].asarray()

In [3]: plt.imshow(image);

0
100
200
300
400

500

Let us summarize all the necessary steps within one code block

1of4 1/23/20, 11:33 AM

07-Functions file:///home/marie/Documents/CAS data_scienc...

20f4

In [4]: from skimage.measure import label, regionprops

#median filter
image med = skf.rank.median(image,selem=np.ones((2,2)))
#otsu thresholding
image local threshold = skf.threshold local(image med,block size=51)
image_ local = image > image_local threshold
#remove tiny features
image local eroded = skm.binary erosion(image local, selem= skm.disk(1))
#label image
image labeled = label(image_local eroded)
#analyze regions
our_regions = regionprops(image labeled)
#create a new mask with constraints on the regions to keep
newimage = np.zeros(image.shape)
#fill in using region coordinates
for x in our_regions:
if (x.area>200):# and (x.eccentricity<0.8):
newimage[x.coords[:,0],x.coords[:,1]] =1

/usr/local/lib/python3.5/dist-packages/skimage/filters/rank/generic.py:10
2: UserWarning: Bitdepth of 14 may result in bad rank filter performance
due to large number of bins.

"performance due to large number of bins." % bitdepth)

In [5]: plt.figure(figsize=(10,10))
plt.imshow(newimage)

Out[5]: <matplotlib.image.AxesImage at 0x7fcb880eeb38>

0

100

200

300

400

500

We can now make a function out of it. You can choose the "level" of your function depending on your needs. For example
you could pass a filename and a plane index to the function and make it import your data, or you can pass directly an
image.

In addition to the image, you coud pass other arguments if you want to make your function more general. For example,
you might not always want to filter objects of the same size or shape, and so you can set those as parameters:

1/23/20, 11:33 AM

07-Functions file:///home/marie/Documents/CAS data_scienc...

In [6]: from skimage.measure import label, regionprops

def detect nuclei(image, size = 200, shape = 0.8):

#median filter

image med = skf.rank.median(image,selem=np.ones((2,2)))

#otsu thresholding

image local threshold = skf.threshold local(image med,block size=51)

image local = image > image local threshold

#remove tiny features

image local eroded = skm.binary erosion(image local, selem= skm.disk
(1))

#label image

image labeled = label(image local eroded)

#analyze regions

our_regions = regionprops(image_ labeled)

#create a new mask with constraints on the regions to keep

newimage = np.zeros(image.shape)

#fill in using region coordinates

for x in our regions:

if (x.area>size) and (x.eccentricity<shape):
newimage[x.coords[:,0],x.coords[:,1]] =1

return newimage

And now we can test the function (which appears also now in autocompletion):

In [7]: nuclei = detect nuclei(image, size = 400)
plt.imshow(nuclei);

/usr/local/lib/python3.5/dist-packages/skimage/filters/rank/generic.py:10
2: UserWarning: Bitdepth of 14 may result in bad rank filter performance
due to large number of bins.

"performance due to large number of bins." % bitdepth)
/usr/local/lib/python3.5/dist-packages/skimage/measure/ regionprops.py:25
0: UserWarning: regionprops and image moments (including moments, normali
zed moments, central moments, and inertia tensor) of 2D images will chang
e from xy coordinates to rc coordinates in version 0.16.

See http://scikit-image.org/docs/0.14.x/release notes_and_installation.ht
ml#deprecations for details on how to avoid this message.
warn(XY_TO RC DEPRECATION MESSAGE)
/usr/local/lib/python3.5/dist-packages/skimage/measure/ regionprops.py:26
0: UserWarning: regionprops and image moments (including moments, normali
zed moments, central moments, and inertia tensor) of 2D images will chang
e from xy coordinates to rc coordinates in version 0.16.
See http://scikit-image.org/docs/0.14.x/release notes and installation.ht
ml#deprecations for details on how to avoid this message.
warn(XY_TO RC DEPRECATION_ MESSAGE)

0
100
200
300

400

3of4 1/23/20, 11:33 AM

07-Functions file:///home/marie/Documents/CAS data_scienc...

4 of 4

In order to avoid cluttering your notebooks with function definitions and to be able to reuse your functions across multiple
notebooks, | also strongly advise you to create your own module files. Those are .py files that group multipe functions and
that can be called from any notebook.

Let's create one, call it my_module.py and copy our function in it. Now we can use the function like this:

In [8]: import my_module
#or alternatively: from my module import detect nuclei

ImportError Traceback (most recent call las
1)
<ipython-input-8-a9447689b240> in <module>()
----> 1 import my module
2 #or alternatively: from my module import detect nuclei

ImportError: No module named 'my module'

In []: nuclei2 = my module.detect nuclei(image)

We get an error because in that module, we use skimage functions that were not imported in the module itself. We have
them in the notebook, but they are not accessible from there. We thus restart the kernel as re-loading a module doesn't
work:

In []: import numpy as np
import matplotlib.pyplot as plt

plt.gray();
from skimage.external.tifffile import TiffFile

data = TiffFile('Data/30567/30567.tif")
image = data.pages[3].asarray()

import my_module
nuclei2 = my module.detect nuclei(image)

In []: plt.imshow(nuclei2);

Your own modules are accessible if they are in the same folder as your notebook or on some path recognized by Python

1/23/20, 11:33 AM

08-Pattern matching file:///home/marie/Documents/CAS data scienc...

1of8

8. Pattern matching, local maxima

Sometimes threholding and binary operations are not appropriate tools to segment image features. This is particularly true
when the object to be detected has as specific shape but a very variable intensity or if the image has low contrast. In that
case it is useful to attempt to build a "model" of the object and look for similar shapes in the image. It is very similar in
essence to convolution, however the operation is normalized so that after filtering every pixel is assigned a value between
-1 (anti-correlation) to +1 perfect correlation. One can then look for local matching maxima to identify objects.

In [1]: from skimage.feature import match template, peak local max
import skimage.io as io

In [2]: import numpy as np
import matplotlib.pyplot as plt
plt.gray()
from skimage.external.tifffile import TiffFile

8.1 Virus on electron microscopy

Electron microscopy is a typical case where pixel intensity cannot be directly used for segmentation. For example in the
following picture of a virus, even though we see the virus as white disks, many other regions are as bright.

In [3]: #load the image to process
image = io.imread('http://res.publicdomainfiles.com/pdf view/29/13512183
019720.jpg")
#image = io.imread('http://res.publicdomainfiles.com.s3.amazonaws.com/pd
f alternate/29/13512183019720. tif?AWSAccessKeyId=AKIAJBE24BKMOLMIBBXA&Ex
pires=1579466193&Signature=uMi8UqvIbUX2mGkgZuEGAXx6J6r4%3D")

In [4]: plt.imshow(image);

What is unique to the virus is the shape of the objects. So let's try to make a model of them to do template matching.
Essentially a virus appears as a white disk surrounded by a thin dark line:

1/23/20, 11:34 AM

08-Pattern matching file:///home/marie/Documents/CAS data scienc...

In [5]: radius = 90

template = np.zeros((220,220))

center = [(template.shape[0]-1)/2, (template.shape[l]-1)/2]

Y, X = np.mgrid[0:template.shape[0],0:template.shape[1l]]

dist from center = np.sqrt((X - center[0])**2 + (Y-center[1])**2)
template[dist from center<=radius] =1
template[dist from center>radius+3] =1

MZ: identify all areas in the image that match the pattern of your int
erest

In [6]: plt.imshow(template)
Out[6]: <matplotlib.image.AxesImage at 0x7fc3bea62d68>

0
25 A
50 -
75 -

100 A
125
150 -
175 A
200 +

0 50 100 150 200

Now we do the template matching. Note that we specify the option pad_input to make sure the coordinates of the local
maxima is not affected by boreder effects (try to turn it to False to see the effecf):

In [7]: matched = match template(image=image, template=template, pad input=True)

And this is how the matched image looks like. Wherever there's a particle a local maximum appears.

In [8]: plt.imshow(matched)
Out[8]: <matplotlib.image.AxesImage at 0x7fc3bdlae048>

0
100
200
300
400
500

600

20f 8 1/23/20, 11:34 AM

08-Pattern matching file:///home/marie/Documents/CAS data scienc...

We can try to detect the local maxima to have the position of each particle. For that we use the scipy peak local max
function. We specify that two maximia cannot be closer than 20 pixels (min_distance) and we also set a threshold on
the quality of matching (threshold abs). We also want to recover a list of indices rather than a binary mask of local
maxima.

In [9]: local max_indices = peak local max(matched, min_distance=60,indices=Tru
e, threshold abs=0.1)

Finally we can plot the result:

In [10]: plt.figure(figsize=(10,10))
plt.imshow(image)
plt.plot(local max_indices[:,1],local max_indices[:,0],'ro")
plt.show()

8.2 Fluorescence microscopy

In the following example we are looking at a nuclei imaged by fluorescence microscopy. Here, intensity can clearly be
used for segmentation but is going to lead to merged objects when they are too close. To identify each nucleus in a first
step before actual segmentation, we can again use template matching.

In [11]: import skimage.io as io

In [12]: image = io.imread('Data/BBBC007 v1 images/A9/A9 p9d.tif')

30f8 1/23/20, 11:34 AM

08-Pattern matching file:///home/marie/Documents/CAS data_scienc...

In [13]: plt.figure(figsize=(10,10))
plt.imshow(image);

0

50

100

150

200

250

300

350

400

In this image, nuclei have radius of around 10 pixels. We can generate again a template:

In [14]: radius = 10

template = np.zeros((25,25))

center = [(template.shape[0]-1)/2, (template.shape[1l]-1)/2]

Y, X = np.mgrid[0:template.shape[0],0:template.shape[1l]]

dist from center = np.sqrt((X - center[0])**2 + (Y-center[1])**2)
template[dist from center<=radius] =1

4 of 8 1/23/20, 11:34 AM

08-Pattern matching file:///home/marie/Documents/CAS data scienc...

In [15]: plt.imshow(template, cmap = 'gray')
plt.show()

0

10

20

In [16]: matched = match template(image=image, template=template, pad_input=True)

In [17]: plt.figure(figsize=(10,10))
plt.imshow(matched, cmap = 'gray', vmin = -1, vmax = 1)

Out[17]: <matplotlib.image.AxesImage at 0x7fc3bd16c9b0>

100

150

200

250

300

350

400

In [18]: local _max = peak_local_max(matched, min_distance=10,indices=False)
local max_indices = peak local max(matched, min distance=10,indices=Tru
e)

50f8 1/23/20, 11:34 AM

08-Pattern matching file:///home/marie/Documents/CAS data_scienc...

In [19]: plt.figure(figsize=(10,10))
plt.imshow(image)
plt.plot(local max_indices[:,1],local _max_indices[:,0],'ro");

0

50

100

150

200

250

300

350

400

We didn't set any threshold on what intensity local maxima should have, therefore we have a few detected cells that are
clearly in the background. We could masks those using a rough threshold.

In [20]: import skimage.filters
import skimage.morphology

6 of 8 1/23/20, 11:34 AM

08-Pattern matching file:///home/marie/Documents/CAS data_scienc...

In [21]: otsu = skimage.filters.threshold otsu(image)
otsu mask = image>otsu

plt.imshow(otsu_mask);

50
100
150
200
250
300
350
400

450
200 300

We can dilate a bit all the regions to make sure we fill the holes and do not cut off dim cells

In [22]: otsu mask = skimage.morphology.binary dilation(otsu_mask, np.ones((5,
5)))

plt.imshow(otsu_mask);

50
100
150
200
250
300 §
350

100 200

Now we can mask the image returned by the peak finder:

In [23]: masked peaks = local max & otsu mask

And recover the coordinates of the detected peaks:

In [24]: peak coords = np.argwhere(masked peaks)

7 of 8 1/23/20, 11:34 AM

08-Pattern matching file:///home/marie/Documents/CAS data_scienc...

In [25]: plt.figure(figsize=(10,10))
plt.imshow(image, cmap = 'gray',vmax = 100)
plt.plot(peak coords[:,1],peak coords[:,0],'ro");

150

250

300

400

In [26]: # intensity is high, they touch each other -> would be complicated to do
without pattern matching

8 of 8 1/23/20, 11:34 AM

09-Watershed file:///home/marie/Documents/CAS data scienc...

1 of6

9. Watershed algorithm

In a number of cases, one is able to detect the positions of multiple objects on an image, but it might be difficult to
segment them because they are close together or very irregular. This is where the wahtersehd algorithm is very practical.
It takes as input an image, and a series of seeds and expands each region centered around a seed as if it was filling a
topographic map.

Inverted image Cross section

. a B |-

In [1]: from skimage.morphology import watershed
from skimage.measure import regionprops

In [2]: dimport numpy as np
import matplotlib
import matplotlib.pyplot as plt
plt.gray()
from skimage.external.tifffile import TiffFile
import skimage.io as io
from skimage.morphology import label

import course_functions

In [3]: #load the image to process
image = io.imread('Data/BBBCOO7_v1 images/A9/A9 p9d.tif')

9.1 Create seeds

We can use the code of the last chapter to produce the seeds. We added the necessary code in our course module called
course_functions

In [4]: #generate template
template = course_functions.create disk template(10)
#generate seed map
seed map, global mask = course functions.detect nuclei template(image, t
emplate)

1/23/20, 11:34 AM

09-Watershed file:///home/marie/Documents/CAS data_scienc...

In [5]: plt.imshow(global mask)
plt.show()

50
100
150
200
250
300 §
350
400

450

100 200 300

We need to create a labeled image, so that the watershed algorithm creates regions with different labels:

In [6]: plt.figure(figsize=(10,10))
plt.imshow(image);

0

50

100

150

200

250

300

350

400

20f6 1/23/20, 11:34 AM

09-Watershed file:///home/marie/Documents/CAS data scienc...

In [7]: plt.figure(figsize=(10,10))
plt.imshow(seed map);

0

50

100

150

200

250

300

350

400

In [8]: seed label = label(seed map)

30of6 1/23/20, 11:34 AM

09-Watershed file:///home/marie/Documents/CAS data scienc...

In [9]: plt.fiqgure(figsize=(10,10))
plt.imshow(seed label)

Out[9]: <matplotlib.image.AxesImage at 0x7fb84e9f8ac8>

0

50

100

150

200

250

300

350

400

Now we can use the image and the labeled seed map to run the watershed algorithm. However, remember the analogy of
filling a topographic map: our nuclei should be "deep" regions, so we need to invert the image. Finally we also require that
a thin line separates regions (watershed_line option).

In [10]: watershed labels = watershed(image = -image, markers = seed label, water
shed line=True)

In [11]: watershed labels.max()
Out[11]: 136

40f6 1/23/20, 11:34 AM

09-Watershed file:///home/marie/Documents/CAS data scienc...

In [12]: #create a random map
plt.figure(figsize = (10,10))

cmap = matplotlib.colors.ListedColormap (np.random.rand (256,3))

plt.imshow(image)
plt.imshow(watershed labels, cmap = cmap, alpha = 0.3);

100
150
200
250
300
350

400

The algorithm worked well and created regions around each nucleus. However we are only interested in the actual nuclei
properties. So let's use our global masks to limit ourselves to those regions:

In [13]: watershed labels = watershed(image = -image, markers = seed label, mask
= global mask, watershed line=True)

50f6 1/23/20, 11:34 AM

09-Watershed file:///home/marie/Documents/CAS data scienc...

In [14]: plt.figure(figsize = (10,10))
plt.imshow(image)
plt.imshow(watershed labels, cmap = cmap, alpha = 0.3)
plt.plot(np.argwhere(seed map)[:,1],np.argwhere(seed map)[:,0],'0");

100

150

200

250

300

350

400

Finally, now that you have all the nuclei segmented you can proceed to do actual measurements e.g. by using the
previously seen regionprops function.

In [15]: myregions = regionprops(watershed labels)

In [18]: shape = [x.area for x in myregions]

In [17]: plt.hist(shape);

6 of 6 1/23/20, 11:34 AM

10-3D case file:///home/marie/Documents/CAS data_scienc...

10. 3D case

Until now we have exclusively processed 2D images, eventhough the sometimes came from 3D acquisition. We are now
going to look at an example of 3D processing where we are going to use the same tools as in 2D but in a 3D version.

Extending an image processing pipeline from 2D to 3D can be challenging for two reasons: first, computations can
become very slow because of the amount of data changes usually roughly by an order of magnitude, and second,
visualization of both original and processed data is more complicated.

1o0f9 1/23/20, 11:34 AM

10-3D case file:///home/marie/Documents/CAS data_scienc...

In [1]: import numpy as np
import matplotlib.pyplot as plt
plt.gray()
from ipywidgets import interact, IntSlider, fixed

import skimage.io as io

from skimage.transform import rescale, resize

from skimage.morphology import white tophat

from skimage.feature import peak local max

from skimage.measure import regionprops, label

from skimage.filters import threshold otsu, gaussian
import scipy.ndimage as ndi

#convenience functions
#create a segmentation image where background is NaN to use as overlay
def nan_image(image):
image nan = np.zeros(image.shape)
image nan[:] = np.nan
for i in range(1,image.max()):
image nan[image==i]=i

#image plotting function used in concert with ipywidget interact. Plots
a single image.
def plot plane(t,im, cmap):

plt.figure(figsize=(10,10))
plt.imshow(im[t,:,:],cmap = cmap)
plt.show()

#image plotting function used in concert with ipywidget interact. Plots
two superposed images.
def plot superpose(t, iml, im2, cmap):

plt.figure(figsize=(10,10))

plt.imshow(iml[t,:,:],cmap = 'gray')

plt.imshow(im2[t,:,:],cmap = cmap, alpha = 0.3, vmin = 0, vmax = im
2.max())

plt.show()

#Wrapping function to create an interactive view of an image stack for o
ne or a pair of stacks
def image browser(image, image2 = None , color = True):
if color == True:
vals = np.linspace(0,1,int(image.max()))
np.random.shuffle(vals)
cmap = plt.cm.colors.ListedColormap(plt.cm.jet(vals))
else:
cmap = ‘'gray'

if image2 is None:
interact(plot plane, t = IntSlider(min=0,max=1image.shape[0],step
=1,value=0,
continuous _update = False),im
= fixed(image), cmap = fixed(cmap));
else:
interact(plot_superpose, t = IntSlider(min=0,max=image.shape[0]-
1,step=1,value=0,
continuous_update = Fals
e),iml = fixed(image), im2 = fixed(image2),cmap = fixed(cmap));

In [2]: from skimage.morphology import binary closing, white tophat, label, wate
rshed
from skimage.measure import regionprops, label
from skimage.feature import match template, peak local max

20f9 1/23/20, 11:34 AM

10-3D case file:///home/marie/Documents/CAS data scienc...

We are going to look at a dataset of an embryo imaged in 3D in multiple wavelengths. We are first going to focus on one
channel where the nuclei are marked. Then we will use that information to extract information from another channel where
we will try to extract spot-like structures.

The goal here is to illustrate that most functions used before in 2D can be used in the same way in 3D, but with some new
issues, especially around visualizations and computing time.

Let's load the first image and look at it along two projections:
In [3]: image = io.imread('Data/BBBC032 v1 dataset/BMP4blastocystC3.tif')

In [4]: image.shape

Out[4]: (172, 1344, 1024)

In [5]: np.size(image)/10**6
Out[5]: 236.716032

(10,10))

In [6]: fig, ax = plt.subplots(1l,2,figsiz
ax[0].imshow(np.max(image,axis
ax[1l].imshow(np.max(image,axis

0

200

400

600

800

1000

1200

The image is really large, so any operation we are going to do on it will be very slow (e.g. a filter will have to visit every
single one of the 230 millions pixels). As we just want to identify the nuclei we don't care about the details in the image, so
a practical thing to do is to resample the imge. As the z dimension is larger than the xy (image on the right looks squished)
we are going to use the opportunity to "stretch" the image during resampling:

In [7]: image resampled = rescale(image,(0.5,0.15,0.15), multichannel=False,pres
erve_range=True, anti _aliasing=True)

/usr/local/lib/python3.5/dist-packages/skimage/transform/ warps.py:105: U
serWarning: The default mode, 'constant', will be changed to 'reflect' in
skimage 0.15.

warn("The default mode, 'constant', will be changed to 'reflect' in "

In [8]: image resampled.shape

Out[8]: (86, 202, 154)

30f9 1/23/20, 11:34 AM

10-3D case file:///home/marie/Documents/CAS data scienc...

Let's look at the result;
In [9]: #image resampled = gaussian(image resampled,sigma=(2,2,2))

In [10]: fig, ax = plt.subplots(1l,2,figsize = (10,10
ax[0].imshow(np.max(image resampled,axis =
ax[1l].imshow(np.max(image resampled,axis =

))
0)
1)

)
);
0

25

75
100

125

150

175

200

To remove some of the glare in the image we can use a top-hat filter, which keeps objects which are smaller than a
structuring element and brighter than their surroundings. "Flat" low-illumination regions get therefore removed:

In [11]: from skimage.morphology import binary closing, white tophat, label, wate
rshed, black tophat

In [12]: im_tophat = white tophat(image resampled, selem=np.ones((20,20,20)))

40f9 1/23/20, 11:34 AM

10-3D case file:///home/marie/Documents/CAS data_scienc...

(10,10))
0))
1));

In [13]: fig, ax = plt.subplots(l,2,figsize
ax[0].imshow(np.max(im_tophat,axis
ax[1l].imshow(np.max(im_tophat,axis

0

25

50

75

100

125

150

175

200

We can have a look at what happens if we do a classical thresholding of the image, which works just like in 2D.

In [14]: image browser(im_tophat>threshold otsu(im_tophat), color=False)

The result is poor because the nucleus signal is not homogeneous, i.e. each nucleus is made of sparse bright signals. To
identify larger scale structures, we thus have to filter the image with a structuring element that has approximately the
shape of the nuclei. A typical filter used to detect "blobs" is the LoG filter (Laplacian of a Gaussian).

The filter doesn't exist per se in scikit-image so we are going to use the one of scipy.

In [15]: im log = -ndi.filters.gaussian laplace(im_tophat, (4,4,4))

50f9 1/23/20, 11:34 AM

10-3D case file:///home/marie/Documents/CAS data_scienc...

In [16]: fig, ax = plt.subplots(l,2,figsize = (10,10))
ax[0].imshow(np.max(im_log,axis = 0), cmap = 'gray')
ax[1].imshow(np.max(im_log,axis = 1), cmap = 'gray')

plt.show()

0
25
50
75

100

125

0 20 40 60 80 100 120 140

150

175

200

0 20 40 60 80 100 120 140

Now that we have more homogeneous regions, we can try again to use a classical thresholding, which should give a much
better result.

In [17]: image browser(im_ log>threshold otsu(im _log), color = False)

We can now go back to some of the methods we have seen previously: we can find local maxima corresponding to single
nuclei, define a global mask, and use the watershed algorithm for segmentation.

In [18]: peak _image = peak local max(im_log, footprint=np.ones((10,10,10)), indic
es=False, threshold abs= 1)

6 of 9 1/23/20, 11:34 AM

10-3D case

7 of 9

In []: fig, ax = plt.subplots(1l,2,figsize = (10,10))
ax[0].imshow(np.max(im_log,axis = 0), cmap = 'gray')
ax[0].imshow(np.max(peak image,axis = 0), cmap = 'Reds',alpha
ax[1].imshow(np.max(im log,axis = 1), cmap = 'gray')
ax[1].imshow(np.max(peak image,axis = 1), cmap = 'Reds',alpha
plt.show()

0

25

100

125

150

175

200

0 20 40 60 80 100 120 140

In [1: mask = im_log>threshold otsu(im log)
im label = label(peak image)

100 120

file:///home/marie/Documents/CAS data scienc...

0.3)

0.3)

140

im water = watershed(image=-im log,markers=im_label,mask = mask, compact

ness=0.01)

In []1: image browser(im_log, im water, color = False)

In []1: image browser(image resampled, im water, color = False)

The result is rather crude but a good start for potential further processing. Note that we didn't segment the nuclei per se
but their convolution with a LoG filter. We can also visualize the result in 3D. For that we use the ipyvolume package which
allows one to represent 3D data in various ways. For example as isosurface (on a binary image, it just gives the surface of

the objects):
In []: import ipyvolume.pylab as ipv

In []: ipv.figure()
ipv.plot _isosurface(im water>0)
ipv.show()

But we can of course also show the volume data of our resampled image:

1/23/20, 11:34 AM

10-3D case file:///home/marie/Documents/CAS data_scienc...

8 of 9

In []: ipv.figure()
ipv.volshow(im tophat.astype(int).T)
ipv.style.background color('black")
ipv.show()

/usr/local/lib/python3.5/dist-packages/ipyvolume/serialize.py:81: Runtime
Warning: invalid value encountered in true divide

gradient = gradient / np.sqrt(gradient[0]**2 + gradient[1l]**2 + gradien
t[2]**2)

Detecting features within features

In []1: image2 = io.imread('Data/BBBC032 v1 dataset/BMP4blastocystCl.tif"')

In another wavelength, the collected signal appears as puncti in the image. We could for example now wish to know how
many of those puncti appear in the nuclei. Here we cannot downscale the image as those small structures would
otherwise disappear, so we use the fact that we know where nuclei are to just analyse those regions.

Let us first resize our segmentation map. Note that we use order = 0 (nearest neighbors) to preserve our labeling.

In [1: im_nuclei segm = resize(im water, image.shape, order = 0, preserve_range
=True)

/usr/local/lib/python3.5/dist-packages/skimage/transform/ warps.py:105: U
serWarning: The default mode, 'constant', will be changed to 'reflect' in
skimage 0.15.

warn("The default mode, 'constant', will be changed to 'reflect' in
/usr/local/lib/python3.5/dist-packages/skimage/transform/ warps.py:110: U
serWarning: Anti-aliasing will be enabled by default in skimage 0.15 to a
void aliasing artifacts when down-sampling images.

warn("Anti-aliasing will be enabled by default in skimage 0.15 to "

In [1: np.unique(im_nuclei segm)

Let's recover all the single nuclei regions using regionproperties

regionprops(im _nuclei segm.astype(int), image2)

In [1: regions

image2#regions[10].intensity image

In []: im _crop

In []: fig, ax = plt.subplots(l,2,figsize = (10,10))
ax[0].imshow(np.max(im_ crop,axis = 0
=1

ax[1l].imshow(np.max(im crop,axis

)
)

The spots from those images have approximately a gaussian shape. So we can try to filter our image with an appropriately
size 3D Gaussian to detect the spots:

In []: im_gauss = gaussian(im crop, sigma = [1,1.5,1.5], preserve range=True)

In []: fig, ax = plt.subplots(l,2,figsize (10,10))
ax[0].imshow(np.max(im_gauss,axis
ax[1l].imshow(np.max(im gauss,axis

In [1: peaks = peak local max(im_gauss,min_distance=4)

1/23/20, 11:34 AM

10-3D case

90of9

In

In

In

In

In

In

In

file:///home/marie/Documents/CAS data scienc...

fig, ax = plt.subplots(1l,2,figsize = (20,10))
ax[0].imshow(np.max(im_gauss,axis = 0))
ax[0].plot(peaks[:,2], peaks[:,1],'ro',markersize
ax[1l].imshow(np.max(im gauss,axis = 1))
ax[1l].plot(peaks[:,2], peaks[:,0],'ro',markersize = 0.1);

0.1)

plt.hist(im_gauss[peaks[:,0],peaks[:,1],peaks[:,2]],bins np.arange(20

0,1600,1));

np.arange(20

plt.hist(im _gauss[peaks[:,0],peaks[:,1],peaks[:,2]],bins
0,800,10));

peak val = im _gauss[peaks[:,0],peaks[:,1],peaks[:,2]]
peaks selected = peaks[peak val>600, :]

fig, ax = plt.subplots(1l,2,figsize = (20,10))
ax[0].imshow(np.max(im_gauss,axis = 0))

ax[0].plot(peaks selected[:,2], peaks selected[:,1],'ro',markersize = 0.
1)

ax[1l].imshow(np.max(im_gauss,axis = 1))

ax[1l].plot(peaks selected[:,2], peaks selected[:,0],'ro',markersize = 0.

1);

peak crop = peaks selected[peaks selected[:,2]>400, :]
peak crop = peak crop[peak crop[:,2]1<600, :]
peak crop = peak crop[peak crop[:,1]<800,:]
peak crop = peak crop[peak crop[:,1]>600,:]

plt.figure(figsize = (20,10))
plt.imshow(np.max(im_gauss,axis = 0)[600:800,400:6001])
plt.plot(peak crop[:,2]-400, peak crop[:,1]-600,'ro',markersize = 1);

1/23/20, 11:34 AM

11-Complete analysis file:///home/marie/Documents/CAS data_scienc...

11. Create a short complete analysis

Until now we have only seen pieces of code to do some specific segmentation of images. Typically however, one is going
to have a complete analysis, including image processing and some further data analysis.

Here we are going to come back to an earlier dataset where nuclei appeared as circles. That dataset was a time-lapse,
and we might be interested in knowing how those nuclei move over time. So we will have to analyze images at every time-
point, find the position of the nuclei, track them and measure the distance traveled.

In [1]: import numpy as np
import matplotlib.pyplot as plt
plt.gray()
from skimage.external.tifffile import TiffFile
from skimage.measure import label, regionprops

#import your function
from course_functions import detect nuclei

11.1 Remembering previous work

Let's remember what we did in previous chapters. We opened the tif dataset, selected a specific plane to look at and
segmented the nuclei:

1 of 26 1/23/20, 11:35 AM

11-Complete analysis file:///home/marie/Documents/CAS data scienc...

In [2]: #load the image to process
data = TiffFile('Data/30567/30567.tif")
image = data.pages[3].asarray()
#create your mask
nuclei = detect nuclei(image)
#create a nan-mask for overlay
nuclei nan = nuclei.copy().astype(float)

nuclei nan[nuclei == 0] = np.nan

#plot

plt.figure(figsize=(10,10))

plt.imshow(image, cmap = 'gray')

plt.imshow(nuclei nan, cmap = 'Reds',vmin = 0,vmax = 1,alpha = 0.6)
plt.show()

/usr/local/lib/python3.5/dist-packages/skimage/filters/rank/generic.py:10
2: UserWarning: Bitdepth of 14 may result in bad rank filter performance
due to large number of bins.

"performance due to large number of bins." % bitdepth)

0

100

200

300

400

500

Let's also remember what was the format of that file (usually one would already know that or verify e.g. in Fiji)

In [3]: data.info()

Qut[3]: 'TIFF file: 30567.tif, 473 MiB, big endian, ome, 720 pages\n\nSeries 0: 7
2x2x5x512x672, uintl6, TCZYX, 720 pages, not mem-mappable\n\nPage 0: 512x
672, uintl6, 16 bit, minisblack, raw, ome|contiguous\n* 256 image width
(1H) 672\n* 257 image length (1H) 512\n* 258 bits per_sample (1H) 16\n* 2
59 compression (1H) 1\n* 262 photometric (1H) 1\n* 270 image description
(3320s) b\'<?xml version="1.0" encoding="UTF-8"7?><!-- Wa\n* 273 strip off
sets (86I) (182, 8246, 16310, 24374, 32438, 40502, 48566, 56630,\n* 277 s
amples _per pixel (1H) 1\n* 278 rows per_strip (1H) 6\n* 279 strip byte co
unts (86I) (8064, 8064, 8064, 8064, 8064, 8064, 8064, 8064, \n* 282 x res
olution (2I) (1, 1)\n* 283 y resolution (2I) (1, 1)\n* 296 resolution uni
t (1H) 1\n* 305 software (17s) b\'LOCI Bio-Formats\''

2 of 26 1/23/20, 11:35 AM

11-Complete analysis file:///home/marie/Documents/CAS data scienc...

On the first line we see that we have 72 time points, 2 colors, 5 planes per color.

The nuclei are going to move a bit in Z (perpendicular to the image) over time, so it will be more accurate to segment a
projection of the entire stack. So how do we get a complete stack at a given time point. Let's plot the first few images, to
understand how they are stored.

3 of 26 1/23/20, 11:35 AM

11-Complete analysis file:///home/marie/Documents/CAS data_scienc...

In [4]: for i in range(15):
plt.imshow(data.pages[i].asarray())
plt.show()

4 of 26 1/23/20, 11:35 AM

11-Complete analysis

5 of 26

100

200

300

400

500

100

200

300

400

500

100

200

300

400

500

100

200

300

400

500

file:///home/marie/Documents/CAS data scienc...

1/23/20, 11:35 AM

11-Complete analysis

6 of 26

100

200

300

400

500

100

200

300

400

500

100

200

300

400

500

100

200

300

400

500

file:///home/marie/Documents/CAS data scienc...

1/23/20, 11:35 AM

11-Complete analysis

7 of 26

100

200

300

400

500

100

200

300

400

500

100

200

300

400

500

100

200

300

400

500

file:///home/marie/Documents/CAS data scienc...

1/23/20, 11:35 AM

11-Complete analysis file:///home/marie/Documents/CAS data scienc...

100
200
300
400

500

100
200
300
400

500

100
200
300
400

500

11.2 Processing a time-lapse

So it looks like we have all planes of colour 1 at time =0, then all planes of color 2 at time =0, then all planes of colour 1 at
time = 1 etc... Therefore to get a full stack at a given time we have to use:

8 of 26 1/23/20, 11:35 AM

11-Complete analysis file:///home/marie/Documents/CAS data scienc...

In [5]: images per_time = 10
time = 10
color =1
image stack = np.stack([x.asarray()
for x in data.pages[time*images per_ time+0+color
*5:time*images _per_time+5+color*5]1])
plt.imshow(np.max(image stack, axis = 0));

0
100
200
300
400

500

Let's make a little function out of that:

In [6]: def get stack(data, time, color, images per_time):
image stack = np.stack([x.asarray()
for x in data.pages[time*images per_ time+0+color
*5:time*images per time+5+color*5]1])
return image_stack

In [7]: plt.imshow(np.max(get stack(data, 0, 1, 10), axis = 0));

0
100
200
300
400

500

Now we can chose any time point and segment if using our two functions. In addition we can use the region properties to
define the average position of each detected nucleus:

9 of 26 1/23/20, 11:35 AM

11-Complete analysis file:///home/marie/Documents/CAS data scienc...

In [8]: #choose a time
time = 10

#load the stack and segment it

image stack = get stack(data, time,0,10)
image = np.max(image_ stack, axis = 0)
nuclei = nuclei = detect nuclei(image)

#find position of nuclei

nuclei label = label(nuclei)

regions = regionprops(nuclei_label)

centroids = np.array([x.centroid for x in regions])

#create a nan-mask for overlay
nuclei nan = nuclei.copy().astype(float)
nuclei nan[nuclei == 0] = np.nan

#plto the result

plt.figure(figsize=(10,10))

plt.imshow(image, cmap = 'gray')

plt.imshow(nuclei nan, cmap = 'Reds',vmin = 0,vmax = 1,alpha = 0.6)
plt.plot(centroids[:,1], centroids[:,0],'0");

/usr/local/lib/python3.5/dist-packages/skimage/filters/rank/generic.py:10
2: UserWarning: Bitdepth of 14 may result in bad rank filter performance
due to large number of bins.

"performance due to large number of bins." % bitdepth)

0

100

200

300

400

500

So now we can repeat the same operation for multiple time points and add the array with the coordinates to a list to keep
them safe

10 of 26 1/23/20, 11:35 AM

11-Complete analysis

In [9]:

centroids time []
for time in range(10):

#load the stack and segment it

file:///home/marie/Documents/CAS data scienc...

image stack = get stack(data, time,0,10)

image
nuclei

nuclei detect nuclei(
#find position of nuclei

nuclei label label(nuclei)
regions
centroids

centroids time.append(centroids)

/usr/local/lib/python3.5/dist-packag

np.max(image stack, axis

0)
image)

regionprops(nuclei_ label)
np.array([x.centroid for x in regions])

es/skimage/filters/rank/generic.py:10

2: UserWarning: Bitdepth of 14 may result in bad rank filter performance

due to large number of bins.

"performance due to large number of bins." % bitdepth)

Let's plot all those centroids for all time points

In [10]:

for x in centroids_time:
plt.plot(x[:,1],x[:,0]1,'0")

400 e - o o
350 T W s 7
Coo
300 1 e e Wy B @ » 2
@
Qe o »
x0{ Gegeo WP e o F -
»
200 ., «re w @
@ ® e - ®
o
150 { e S LY e
° (<4 @P@
c—"'(o= [O - © o
100 o o o
< =)
50 1 @»
0 100 200 300 400 500 600

We definitely see tracks corresponding to single nuclei here. How are we going to track them?

11.3 Tracking trajectories

The wonderful thing with Python, is that there are a lot of resources that one can just use. For example, if we Google
"python tracking", one of the first hits if for the package trackpy which is originally designed to track diffusion particles but
can be repurposed for anything.

Browsing through the documentation, we see that we need the function link_df. df stands for dataframe, which is a special
data format offered by the package Pandas, and is very close to the R dataframe. Let's load those two modules:

In [11]:

import trackpy
import pandas as pd

And look for some help:

11 of 26

1/23/20, 11:35 AM

11-Complete analysis file:///home/marie/Documents/CAS data_scienc...

In [12]: help(trackpy.link df)

12 of 26 1/23/20, 11:35 AM

11-Complete analysis file:///home/marie/Documents/CAS data_scienc...

Help on function link in module trackpy.linking.linking:

link(f, search _range, pos columns=None, t column='frame', **kwargs)
link(f, search_range, pos columns=None, t column='frame', memory=0,
predictor=None, adaptive stop=None, adaptive step=0.95,
neighbor strategy=None, link strategy=None, dist func=None,
to _eucl=None)

Link a DataFrame of coordinates into trajectories.

Parameters
f : DataFrame
The DataFrame must include any number of column(s) for position a

column of frame numbers. By default, 'x' and 'y' are expected for
position, and 'frame' is expected for frame number. See below for
options to use custom column names.

search_range : float or tuple
the maximum distance features can move between frames,
optionally per dimension

pos_columns : list of str, optional

Default is ['y', 'x'], or ['z', 'y', 'x'] when 'z' is present in
f
t column : str, optional
Default is 'frame'
memory : integer, optional
the maximum number of frames during which a feature can vanish,
then reappear nearby, and be considered the same particle. 0 by d
efault.

predictor : function, optional
Improve performance by guessing where a particle will be in
the next frame.
For examples of how this works, see the "predict" module.
adaptive stop : float, optional
If not None, when encountering an oversize subnet, retry by progr
essively
reducing search range until the subnet is solvable. If search ran
ge
becomes <= adaptive stop, give up and raise a SubnetOversizeExcep
tion.
adaptive step : float, optional
Reduce search _range by multiplying it by this factor.
neighbor strategy : {'KDTree', 'BTree'}
algorithm used to identify nearby features. Default 'KDTree'.
link strategy : {'recursive', 'nonrecursive', 'numba', ‘'hybrid', 'dro
p', 'auto'}
algorithm used to resolve subnetworks of nearby particles
'auto' uses hybrid (numba+recursive) if available
'drop' causes particles in subnetworks to go unlinked
dist func : function, optional
a custom distance function that takes two 1D arrays of coordinate
s and
returns a float. Must be used with the 'BTree' neighbor strategy.
to_eucl : function, optional
function that transforms a N x ndim array of positions into coord
inates
in Euclidean space. Useful for instance to link by Euclidean dist
ance
starting from radial coordinates. If search range is anisotropic,
this
parameter cannot be used.

Returns

DataFrame with added column 'particle' containing trajectory labels.
The t column (by default: 'frame') will be coerced to integer.

13 of 26 1/23/20, 11:35 AM

11-Complete analysis file:///home/marie/Documents/CAS data_scienc...

So we have a lot of options, but the most important thing is to get our data into a dataframe that has three columns, x,y
and frame. How are we going to create such a dataframe ?

11.3.1 Pandas dataframe

14 of 26 1/23/20, 11:35 AM

11-Complete analysis file:///home/marie/Documents/CAS data_scienc...

In [13]: help(pd.DataFrame)

15 of 26 1/23/20, 11:35 AM

11-Complete analysis file:///home/marie/Documents/CAS data_scienc...

Help on class DataFrame in module pandas.core.frame:

class DataFrame(pandas.core.generic.NDFrame)
| Two-dimensional size-mutable, potentially heterogeneous tabular data
| structure with labeled axes (rows and columns). Arithmetic operations
| align on both row and column labels. Can be thought of as a dict-like
| container for Series objects. The primary pandas data structure.
I
I

Parameters

data : ndarray (structured or homogeneous), Iterable, dict, or DataFr

I

I
ame

| Dict can contain Series, arrays, constants, or list-like objects

I

| versionchanged :: 0.23.0

| If data is a dict, argument order is maintained for Python 3.6

| and later.

I

| index : Index or array-like

| Index to use for resulting frame. Will default to RangeIndex if

| no indexing information part of input data and no index provided

| columns : Index or array-like

| Column labels to use for resulting frame. Will default to

| RangeIndex (0, 1, 2, ..., n) if no column labels are provided

| dtype : dtype, default None

| Data type to force. Only a single dtype is allowed. If None, infe
r

copy : boolean, default False
Copy data from inputs. Only affects DataFrame / 2d ndarray input

See Also

DataFrame.from records : Constructor from tuples, also record arrays.

DataFrame.from dict : From dicts of Series, arrays, or dicts.

DataFrame.from items : From sequence of (key, value) pairs
pandas.read csv, pandas.read table, pandas.read clipboard.

Examples

Constructing DataFrame from a dictionary.

>>> d = {'coll': [1, 2], 'col2': [3, 41}
>>> df = pd.DataFrame(data=d)

>>> df

coll «col2
0 1 3
1 2 4

Notice that the inferred dtype is int64.

>>> df.dtypes
coll int64
col2 int64
dtype: object

To enforce a single dtype:

>>> df = pd.DataFrame(data=d, dtype=np.int8)
>>> df.dtypes
coll int8
col2 int8
dtype: object

Constructing DataFrame from numpy ndarray:

31, [4, 5, 6], [7, 8, 9]]),

>>> df2 = pd.DataFrame(np.array([[1, 2,
Ibl, ICI])

columns=['a’',

oo> df2

16 of 26 1/23/20, 11:35 AM

11-Complete analysis file:///home/marie/Documents/CAS data_scienc...

Tons of information, but basically we can use as input a Numpy array. So let's just try to do that and see what comes out.
Our list of coordinates arrays only contains x and y positions but no time. So first we will add a column to each array. Let's
test on the first array:

In [34]: first array = centroids time[0].copy()
#first _array

We now append a column to this array that contains the time of this frame:

In [35]: time = 0
first array = np.c [first array, time *np.ones(first array.shape[0])]
#first_array

Let's do the same thing for all time points simply using a comprehension list:

In [33]: centroids_time2 = [np.c_[x, ind *np.ones(x.shape[0])] for ind, x in enum
erate(centroids time)]
#centroids time2[6]

Now we can concatenate this list of arrays into one large array that we are then going to transform into a dataframe

In [17]: centroids time2 = np.concatenate(centroids time2)
centroids_time2

Out[17]: array([[44.60991736, 617.96859504, 0. 1,
[66.87583893, 525.50503356, 0. 1,
[69.8377193 , 214.86403509, 0. 1,
[392.24482109, 507.03578154, 9. 1,
[397.68828452, 456.37656904, 9. 1,
[401.73901099, 294.92582418, 9. 11)

Let's simply pass that array to Pandas:

17 of 26 1/23/20, 11:35 AM

11-Complete analysis file:///home/marie/Documents/CAS data_scienc...

In [18]: pd.DataFrame(centroids time2)

18 of 26 1/23/20, 11:35 AM

11-Complete analysis

19 of 26

Out[18]:

0

1

o

44.609917

617.968595

0.0

—

66.875839

525.505034

0.0

69.837719

214.864035

0.0

84.217116

344.353407

0.0

87.518409

610.238586

0.0

92.680292

443.620438

0.0

102.700752

536.621053

0.0

111.597923

308.824926

0.0

110.965699

656.401055

0.0

ol IIN|loojla|s~|lOw|DN

111.904153

96.333866

0.0

iy
o

124.475000

385.454167

0.0

-
-

126.619847

177.270229

0.0

—y
N

125.789174

243.280627

0.0

-
w

133.640000

499.158182

0.0

-
E~Y

135.221003

587.832288

0.0

iy
(3]

140.683748

445.540264

0.0

=y
(<]

155.810651

652.556213

0.0

—
~

163.572843

113.851485

0.0

=y
o]

161.836915

332.108723

0.0

—y
©

162.773829

562.245557

0.0

N
o

166.139059

20.282209

0.0

N
g

177.107994

404.063114

0.0

N
N

189.304945

463.741758

0.0

N
w0

189.364353

511.083596

0.0

N
S

193.846939

272.607143

0.0

N
(3}

192.450355

627.601064

0.0

N
(2]

203.456770

201.928222

0.0

N
~

210.922010

5565.934142

0.0

N
o

215.804094

59.897661

0.0

N
©

218.667190

328.299843

0.0

591

261.488584

18.415525

9.0

592

256.252083

521.881250

9.0

593

277.380328

38.986885

9.0

594

264.311734

404.861646

9.0

595

269.465693

116.259854

9.0

596

268.803468

351.578035

9.0

597

270.057569

651.000000

9.0

file:///home/marie/Documents/CAS data scienc...

1/23/20, 11:35 AM

11-Complete analysis file:///home/marie/Documents/CAS data scienc...

Not too bad. The x, y and time columns of our arrays are now integrated into a dataframe.

We'd like now to change the headers of our dataframe. In the help we saw that there was on optional field called columns.
We can give the appropriate name there:

20 of 26 1/23/20, 11:35 AM

11-Complete analysis file:///home/marie/Documents/CAS data scienc...

In [19]: coords dataframe = pd.DataFrame(centroids time2, columns=('x','y','frame
)

coords_dataframe

21 of 26 1/23/20, 11:35 AM

11-Complete analysis

22 of 26

Out[19]:

X

y

frame

o

44.609917

617.968595

0.0

—

66.875839

525.505034

0.0

69.837719

214.864035

0.0

84.217116

344.353407

0.0

87.518409

610.238586

0.0

92.680292

443.620438

0.0

102.700752

536.621053

0.0

111.597923

308.824926

0.0

110.965699

656.401055

0.0

ol IIN|loojla|s~|lOw|DN

111.904153

96.333866

0.0

iy
o

124.475000

385.454167

0.0

-
-

126.619847

177.270229

0.0

—y
N

125.789174

243.280627

0.0

-
w

133.640000

499.158182

0.0

-
E~Y

135.221003

587.832288

0.0

iy
(3]

140.683748

445.540264

0.0

=y
(<]

155.810651

652.556213

0.0

—
~

163.572843

113.851485

0.0

=y
o]

161.836915

332.108723

0.0

—y
©

162.773829

562.245557

0.0

N
o

166.139059

20.282209

0.0

N
g

177.107994

404.063114

0.0

N
N

189.304945

463.741758

0.0

N
w0

189.364353

511.083596

0.0

N
S

193.846939

272.607143

0.0

N
(3}

192.450355

627.601064

0.0

N
(2]

203.456770

201.928222

0.0

N
~

210.922010

5565.934142

0.0

N
o

215.804094

59.897661

0.0

N
©

218.667190

328.299843

0.0

591

261.488584

18.415525

9.0

592

256.252083

521.881250

9.0

593

277.380328

38.986885

9.0

594

264.311734

404.861646

9.0

595

269.465693

116.259854

9.0

596

268.803468

351.578035

9.0

597

270.057569

651.000000

9.0

file:///home/marie/Documents/CAS data scienc...

1/23/20, 11:35 AM

11-Complete analysis file:///home/marie/Documents/CAS data_scienc...

That's it! We now have an appropriately formated dataframe to pass to our linking function, which required x,y and frame
columns. Information can be retried from dataframes in similar ways as from Numpy arrays or Python dictionaries. For
example, one can select a column (the head function limits the output):

In [20]: coords dataframe['x'].head()

Out[20]: © 44.609917
1 66.875839
2 69.837719
3 84.217116
4 87.518409
N

ame: x, dtype: float64

One can access a specific row using its index:

In [21]: coords dataframe.loc[0]

Out[21]: x 44 .609917
y 617.968595
frame 0.000000

Name: 0, dtype: float64

And one can use logical indexing. For example one can find all the lines corresponding to a given time frame, and extract
them:

In [22]: coords dataframe[coords dataframe['frame']==0].head()

Out[22]:

X y | frame

0]44.609917|617.968595| 0.0

1]66.875839|525.505034 | 0.0

69.837719214.864035|0.0

2
3184.217116|344.353407 0.0
4187.518409|610.238586 | 0.0

A dataframe and its contents have also a series of methods attached to them. For example we can get the maximum value
from a given columns like this:

In [23]: coords dataframe['x'].max()

Out[23]: 409.8050595238095

Pandas and Numpy are very close, so of course we could also have used the Numpy function:

In [24]: np.max(coords dataframe['x'])

Out[24]: 409.8050595238095

Using the Pandas package would be a course on itself as it is a very powerful tool to handle tabular data. We just showed
some very basic features here so that what follows makes sense. Note that this is a situation that occurs often: you just
need a few features of a package within a larger project, and have to figure out the basics of it. However, if you work with
large tabular data, learning Pandas is highly recommended.

23 of 26 1/23/20, 11:35 AM

11-Complete analysis

24 of 26

11.3.2 Tracking

file:///home/marie/Documents/CAS data scienc...

There are multiple options in the tracking function. E.g. in how many frames a signal is allowed to disappear, how we
calculate distances between objects etc. We are only going to give a value for the fields search_range which specifies in
what neighborhood one is doing the tracking.

In [25]: tracks = trackpy.link df(coords dataframe, search range=20)

Frame 9: 63 trajectories present.

The output is a new dataframe. It contains the position (x,y,frame) of each particle, and to what track (particle) it belongs:

In [26]: tracks.head()

Out[26]:
X y | frame | particle
0 (44.609917 [617.968595]0 0
33(248.584356 | 137.056748 | 0 1
34 (255.506154 | 227.063077 | 0 2
35(260.481848|524.721122 (0 3
36 (268.189189 | 384.758347 | 0 4

We have seen before that we can use indexing. So let's do that to recover all the points forming for example the trajectory

=10

In [27]: tracks[tracks['particle']==10]

Out[27]:
X y | frame | particle
42 |292.320814 (437.802817 |0 10
103 290.185759 [437.803406 | 1 10
163 |288.868012|438.596273 | 2 10
225)288.651537(439.784773 |3 10
288 |288.668721|439.288136 | 4 10
350|289.728213 [440.728213 | 5 10
413|288.701534 | 443.525802 | 6 10
476 | 288.875000 | 445.761765 | 7 10
538 (289.774924 [448.592145 | 8 10
600|289.171131 [451.400298 | 9 10

We see that in that particular case, we have one point per frame and the successive points seem close together, so the

tracking seems to have worked properly. We can recover all such trajectories and plot them on a single xy plot:

1/23/20, 11:35 AM

11-Complete analysis file:///home/marie/Documents/CAS data scienc...

In [28]: plt.figure(figsize=(10,10))
for particle_id in range(tracks['particle'].max()):
plt.plot(tracks[tracks.particle==particle _id].y,tracks[tracks.partic
le==particle id].x, 'o-")
plt.show()

400 ‘\' s

[
L ' 4
000
h SR N “ -
350 -
oy ' 4
=
300 -
0‘ b '
? | W= [- w ¢
250 L N— el ¢
L
\%" e . -
200 - W R v o - ©
e -
. o
150 - P . |
- / o - L4
L aad o” [
100 - (o)
7o ° -
< fa
307 -
0 100 200 300 400 500 600

11.4 Analysing the data

Now that we have those tracks, we can finally do some quantification of the process. For example we can measure what is
the largest distance traveled by each nucleus.

In [29]: msd = trackpy.imsd(tracks,1,1)

25 of 26 1/23/20, 11:35 AM

11-Complete analysis file:///home/marie/Documents/CAS data scienc...

In [30]: msd.loc[9].hist()
Out[30]: <matplotlib.axes. subplots.AxesSubplot at Ox7f011leObf7f0>

25 A

In [31]: distances = []
for particle id in range(tracks['particle']l.max()):
#recover current track
current_track = tracks[tracks.particle==particle_id]

#find beginning and end of track
min_time = np.min(current track['frame'])
max_time = np.max(current track['frame'])

#get positions at begin and end and measure distance

x1 = current _track[current track['frame']l==min time].iloc[0].x
yl = current _track[current track['frame']==min time].iloc[0].y
x2 = current_track[current track['frame']==max_time].iloc[0].Xx
y2 = current_track[current_track['frame']==max_time].iloc[0].y

distances.append(np.sqrt((x2-x1)**2+(y2-yl)**2))

In [32]: plt.hist(distances)
plt.show()

16

14

12

10 1

As we could have guesses from looking at the displacement plot, we have two categories of nucle: those that move on the
left of the image, and those that don't on the right.

26 of 26 1/23/20, 11:35 AM

12-Registration file:///home/marie/Documents/CAS data scienc...

12. Image registration

Image registration consists in aligning two images so that objects in them can be "aligned". This alignement can occur in
space, as for example in the case of tomography where successive stacks are slightly shifted, or in time, for example
when there is drift in a time-lapse acquisition.

There are many methods, more or less complicated to do this registration, which can involve shits, rotation and
deformation.

In [1]: import numpy as np
import matplotlib.pyplot as plt
import skimage.io as io

from skimage.feature import match template
from skimage.filters import threshold otsu

plt.gray()

io.imread('Data/channels/channelsl.tif"')
io.imread('Data/channels/channels2.tif"')

In [2]: imagel
image2

In [3]: imagel
image2

imagel[0:750, :1]
image2[0:750,:1]

In [4]: fig, ax = plt.subplots(1l,3, figsize=(15,10))
ax[0].imshow(imagel)
ax[1l].imshow(image2)
ax[2].imshow(imagel.astype(float)-image2.astype(float));

0 0
200 200

400

600

0 1000 1200 0 200 400 600 800 1000 1200 600 800 1000

12.1 Simple approach

10f8 1/23/20, 11:35 AM

12-Registration

20f8

In [5]:

In [6]:

In [7]:

In [8]:

Out[8]:

In [9]:

Out[9]:

In [10]:

file:///home/marie/Documents/CAS data scienc...

plt.imshow(imagel[200:300,200:300]);

0

20

matched = match template(image2, imagel[200:300,200:300],pad input=True)

plt.imshow(matched);

0
100
200
300
400
500
600

700

maxpos = np.argmax(matched)

maxpos

374576

maxpos = np.unravel index(maxpos, matched.shape)
maxpos

(312, 176)

plt.imshow(matched)
plt.plot([maxpos[1l]], [maxpos[0O]],'ro');

0
100
200
300
400
500
600

700

1/23/20, 11:35 AM

12-Registration

30of8

In [11]:

Out[11]:

In [12]:

In [13]:

file:///home/marie/Documents/CAS data scienc...

template_center = 250
maxpos = template center - np.array(maxpos)
maxpos

array([-62, 741])
image2 shift = np.roll(image2,shift = maxpos,axis = (0,1))

fig, ax = plt.subplots(1l,3, figsize=(15,10))
ax[0].imshow(imagel)

ax[1].imshow(image2 shift)
ax[2].imshow(imagel.astype(float)-image2 shift.astype(float));

0 0
200

400

600

400 600 800 1000 1200 200 400 600 800 1000 1200 600 800 1000 1200

12.2 General approach

In [14]:

In [15]:

In [16]:

In [17]:

from skimage.feature import ORB, match descriptors, plot matches
from skimage.measure import ransac
from skimage.transform import AffineTransform

detector extractorl
detector extractor2

ORB(n_keypoints=200)
ORB(n_keypoints=200)

detector_extractorl.detect and extract(imagel)
keypointsl = detector extractorl.keypoints
descriptorsl = detector _extractorl.descriptors

detector extractor2.detect and extract(image2)
keypoints2 = detector extractor2.keypoints
descriptors2 = detector _extractor2.descriptors

matchesl2 = match descriptors(descriptorsl, descriptors2, cross check=Tr
ue)

1/23/20, 11:35 AM

12-Registration file:///home/marie/Documents/CAS data scienc...

In [18]: fig, ax = plt.subplots()
plt.gray()
plot matches(ax, imagel, image2, keypointsl, keypoints2, matchesl2)

ax.axis('off"')
ax.set _title("Original Image vs. Transformed Image")

Out[18]: Text(0.5, 1.0, 'Original Image vs. Transformed Image')

Original Image vs. Transformed Image

In [19]: coordsl
coords?2

keypointsl[matches12[:, 0]]
keypoints2[matches12[:, 11]]

In [20]: for x1, x2 in zip(coordsl, coords2):
plt.plot([x1[0],x2[0]],[x1[1],x2[1]],"'-0")
plt.show()

PN

700

600

500

400 A1

300

200 |

100

100 200 300 400 500 600 700

In [21]: #coordsl
#coords2

coordsl[(coordsl[:,0]<400)&(coordsl[:,1]<400), :]
coords2[(coords2[:,0]<400)&(coords2[:,1]<400), :]

In [22]: model = AffineTransform()
model.estimate(coordsl, coords?2)

Out[22]: True

In [23]: print(model.scale, model.translation, model.rotation)
(3.9821515141194355, 1.461939042859838) [-427.31749233 -83.68571398] 0.1
2738167750904475

In [24]: model robust, inliers = ransac((coordsl, coords2), AffineTransform, min_
samples=3, residual threshold=0.1)

In [25]: print(model robust.scale, model robust.translation, model robust.rotatio
n)

(1.0000017322082522, 1.0018543351803184) [62.20768514 -74.84401361] -0.0
003090630277479058

40f8 1/23/20, 11:35 AM

12-Registration

50f8

file:///home/marie/Documents/CAS data scienc...

12.3 Fourier transform and rotation

If you have repetitive signal in your image, like here the channels, you can exploit it in your analysis. For example if your
image is not clearly horizontal an you want to align it, you can use the power of Fourier transforms to do the job.

A fourier transform is a way to describe any signal as an infinite sum of periodic signals. Very roughly, each component of
that sum has an amplitude given by the Fourier transform. In real world application one doesn't have continuous and
infinite signals and one has to use an approximate Fourier transform called Fast Fourier Transform or FFT. Naturally this
works not just in one dimension but also in two.

Quick 1d reminder:

In [26]:

#creaete x positions
X = np.arange(0,10*2*np.pi, 1)

#pick frequencies
freq = 0.1
freq2 = 0.5

#generate signal
y = np.cos(2*freq*x) + np.cos(2*freq2*x)

#plot the result
plt.plot(x,y,"'-0")
plt.show()

20
15
10
05
0.0
-0.5

1/23/20, 11:35 AM

12-Registration file:///home/marie/Documents/CAS data scienc...

In [27]: from scipy.signal import find peaks

#fourier transform the signal
fourier = np.fft.fft(y)

#plot it
plt.plot(fourier)
plt.show()

#find peaks position and recover frequency
print(find_peaks(fourier[0:3001)[0]1[0]1/20)
print(find peaks(fourier[0:300])[0][1]1/20)

/usr/local/lib/python3.5/dist-packages/numpy/core/numeric.py:501: Complex
Warning: Casting complex values to real discards the imaginary part
return array(a, dtype, copy=False, order=order)

25 A

20 1

15

10 4

[oNo]
Ul =

Now we look at the 2D case. For the purpose of the example, let's focus on the area that contains channels and create a
slightly rotated version of one of the images and see how we can use Fourier transforms to correct it.

In [28]: dimport skimage.transform

angle = 3
image rotate = imagel[:,400:1000]
image rotate = skimage.transform.rotate(image rotate,angle,cval=0)

plt.imshow(image rotate)
plt.show()

0
100
200
300
400
500
600

700

6 of 8 1/23/20, 11:35 AM

12-Registration file:///home/marie/Documents/CAS data scienc...

To avoid confusions with dimensions, let's make the image square by padding it.
In [29]: image pad = np.pad(image rotate, ((0,0), (image rotate.shape[0]-image rota

te.shape[1]1,0)),mode = 'constant',constant values = 0)

Now we take the 2D transform of the signal and plot it. We also shift use a shifting function so that low frequency signal
ends up in the middle of the image:

In [30]: fO = np.fft.fftshift(np.abs(np.fft.fft2(image pad)))

plt.figure(figsize=(10,10))
plt.imshow(np.log(f0))
plt.show()

0

100

200

300

400

500

600

700

To find the rotation angle, we can now rotate the fourier transform using a range of angles, and project along the vertical
axis. Once the cross visible in the middle of the image is aligned, its projection should show the maximal values:

7 of 8 1/23/20, 11:35 AM

12-Registration

8 of 8

In [31]:

In [33]:
Out[33]:

file:///home/marie/Documents/CAS data scienc...

allproj = []
#rotate the fourier transform and do a max projection
for i in np.arange(-10,10,1):

basicim = skimage.transform.rotate(f0,1i,cval=0)

allproj.append(np.max(np.sum(basicim,axis=0)))

#find maximum angle
angle = np.arange(-10,10,1)[np.argmax(allproj)]

angle

-3

1/23/20, 11:35 AM

13-Pixel classification file:///home/marie/Documents/CAS data scienc...

1of5

13. Pixel classification

We have for the moment mostly seen methods that rely on pixel intensity and shapes of objects to segment features.
When dealing with natural images (typical RGB images) one can however also exploit the fact that the channels taken
together give information on the image structure. To illustrate this we are going to use a classical clustering method
(Kmeans) found in the package scikit-learn. That package is the reference for anyone who wants to apply machine
learning methods to their data. It is a nice pendant to scikit-image as it also has a simple syntax, a good documentation
and many examples.

In [1]: import numpy as np
import matplotlib.pyplot as plt
plt.gray
import sklearn.cluster
import skimage.io

We are going to deal again with a geography satellite image that can be loaded here:

In [2]: image = skimage.io.imread('Data/geography/naip/m_3910505 nw_13 1 2015091
9/crop/m_ 39105065 nw 13 1 20150919 crop.tif')

/usr/local/lib/python3.5/dist-packages/skimage/external/tifffile/tifffil
e.py:2617: RuntimeWarning: py decodelzw encountered unexpected end of str

eam
strip = decompress(strip)

/usr/local/lib/python3.5/dist-packages/skimage/external/tifffile/tifffil

e.py:2552: UserWarning: unpack: buffer size must be a multiple of element

size
warnings.warn("unpack: %s" % e)

Let's just keep the first three RGB channels (no clue what the fourth one is...)
In [3]: image = image[:,:,0:3]

In [4]: plt.figure(figsize=(20,10))
plt.imshow(image);

500

1000

1500

1/23/20, 11:36 AM

13-Pixel classification file:///home/marie/Documents/CAS data scienc...

The image is quite large, so let's focus on a smaller region first, to reduce computational time:

In [5]: subim = image[0:1000,0:1000,:]

In [6]: plt.figure(figsize=(20,10))
plt.imshow(subim)
plt.show()

400

600

800

1000 . —
0 200 400 600 800 1000

If we want to use a clustering approach, i.e. grouping pixels which have similar features, we have to reshape our image
into an actual dataset where each pixel is a datapoint with three "properties”, in this case RGB.

In [7]: X = np.reshape(subim, (subim.shape[0]*subim.shape[l],3))

We can have a look at how this dataset looks like. Let's plot the first and second "features". We reduce the number of data
points and make them transparent so that we don't saturate the plot:

20f5 1/23/20, 11:36 AM

13-Pixel classification file:///home/marie/Documents/CAS data scienc...

In [8]: plt.plot(X[::100,0]1,X[::100,1]1,'0o',alpha = 0.01)
plt.show()

200 1

175 |

150 A1

125 A

100 A

75 1

T T T

50 75 100 125 150 175 200 225

We see by eye that we have at least two categories, with two levels of Red/Green. Let's do some clustering just on these
two components to better understand what happens for the image.

We are going to feed the Kmeans algorithm with a dataset containing the Red and Green features and say that we want
two categories in the end. The algorithm is going to iteratively assign each pixel to one category, and is certain to
converge. Of course there are other clustering methods that you can use in sklearn.

In [9]: kmeans = sklearn.cluster.KMeans(n clusters=2, random state=0).fit(X[:,0:

2])

The labels of each element are stored in here:

In [10]: kmeans.labels
OQut[1l@0]: array([O6, ©6, 0, ..., 1, 1, 1], dtype=int32)

Let's plot them by selecting them by label:

In [11]: plt.plot(X[kmeans.labels == 0,0],X[kmeans.labels == 0,1],'ro',alpha
0.01)
plt.plot(X[kmeans.labels == 1,0],X[kmeans.labels == 1,1],'bo"',alpha
0.01)
plt.show()

225 1
200 1
175 A1
150
125

100 A

T

0 75 100 125 150 175 200 225

30of5 1/23/20, 11:36 AM

13-Pixel classification file:///home/marie/Documents/CAS data scienc...

We see thats the algorith split the sample more or less at the expected position. Let's use now all the components and
classify our pixels

In [12]: kmeans = sklearn.cluster.KMeans(n_clusters=2, random state=0).fit(X)
In [13]: labels im = np.reshape(kmeans.labels ,(1000,1000))

In [14]: fig,ax = plt.subplots(1l,2, figsize = (20,10))
ax[0].imshow(subim)
ax[1].imshow(labels _im,cmap = 'gray');

200

400

600

800

1000

We see that we managed to plsit really well the data into forest and other types (roads, earth). Of course we couls use
more categories. Maybe with four categories we could split roads, light forest, dark forest and earth. Let's do that and
superpose each category to the original image.

In [15]: kmeans = sklearn.cluster.KMeans(n clusters=4, random state=0).fit(X)

In [16]: labels im = np.reshape(kmeans.labels ,(1000,1000))

In [17]: fig,ax = plt.subplots(1l,4, figsize (20,10))
for i in range(4):
ax[i].imshow(subim)

ax[i].imshow(labels im==i,cmap

Of course this is a very crude approach, but we still managed to nicely recover different features on that image in only a
few lines. The dataset for the entire image is huge and Kmeans clustering would be very time consuming. However we
can just re-use the model we trained on the smaller image to classify all the pixels of the image:

In [18]: X large = np.reshape(image, (image.shape[0]*image.shape[1l],3))

40f5 1/23/20, 11:36 AM

13-Pixel classification file:///home/marie/Documents/CAS data scienc...

In [19]: 1labels large = kmeans.predict(X large)
In [20]: labels im = np.reshape(labels large, (image.shape[0],image.shape[1l]))

In [21]: plt.figure(figsize=(20,10))
plt.imshow(image)
plt.imshow(labels im==3,cmap = 'Reds', alpha = 0.4);

0

500

1000

1500

50f5 1/23/20, 11:36 AM

14-OCR file:///home/marie/Documents/CAS data_scienc...

14. Image classification by machine learning: Optical text
recognition

There are different types of machine learning. In some cases, like in the pixel classification task, the algorithm does the
classification on its own by trying to optimize groups according to a given rule (unsupervised). In other cases one has to
feed the algorithm with a set of annotated examples to train it (supervised). Here we are going to train an ML algorithm to
recognize digits. Therefore the first things that we need is a good set of annotated examples. Luckily, since this is a
"popular" problem, one can find such datasets on-line. In general, this is not the case, and one has to manually create
such a dataset. Then one can either decide on a set of features that the algorithm has to use for learning or let the
algorithm define those itself. Here we look at the first case, and we will look at the second one in the following chapters.

Note that this notebooks does not present a complete OCR solution. The goal is rather to show the underlying principles of
machine learning methods used for OCR.

In [1]: dimport glob
import numpy as np
import matplotlib.pyplot as plt
plt.gray()
import pandas as pd
import skimage
import skimage.feature
import skimage.io

14.1 Exploring the dataset

We found a good dataset here (http://www.ee.surrey.ac.uk/CVSSP/demos/chars74k/) and downloaded it. Let's first have a
look at it.

We have a folder with 62 sub-folders corresponding to digits and lower and upper-case characters:

10f10 1/23/20, 11:36 AM

14-OCR file:///home/marie/Documents/CAS data scienc...

In [2]: data path = 'Data/Fonts/English/Fnt/’

samples = np.sort(glob.glob(data path+'*'))
print(samples)

['Data/Fonts/English/Fnt/Sample@@1l' 'Data/Fonts/English/Fnt/Sample002'
'Data/Fonts/English/Fnt/Sample003' 'Data/Fonts/English/Fnt/Sample004'’
'Data/Fonts/English/Fnt/Sample005' 'Data/Fonts/English/Fnt/Sample006'
'Data/Fonts/English/Fnt/Sample007' 'Data/Fonts/English/Fnt/Sample008'
'Data/Fonts/English/Fnt/Sample009' 'Data/Fonts/English/Fnt/Sample010'
'Data/Fonts/English/Fnt/Sample011' 'Data/Fonts/English/Fnt/Sample012’
'Data/Fonts/English/Fnt/Sample013' 'Data/Fonts/English/Fnt/Sample014'’
'Data/Fonts/English/Fnt/Sample01l5' 'Data/Fonts/English/Fnt/Sample016'
'Data/Fonts/English/Fnt/Sample017' 'Data/Fonts/English/Fnt/Sample018'
'Data/Fonts/English/Fnt/Sample019' 'Data/Fonts/English/Fnt/Sample020'
'Data/Fonts/English/Fnt/Sample021' 'Data/Fonts/English/Fnt/Sample022'
'Data/Fonts/English/Fnt/Sample023' 'Data/Fonts/English/Fnt/Sample024'’
'Data/Fonts/English/Fnt/Sample025' 'Data/Fonts/English/Fnt/Sample026'
'Data/Fonts/English/Fnt/Sample027' 'Data/Fonts/English/Fnt/Sample028'
'Data/Fonts/English/Fnt/Sample029' 'Data/Fonts/English/Fnt/Sample030'
'Data/Fonts/English/Fnt/Sample031' 'Data/Fonts/English/Fnt/Sample032'
'Data/Fonts/English/Fnt/Sample033' 'Data/Fonts/English/Fnt/Sample034'’
'Data/Fonts/English/Fnt/Sample035' 'Data/Fonts/English/Fnt/Sample036'
'Data/Fonts/English/Fnt/Sample037' 'Data/Fonts/English/Fnt/Sample038'
'Data/Fonts/English/Fnt/Sample039' 'Data/Fonts/English/Fnt/Sample040'
'Data/Fonts/English/Fnt/Sample041' 'Data/Fonts/English/Fnt/Sample042'
'Data/Fonts/English/Fnt/Sample043' 'Data/Fonts/English/Fnt/Sample044'’
'Data/Fonts/English/Fnt/Sample045' 'Data/Fonts/English/Fnt/Sample046'
'Data/Fonts/English/Fnt/Sample047' 'Data/Fonts/English/Fnt/Sample048'’
'Data/Fonts/English/Fnt/Sample049' 'Data/Fonts/English/Fnt/Sample050'
'Data/Fonts/English/Fnt/Sample051' 'Data/Fonts/English/Fnt/Sample052'
'Data/Fonts/English/Fnt/Sample053' 'Data/Fonts/English/Fnt/Sample054'
'Data/Fonts/English/Fnt/Sample055' 'Data/Fonts/English/Fnt/Sample056'
'Data/Fonts/English/Fnt/Sample057' 'Data/Fonts/English/Fnt/Sample058'
'Data/Fonts/English/Fnt/Sample059' 'Data/Fonts/English/Fnt/Sample060'’
'Data/Fonts/English/Fnt/Sample061' 'Data/Fonts/English/Fnt/Sample062']

Let's check the contents by plotting the first 5 images of a folder:

In [3]: files = glob.glob(samples[7]+'/*.png"')

20f 10 1/23/20, 11:36 AM

14-OCR file:///home/marie/Documents/CAS data scienc...

In [4]: plt.figure(figsize=(15,15))
for i in range(10):
plt.subplot(1,10,i+1)
image = skimage.io.imread(files[i])
plt.imshow(image)
plt.show()

0 100

So we have samples of each character written with different fonts and types (italic, bold).

14.2 Classifying digits

30f10 1/23/20, 11:36 AM

14-OCR

4 0of 10

file:///home/marie/Documents/CAS data scienc...

We are first going to try to classify digits. Our goal is to be able to pass an image of the type shown above to our ML
algorithm so that the latter can say what digit is present in that image.

First, we have to decide what information the algorithm should use to make that decision. The simplest thing to do is to just
say that each pixel is a "feature", and thus to use a flattened version of each image as feature space.

So that the process is a bit faster we are going to rescale all the images to 32x32 pixels so that we have 322 features.

14.2.1 Loading and scaling images

For each digit, we load 50 images by randomly selecting them. We rescale them and reshape them in a single
comprehension list. Let's see what happens for one digit:

In [5]: data = [np.reshape((skimage.transform.rescale(skimage.io.imread(files
[x]),1/4,order = 1)>0.1).astype(np.uint8),32**2)
for x in np.random.choice(np.arange(len(files)), 10, replace=Fals
e)]

/usr/local/1lib/python3.5/dist-packages/skimage/transform/ _warps.py:24: Us
erWarning: The default multichannel argument (None) is deprecated. Pleas
e specify either True or False explicitly. multichannel will default to
False starting with release 0.16.

warn('The default multichannel argument (None) is deprecated. Please
/usr/local/lib/python3.5/dist-packages/skimage/transform/ warps.py:105: U
serWarning: The default mode, 'constant', will be changed to 'reflect' in
skimage 0.15.

warn("The default mode, 'constant', will be changed to 'reflect' in
/usr/local/lib/python3.5/dist-packages/skimage/transform/ warps.py:110: U
serWarning: Anti-aliasing will be enabled by default in skimage 0.15 to a
void aliasing artifacts when down-sampling images.

warn("Anti-aliasing will be enabled by default in skimage 0.15 to "

In [6]: plt.imshow(np.reshape(datal[2],(32,32)),cmap = 'gray')
plt.show()

04

5

10

15 A

20 |

25 1

Now let's do this for all digits and aggregate all these data into all_data:

1/23/20, 11:36 AM

14-OCR file:///home/marie/Documents/CAS data_scienc...

In [7]: num_samples = 500

all data = []
for ind, s in enumerate(samples[0:10]):
files = glob.glob(s+'/*.png')

data = np.array([np.reshape((skimage.transform.rescale(skimage.io.im
read(files[x]),1/4)>0.1).astype(np.uint8),32**2)
for x in np.random.choice(np.arange(len(files)),num_samples, repl
ace=False)])

all data.append(data)

/usr/local/1lib/python3.5/dist-packages/skimage/transform/_warps.py:24: Us
erWarning: The default multichannel argument (None) is deprecated. Pleas
e specify either True or False explicitly. multichannel will default to
False starting with release 0.16.

warn('The default multichannel argument (None) is deprecated. Please
/usr/local/lib/python3.5/dist-packages/skimage/transform/ warps.py:105: U
serWarning: The default mode, 'constant', will be changed to 'reflect' in
skimage 0.15.

warn("The default mode, 'constant', will be changed to 'reflect' in "
/usr/local/lib/python3.5/dist-packages/skimage/transform/ warps.py:110: U
serWarning: Anti-aliasing will be enabled by default in skimage 0.15 to a
void aliasing artifacts when down-sampling images.

warn("Anti-aliasing will be enabled by default in skimage 0.15 to "

Now we concatenate all these data into one single matrix:
In [8]: data = np.concatenate(all data,axis = 0)

In [9]: data.shape
Out[9]: (5000, 1024)

14.2.2 Creating categories

We have 50 examples for 10 digits and each example has 1024 features. We also need to create an array that contains
the information "what digit is present at each row of the data array. We have 500 times a list of each digit:

In [10]: cats = [str(i) for i in range(len(all _data))]l
category = np.concatenate([[cats[i] for j in range(num_samples)] for i i
n range(len(cats))])

In [11]: category
Qut[1l1l]: array(['©®', 'O', 'O', ..., '9', '9', '9'], dtype='<Ul")

14.2.3 Running the ML algorithm

Now we are ready to use our dataset of features and our corresponding list of categories to train a classifier. We are going
to use here a Random Forest classifier implement in scikit-learn:

50f10 1/23/20, 11:36 AM

14-OCR file:///home/marie/Documents/CAS data scienc...

In [12]: from sklearn.model_selection import train test split
from sklearn.ensemble import RandomForestClassifier
from sklearn import metrics
from sklearn.metrics import confusion matrix

First we have to split the dataset into a training and a testing dataset. It is very important to test the classifier on data that
have not been seen previously by it!

In [13]: Xtrain, Xtest, ytrain, ytest = train test split(data, category, random_ s
tate=0)

Now we can do the actual learning:

In [14]: model = RandomForestClassifier(n_estimators=1000)
model.fit(Xtrain, ytrain)

Out[14]: RandomForestClassifier(bootstrap=True, class weight=None, criterion='gini

max_depth=None, max features='auto', max leaf nodes=None,
min_impurity decrease=0.0, min_impurity split=None,
min_samples leaf=1, min_samples split=2,

min weight fraction leaf=0.0, n_estimators=1000, n_jobs=None,
oob score=False, random state=None, verbose=0,
warm_start=False)

Finally we can verify the predictions on the test dataset. The predict function returns a list of the category to which each
testing sample has been assigned.

In [15]: ypred = model.predict(Xtest)

In [16]: ypred
Qut[16]: array(['®', '7', '9', ..., '0', '6', '4'], dtype='<U1l")

We can look at a few examples:

In [17]: fig, ax = plt.subplots(l, 10, figsize = (15,10))
for x in range(10):
ax[x].imshow(np.reshape(Xtest[x], (32,32)),cmap="'gray"')
ax[x].set title(ypred[x])

plt.show()
0 7 9 9 1 5 2 4 0 5
0 0 0 0 0 0 0 0 0 0
2 0) ; 0 .) » EJ » 1 P ' i D E E0) 4 » O 11 ;
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20

In order to get a more comprehensive view, we can look at some statistics:

6 of 10 1/23/20, 11:36 AM

14-OCR

file:///home/marie/Documents/CAS data scienc...

In [18]: print(metrics.classification report(ypred, ytest))

CooNOUR,WNEREO

micro avg
macro avg
weighted avg

precision

[cNoNoNoNoNoNoNoNRoNOo)

[cNoNo)

.97
.97
.97
.89
.95
.97
.96
.98
.94
.92

.95
.95
.95

recall

[cNoNoNoNoNoNoNoNRoNo)

[cNoNo)

.96
.94
.99
.99
.97
.93
.89
.95
.94
.95

.95
.95
.95

fl-score

[cNoNoNoNoNoNoNoNRoNOo)

[cNoNo)

.96
.95
.98
.94
.96
.95
.92
.97
.94
.93

.95
.95
.95

support

120
129
117
106
111
144
123
133
139
128

1250
1250
1250

We see that our very simple features, basically the pixel positions, and 50 examples per class are sufficient to reach a very

good result.

14.3 Using the classifier on "real"” data

Let's try to segment a real-life case: an image of a digital screen:

In [19]: #jpg = skimage.io.imread('/Users/gwl8g940/Desktop/Test data/ImageProcess

ingCourse/digit.jpg")
jpg = skimage.io.imread('Data/mz_digit.jpg"')

In [20]: plt.imshow(jpg, cmap = 'gray')

plt.show()

0
100
200
300

400

0 100 200

14.3.1 Pre-processing

300

400

600

700

800

We trained our classifier on black and white pictures, so let's first convert the image and create a black and white version

using a thresholder:

In [21]: jpg = skimage.color.rgb2gray(jpg)
th = skimage.filters.threshold li(jpg)
jpg_th = jpg<th

7 of 10

1/23/20, 11:36 AM

14-OCR file:///home/marie/Documents/CAS data scienc...

In [22]: plt.imshow(jpg th);

0

100 A

: ,’35

400 A

0 100 200 300 400 500 600 700 800

14.3.2 Identifying numbers

First we need to identify each single number present here in the second row. If we project the image along the horizontal
direction, we clearly see an "empty" region. By detecting where the steps are, we can isolate the two lines of text:

In [23]: plt.plot(np.max(jpg_th,axis = 1));

104 4

0 100 200 300 400 500

In [26]: #create projection
proj = np.max(jpg_th,axis = 1)
#select "positive" regions and find their indices
regions = proj > 0.5
text _indices = np.arange(jpg.shape[0])[regions]
#find the steps and split the indices into two groups
splits = np.split(text _indices,np.where(np.diff(np.arange(jpg.shape
[0])[regions])>1)[0]1+1)

In [31]: plt.imshow(jpglsplits[1l],:],cmap = 'gray')
plt.show()

To separate each digit we proceed in the same way by projecting along the vertical dimensions:

In []: #select line to process
line_ind =1
proj2 = np.min(jpg[splits[line_ind],:],axis = 0)
regions = proj2 < 0.5
text indices = np.arange(jpg.shape[l])[regions]
splits2 = np.split(text indices,np.where(np.diff(np.arange(jpg.shape
[1])[regions])>1)[0]+1)

8 of 10 1/23/20, 11:36 AM

14-OCR file:///home/marie/Documents/CAS data_scienc...

splits2 contains all column indices for each digit:
In [30]: characters = [jpg th[splits[line _ind],x[0]:x[-1]1]1 for x in splits2]
In []1: [x.shape for x in characters]

In []1: for ind, x in enumerate(characters):
plt.subplot(1,10, ind+1)
plt.imshow(x)

plt.show()

14.3.3 Rescaling

Since we rely on pixels positions as features, we have to make sure that the images we are passing to the classifier are
similar to those used for training. Those had on average a height of 24 pixels. So let's rescale:

In [1: im_re = (skimage.transform.rescale(characters[2],1/(characters[2].shape
[0]1/24),
preserve range=True, order = 1, anti a
liasing=False)>0.1).astype(np.uint8)

Additionally, the images are square and have 32 pixels. So let's pad our images. We do that by filling an empty image with
our image at the middle. We also have to make sure that the intensity scale is correct:

In [1: empty = np.zeros((32,32))
empty[int((32-im_re.shape[0])/2):int((32-im_re.shape[0])/2)+im_re.shape
(o1,
int((32-im_re.shape[l1])/2):int((32-im _re.shape[1l])/2)+im re.shape
[1]] = im_re
empty = empty<0.5

to pass = (1l*empty).astype(np.uint8)

Finally we can pass this to the classifier:

In []1: ypred = model.predict(np.reshape(to pass,32**2)[np.newaxis,:])
fig,ax = plt.subplots()
plt.imshow(to_pass)
ax.set title('Prediction: '+ ypred[0])
plt.show()

Let's do the same exercise for all digits:

9 0f 10 1/23/20, 11:36 AM

14-OCR file:///home/marie/Documents/CAS data_scienc...

In []: fig, ax = plt.subplots(l, 10, figsize = (15,10))
for x in range(10):
final size = 32

im re = (skimage.transform.rescale(characters[x],1/(characters[x].sh
ape[0]/24),
preserve_range=True, order = 1, an
ti aliasing=False)>0.1).astype(np.uint8)
empty = np.zeros((32,32))
empty[int((32-im_re.shape[0])/2):int((32-im_re.shape[0])/2)+im re.sh
ape[0],
int((32-im_re.shape[l])/2):int((32-im re.shape[1l])/2)+im re.sha
pel[l]] = im re
to _pass = empty<0.5

to _pass = (1*to_pass).astype(np.uint8)
ypred = model.predict(np.reshape(to_pass,32**2)[np.newaxis,:])
ax[x].imshow(to pass)
ax[x].set title(ypred[0O])
plt.show()

14.4 With all characters

In []1: num_samples = 100

all data = []
for ind, s in enumerate(samples[0:62]):
files = glob.glob(s+'/*.png')

data = np.array([np.reshape((skimage.transform.rescale(skimage.io.im
read(files[x]),1/4)>0.1).astype(np.uint8),32**2)
for x in np.random.choice(np.arange(len(files)),num_samples, repl
ace=False)])

all data.append(data)
data = np.concatenate(all data,axis = 0)

chars = 'abcdefghijklmnopgrstuvwxyz'
cats = [str(i) for i in range(10)]+[i for i in chars.upper()]1+[i for i i
n chars]

category = np.concatenate([[cats[i] for j in range(num samples)] for i i
n range(len(cats))])

Xtrain, Xtest, ytrain, ytest = train test split(data, category, random_s
tate=0)

model = RandomForestClassifier(n estimators=1000)
model.fit(Xtrain, ytrain)

In []: ypred = model.predict(Xtest)
print(metrics.classification_ report(ypred, ytest))

In []1: mat = confusion matrix(ytest, ypred)
fig, ax = plt.subplots(figsize=(10,10))
plt.imshow(mat.T,vmin = 0,vmax = 10)#, square=True, annot=True, fmt='d',
cbar=False)
plt.xticks(ticks=np.arange(62),labels=cats)
plt.yticks(ticks=np.arange(62),labels=cats)
plt.xlabel('true label')
plt.ylabel('predicted label');

10 of 10 1/23/20, 11:36 AM

15-DeepLearning

15. Deep learning

Deep learning methods are used more and more fequently for complex segmentation tasks. The basic idea of that
approach is to let a system learn by itself what are the important features of the objects to segment by feeding it training
examples.

Of course you will not learn all the details about deep learning in this single notebook. The goal here is simply to give a
very brief overview of the steps involved. In particular the goal is to show that if you are provided with a trained network
e.g. by a collaborator, using it to segment your data is very straightforward.

The example here uses Tensorflow and Keras. Tensorflow is Google's deep learning library that is widely used. Keras is a
layer that sits on top of tools like Tensorflow and allows one to simplify the prototyping of a deep learning pipeline. It can
also transparently be used with other "backends" like PyTorch, Facebook's deep learning library.

In [2]: dimport numpy as np
import matplotlib.pyplot as plt
from skimage.external.tifffile import TiffFile
from skimage.measure import label, regionprops
from skimage.segmentation import watershed

#import your function
import sys, os
from course_functions import detect nuclei

if not os.path.isdir('MyData/DL'):
os.makedirs('MyData/DL")

15.1 Creating the training set

As a simple example, we are going to use the Zebra fish embryo nuclei that we have tried to segment before. Usually, one
would create a training set by manually segmenting data or at least manually correcting them. Here we cheat and use our
previous segmentation pipeline to create a learning dataset.

First we have to decide how large our training images are going to be. This is set by the type of computing resource used
and the memory size.

In [3]: imsize = 64
image_rows
image cols
channels =1

64
64

In [4]: #load the image to process
data = TiffFile('Data/30567/30567.tif")
image = data.pages[0].asarray()
per image = np.floor(np.array(image.shape)/imsize)

To create our training set, we are going to segment 5 images using our previous pipeline. Then we are going to cut the
original image and its mask into 64x64 pieces. We exclude images which have no nuclei as they don't contain interesting
information.

file:///home/marie/Documents/CAS data scienc...

1/23/20, 11:36 AM

15-DeepLearning file:///home/marie/Documents/CAS data_scienc...

In [5]: all _images = []

all masks = []

for t in (3,13,23,33,43):
image = data.pages[t].asarray()
im float = image.astype(np.float32)
#create your mask
nuclei = detect nuclei(image)
nuclei = nuclei.astype(np.uint8)

for i in range(int(per_image[0])):
for j in range(int(per_image[1l])):
if np.sum(nuclei[i*imsize: (i+1)*imsize,j*imsize: (j+1)*imsiz

e])>1:

all images.append(im float[i*imsize: (i+1)*imsize,j*imsiz
e:(j+1l)*imsize])

all masks.append(nuclei[i*imsize: (i+1)*imsize,j*imsiz
e:(j+1)*imsize])

plt.imshow(nuclei, cmap = 'gray')

/usr/local/lib/python3.5/dist-packages/skimage/filters/rank/generic.py:10
2: UserWarning: Bitdepth of 14 may result in bad rank filter performance
due to large number of bins.

"performance due to large number of bins." % bitdepth)

Out[5]: <matplotlib.image.AxesImage at 0x7fbdbcl573c8>

0
100
200
300

400

Here we could split our dataset into a training and testing set. We have enough other data so we use all examples for
training.

In [6]: num_images =5
total = len(all _masks)

num_train = int(0.99*total)
num_test = total-num_train
print(total)
print(num_train)
print(num_test)

283
280
3

Now we create empty arrays that are going to contain all our data. Note that this works only if the data are not too large or
you have a computer with a lot of RAM. The alternative is to use a more complex approach using Python generators,
which are going to serve images sequentially.

20f5 1/23/20, 11:36 AM

15-DeepLearning file:///home/marie/Documents/CAS data_scienc...

In [7]: imgs = np.ndarray((num_train, image rows, image cols,channels), dtype=n
p.float64)
imgs_mask = np.ndarray((num_train, image rows, image cols), dtype=np.uin
t8)
imgs_test = np.ndarray((num_test, image rows, image cols,channels), dtyp
e=np.float64)
imgs_id = np.ndarray((num_test,), dtype=np.int32)
imgs _weight = np.ndarray((num_train, image rows, image cols), dtype=np.u
int8)
imgs weight[:]1=1

Now we fill up our containers. Note that they have to be in special shapes to be fed correctly to the network. Also, in
addition to our images and masks, we have so-called weights. This is an image that is going to assign more importance to
certain regions. This is important for example if one category of pixels appears much less than another, like in our case
nuclei vs. background.

Note also that we correct all images by normalizing them to avoid extreme values.

In [8]: for counter in range(total):
if counter<num_train:
imgs[counter] = all images[counter][..., np.newaxis]
imgs mask[counter] = all masks[counter]
imgs _weight[counter] = 10*all masks[counter]+1
else:
imgs_test[counter-num_train] = all images[counter][..., np.newax
is]
imgs_id[counter-num_train] = counter-num train
mean_val = np.mean(imgs)
imgs = imgs - mean_val

std val = np.std(imgs)

imgs = imgs/std val

np.save('MyData/DL/'+'imgs_train.npy', imgs)
np.save('MyData/DL/'+'imgs _mask train.npy', imgs mask.reshape((num_trai
n,image rows*image cols)))

np.save('MyData/DL/'+'imgs test.npy', imgs test)
np.save('MyData/DL/'+'imgs_id test.npy', imgs_id)
np.save('MyData/DL/'+'imgs weight train.npy', imgs weight.reshape((num_t
rain,image rows*image cols)))

15.2 Training the network

Now we can import our small deep learning module.

In [9]: import deeplearning

Using TensorFlow backend.

And we can run the training of our network.

30of5 1/23/20, 11:36 AM

15-DeepLearning file:///home/marie/Documents/CAS data_scienc...

64
64

In []: image_ rows
image cols

deeplearning.nuclei train('MyData/DL/', image rows,image cols, dims=1, b
atch size = 10, epochs = 100, weights = None)

WARNING: Logging before flag parsing goes to stderr.

W0123 11:17:27.983967 140454236452608 deprecation wrapper.py:119] From /u
sr/local/lib/python3.5/dist-packages/keras/backend/tensorflow backend.py:
4070: The name tf.nn.max pool is deprecated. Please use tf.nn.max pool2d
instead.

W0123 11:17:29.209715 140454236452608 deprecation.py:323] From /usr/local
/lib/python3.5/dist-packages/tensorflow/python/ops/math _grad.py:1250: add
_dispatch support.<locals>.wrapper (from tensorflow.python.ops.array ops)
is deprecated and will be removed in a future version.

Instructions for updating:

Use tf.where in 2.0, which has the same broadcast rule as np.where

W0123 11:17:33.899000 140454236452608 deprecation wrapper.py:119] From /u
sr/local/lib/python3.5/dist-packages/keras/backend/tensorflow backend.py:
422: The name tf.global variables is deprecated. Please use tf.compat.vl.
global variables instead.

Train on 224 samples, validate on 56 samples

Epoch 1/100
2247224 | 1 - 37s 164ms/step - loss: 0.8377
- dice coef: 0.2907 - val loss: 0.4347 - val dice coef: 0.4183

Epoch 2/100
224/224 |] - 27s 118ms/step - loss: 0.2871
- dice_coef: 0.6174 - val loss: 0.1904 - val dice coef: 0.7066

Epoch 3/100

2247224 |] - 30s 134ms/step - loss: 0.1857
- dice _coef: 0.7411 - val loss: 0.1603 - val dice coef: 0.7344

Epoch 4/100

224/224 |] - 28s 127ms/step - loss: 0.1449
- dice coef: 0.7921 - val loss: 0.1272 - val dice coef: 0.8245

Epoch 5/100

40/224 [====>. ... it] - ETA: 27s - loss: 0.1383 - dice
_coef: 0.8084

15.3 Using the trained network

Let's load an image that we did not use for training and select a 512x512 region.

In []1: image = data.pages[l43].asarray()[0:512,0:512]
im float = image.astype(float)

Now we load again the network and say what the input size will be. Then most importantly, we use the weights that we
just trained.

In [1: model = deeplearning.get unet(1,512,512)
model.load weights('MyData/DL/weights.h5")

We correct now this single picture with the same factors used for the training set, so that it is in the same state.

40f5 1/23/20, 11:36 AM

15-DeepLearning file:///home/marie/Documents/CAS data_scienc...

In []: imgs_test im_float.astype('float32')

imgs_test = imgs_test

imgs_test = imgs_test - mean_val
imgs test = imgs test/std val
plt.imshow(imgs test)

plt.show()

Finally we reshape it to fit into the network and use the predict() function to generate a prediction for each pixel to be
foreground or background.

In []1: imgs_test = imgs test[np.newaxis,...,np.newaxis]
imgs _mask test = model.predict(imgs test, verbose=1)
imgs _mask test = np.reshape(imgs mask test,imgs test.shape)

Finally we can plot the resulting image, which has values from 0 to 1.

In []: plt.imshow(imgs mask test[0,:,:,0], vmin = 0, vmax = 1, cmap= 'gray')
plt.show()

We can now set a threshold for what should be considerd foreground to generate a mask, and compare to the previous
segmentation.

In []1: nuclei = detect nuclei(image)

plt.figure(figsize=(10,10))

plt.subplot(1,2,1)
plt.imshow(imgs mask test[0,:,:,0]>0.9, cmap = 'gray')
plt.subplot(1,2,2)

plt.imshow(nuclei[0:512,0:512], cmap = 'gray')
plt.show()

50f5 1/23/20, 11:36 AM

16-Image classification file:///home/marie/Documents/CAS data_scienc...

16. Image classification using deep learning

In the previous notebooks, we have mostly focused on the segmentation task, i.e isolating structures in images. Another
major image processing task is instead to classify entire images. For example when screening for skin caner, one is not
necessarily in segmenting a tumor but rather saying whether a tumor is absent or present in an image.

Deep learning methods have been shown in the past years to be very efficient in this exercise, and many different
networks have been designed. A lot of models can be found online, for example on Github. In addition, Keras, a very
popular high-level package for machine learning, offers ready-to-use implementations of many popular networks. Those
networks have already been trained on specific datasets, but of course one can re-train them to solve other classification
tasks. Here we are going to see how to use these Keras implementations.

16.1 Importing the model

It is straightforward to import the needed model. Documentations can be found here (https://keras.io/applications/). Here
we are using the VGG16 model (https://arxiv.org/abs/1409.1556) that has been trained on the ImageNet dataset, which
classifies objects in 1000 categories.

In [1]: from keras.applications.vggl6é import VGG16
from keras.applications.vgglé import preprocess input
from keras.applications.vggl6é import decode predictions

#from keras.applications.xception import Xception
#from keras.applications.xception import preprocess input
#from keras.applications.xception import decode predictions

import numpy as np

import skimage

import skimage.io

import skimage.transform
import matplotlib.pyplot as plt

Using TensorFlow backend.

Now we load the model, specifying the weights to be used. Those weights define all the filters that are used in the
convolution steps as well as the actual weights that combine information from the output of different filters.

In [2]: model = VGGl6(weights='imagenet', include_ top=True)
#model = Xception(weights='imagenet', include top=True)

WARNING: Logging before flag parsing goes to stderr.

W0123 11:15:52.456051 140581987952384 deprecation wrapper.py:119] From /u
sr/local/lib/python3.5/dist-packages/keras/backend/tensorflow_backend.py:
4070: The name tf.nn.max pool is deprecated. Please use tf.nn.max pool2d
instead.

Downloading data from https://github.com/fchollet/deep-learning-models/re
leases/download/v0.1/vggl6 weights tf dim ordering tf kernels.h5
553467904/553467096 [] - 91s Qus/step

We can have a look at the structure of the network:

1o0f14 1/23/20, 11:38 AM

16-Image classification

In [3]:

model.summary ()

Model: "vggl6"

file:///home/marie/Documents/CAS data scienc...

Layer (type) Output Shape Param #
input 1 (InputLayer) (None, 224, 224, 3) 0
blockl convl (Conv2D) (None, 224, 224, 64) 1792
blockl conv2 (Conv2D) (None, 224, 224, 64) 36928
blockl pool (MaxPooling2D) (None, 112, 112, 64) 0
block2 convl (Conv2D) (None, 112, 112, 128) 73856
block2 conv2 (Conv2D) (None, 112, 112, 128) 147584
block2 pool (MaxPooling2D) (None, 56, 56, 128) 0
block3 convl (Conv2D) (None, 56, 56, 256) 295168
block3 conv2 (Conv2D) (None, 56, 56, 256) 590080
block3 _conv3 (Conv2D) (None, 56, 56, 256) 590080
block3 pool (MaxPooling2D) (None, 28, 28, 256) 0
block4 convl (Conv2D) (None, 28, 28, 512) 1180160
block4 conv2 (Conv2D) (None, 28, 28, 512) 2359808
block4 conv3 (Conv2D) (None, 28, 28, 512) 2359808
block4 pool (MaxPooling2D) (None, 14, 14, 512) 0
block5 convl (Conv2D) (None, 14, 14, 512) 2359808
block5 conv2 (Conv2D) (None, 14, 14, 512) 2359808
block5 conv3 (Conv2D) (None, 14, 14, 512) 2359808
block5 pool (MaxPooling2D) (None, 7, 7, 512) 0
flatten (Flatten) (None, 25088) 0

fcl (Dense) (None, 4096) 102764544
fc2 (Dense) (None, 4096) 16781312
predictions (Dense) (None, 1000) 4097000

Total params: 138,357,544

Trainable params: 138,357,544

Non-trainable params: 0

16.2 Choosing and adjusting an image

Let's test the network on a simple image of an elephant:

20f 14

1/23/20, 11:38 AM

16-Image_classification file:///home/marie/Documents/CAS data scienc...

In [4]:

In [5]:

image = skimage.io.imread('https://upload.wikimedia.org/wikipedia/common
s/1/19/Afrikanische Elefant%2C Miami2.jpg')

plt.imshow(image)
plt.show()

200
400
600
800
1000
1200 +

1400

1600

0 500 1000 1500 2000

Models are always expecting images of a certain size, and with intensities around a given values. This is taken care of

here:

In [6]:

#adjust image size and dimensions

image resize = skimage.transform.resize(image, (224,224),preserve_range=T
rue)

X = np.expand dims(image resize, axis=0)

#adjust image intensities
X = preprocess_input(x)

/usr/local/lib/python3.5/dist-packages/skimage/transform/ warps.py:105: U
serWarning: The default mode, 'constant', will be changed to 'reflect' in
skimage 0.15.

warn("The default mode, 'constant', will be changed to 'reflect' in
/usr/local/lib/python3.5/dist-packages/skimage/transform/ warps.py:110: U
serWarning: Anti-aliasing will be enabled by default in skimage 0.15 to a
void aliasing artifacts when down-sampling images.

warn("Anti-aliasing will be enabled by default in skimage 0.15 to "

16.3 Prediction

Finally, we can pass that modified image to the network to give a prediction:

In [7]:

features = model.predict(x)

W0123 11:17:29.866466 140581987952384 deprecation wrapper.py:119] From /u
sr/local/lib/python3.5/dist-packages/keras/backend/tensorflow backend.py:
422: The name tf.global variables is deprecated. Please use tf.compat.vl.
global_variables instead.

When we look at the dimensions of the output, we see that we have a vector of 1000 dimensions. Each dimensions
corresponds to a category and the value represents the probability that the image contains that category. If we plot the
vector we see that the image clearly belong to one category:

3of 14

1/23/20, 11:38 AM

16-Image classification file:///home/marie/Documents/CAS data scienc...

In [8]: features.shape

Out[8]: (1, 1000)

In [9]: plt.plot(features.T)
plt.show()

10

0.8 1

0.6

04

021

00 1 1
0 200 400 600 800 1000

We can use the decond function, to know what this category index corresponds to:

40f14 1/23/20, 11:38 AM

16-Image classification file:///home/marie/Documents/CAS data_scienc...

In [10]: decode predictions(features, top=1000)

50f 14 1/23/20, 11:38 AM

16-Image classification file:///home/marie/Documents/CAS data_scienc...

Downloading data from https://storage.googleapis.com/download.tensorflow.
org/data/imagenet class index.json
40960/35363 [] - 0s lus/step

6 of 14 1/23/20, 11:38 AM

16-Image classification file:///home/marie/Documents/CAS data_scienc...

Out[10]: [[('nG2504458', 'African_elephant', 0.97247916),
('n01871265', 'tusker', 0.02319269),
('n02504013', 'Indian_elephant', 0.004200729),
('n02437312', 'Arabian_camel', 9.9511075e-05),
('n021060583', 'vizsla', 6.808777e-06),
('n02099849', 'Chesapeake Bay retriever', 2.5692e-06),
('nG3124170', 'cowboy hat', 1.1540138e-06),
('n@1704323', 'triceratops', 1.0709498e-06),
('n02389026', 'sorrel', 1.0571564e-06),
('n02422106', 'hartebeest', 8.660311e-07),
('n02096051', 'Airedale', 7.121821e-07),
('n02090379', 'redbone', 6.9493774e-07),
('n02087394', 'Rhodesian_ridgeback', 6.583336e-07),
('n04604644', 'worm_fence', 5.9125585e-07),
('n02092339', 'Weimaraner', 5.736652e-07),
('nG3124043', 'cowboy boot', 5.6223433e-07),
('n01688243', 'frilled lizard', 4.8969315e-07),
('n03697007"', 'lumbermill', 3.873958e-07),
('nG3404251', 'fur_coat', 3.7333308e-07),
('n04350905', 'suit', 3.6049698e-07),
('n04259630', 'sombrero', 3.3618875e-07),
('n04399382', 'teddy', 3.2949515e-07),
('n07734744"', 'mushroom', 3.0491432e-07),
('n07754684"', 'jackfruit', 2.5534945e-07),
('n02408429', 'water buffalo',6 2.43335e-07),
('n04458633', 'totem pole', 2.3871908e-07),
('n04597913', 'wooden _spoon', 2.3287092e-07),
('nl1879895', 'rapeseed', 2.2912964e-07),
('n02963159', 'cardigan',6 2.2274801e-07),
('n07802026', 'hay', 1.8962464e-07),
('n02088466', 'bloodhound', 1.8776879e-07),
('n02129165', 'lion', 1.8023877e-07),
('n02410509', 'bison', 1.5872558e-07),
('n02403003', 'ox', 1.5586099e-07),
('n02454379', 'armadillo', 1.5301437e-07),
('n03498962', 'hatchet', 1.4770363e-07),
('n04208210', 'shovel', 1.4289928e-07),
('n01518878', 'ostrich', 1.2654296e-07),
('n02412080', 'ram', 1.2329042e-07),
('n02109047', 'Great Dane', 1.1550219e-07),
('n04417672', 'thatch', 1.0752834e-07),
('n03134739', 'croquet ball', 1.0582936e-07),
('n0G3000684', 'chain saw', 1.0351832e-07),
('n02906734', 'broom', 9.7853764e-08),
('n04099969', 'rocking chair', 9.2880164e-08),
('n04562935', 'water tower', 9.1811906e-08),
('n02489166', 'proboscis monkey', 9.11181e-08),
('n02793495', 'barn', 8.838817e-08),
('n04371430', 'swimming trunks', 8.648289e-08),
('n02113799', 'standard poodle', 8.531001e-08),
('n04599235', 'wool', 8.296619e-08),
('n02843684', 'birdhouse', 8.085067e-08),
('nG3776460', 'mobile home', 7.9733795e-08),
('n02012849', 'crane', 7.9576395e-08),
('n02099429', 'curly-coated retriever', 7.6460026e-08),
('n02397096', 'warthog', 7.4261834e-08),
('n01l677366', 'common iguana', 7.244132e-08),
('n02391049', 'zebra', 6.915432e-08),
('n02095570', 'Lakeland terrier', 6.5524716e-08),
('n02093991', 'Irish_terrier', 6.52822e-08),
('n03743016', 'megalith', 6.347313e-08),
('n04532670', 'viaduct', 6.3057904e-08),
('nG2422699', 'impala', 5.915353e-08),
('n02093647', 'Bedlington_terrier', 5.7262092e-08),
('n02099601', 'golden retriever', 5.716737e-08),
('n03803284', 'muzzle', 5.6893036e-08),
('n03873416', 'paddle', 5.4728215e-08),
('n01695060', 'Komodo dragon', 5.4479095e-08),

7 of 14 1/23/20, 11:38 AM

16-Image_classification file:///home/marie/Documents/CAS data scienc...

The three best categories are three categories of different elephants, but the best one is indeed the African one.

16.4 Image with multiple content

What happens if multiple objects are in an image like here a dog and a cat or a banana and strawberries?

In [11]: #image = skimage.io.imread('https://upload.wikimedia.org/wikipedia/commo
ns/0/07/Chien-1it %26 Chat-en-1it.jpg')
image = skimage.io.imread('https://live.staticflickr.com/3652/3295428010
- 9284075e7b _b.jpg')

In [12]: plt.figure(figsize=(10,10))
plt.imshow(image)
plt.show()

0
100
200
300
400
500

600

We preprocess the image and do the prediction:

8 of 14 1/23/20, 11:38 AM

16-Image classification file:///home/marie/Documents/CAS data_scienc...

In [13]: model = VGGl6(weights='imagenet', include top=True)
#model = Xception(weights='imagenet', include top=True)

image resize = skimage.transform.resize(image, (224,224),preserve_range=T

rue)
x = np.expand _dims(image resize, axis=0)
X = preprocess_input(x)

features = model.predict(x)

/usr/local/lib/python3.5/dist-packages/skimage/transform/ warps.py:105: U
serWarning: The default mode, 'constant', will be changed to 'reflect' in
skimage 0.15.

warn("The default mode, 'constant', will be changed to 'reflect' in
/usr/local/lib/python3.5/dist-packages/skimage/transform/ warps.py:110: U
serWarning: Anti-aliasing will be enabled by default in skimage 0.15 to a
void aliasing artifacts when down-sampling images.

warn("Anti-aliasing will be enabled by default in skimage 0.15 to

9of 14 1/23/20, 11:38 AM

16-Image classification file:///home/marie/Documents/CAS data_scienc...

In [14]: decode predictions(features, top=1000)

10 of 14 1/23/20, 11:38 AM

16-Image classification file:///home/marie/Documents/CAS data_scienc...

Out[14]: [[('n®7753592', 'banana', 0.5761249),
('n07745940', 'strawberry', 0.19425765),
('n@7753275', 'pineapple', 0.05217132),
('n07614500', 'ice cream', 0.030278875),
('n07749582', 'lemon', 0.015831826),
('n07760859', 'custard apple', 0.012895143),
('n@7753113', 'fig', 0.011580526),
('n@7747607', 'orange', 0.009989414),
('nG4476259', 'tray', 0.009962709),
('n@7579787', 'plate', 0.0068863747),
('n07718472', 'cucumber', 0.006387197),
('n04332243', 'strainer',6 0.0054645333),
('n07768694', 'pomegranate', 0.0054520713),
('n07836838', 'chocolate sauce', 0.003862604),
('n07742313', 'Granny Smith', 0.0028679618),
('nG4597913', 'wooden spoon', 0.0027667894),
('n03461385', 'grocery store', 0.0026932321),
('n07716358', 'zucchini', 0.0026920456),
('n07613480', 'trifle', 0.0022338615),
('n07583066', 'guacamole', 0.00217574),
('n03089624', 'confectionery', 0.0013857629),
('n@7932039', 'eggnog', 0.0013704551),
('n04204238', 'shopping basket', 0.0013690287),
('n@7717556', 'butternut squash', 0.0013453267),
('n07718747', 'artichoke', 0.0012477095),
('nG7930864', 'cup', 0.0011815256),
('n02909870', 'bucket', 0.0010817345),
('nB3775546', 'mixing bowl', 0.0010295234),
('n03944341', 'pinwheel', 0.0009666784),
('n03127925"', 'crate', 0.0009592887),
('n07714990', 'broccoli', 0.00087834854),
('n03729826"', 'matchstick', 0.0007504259),
('n@2776631', 'bakery', 0.00071163604),
('n02971356', 'carton', 0.0006731103),
('nG3482405', 'hamper',6 0.00065947045),
('n07720875', 'bell pepper', 0.00064582424),
('n03633091', 'ladle', 0.0006443229),
('n07892512', 'red wine', 0.00063594204),
('n03445777', 'golf ball', 0.00061149464),
('n03786901', 'mortar', 0.0006095598),
('n03908618', 'pencil box', 0.00054616673),
('n03720891', 'maraca', 0.00052341406),
('n04399382', 'teddy', 0.0005185749),
('nl2620546', 'hip', 0.00051782426),
('n07715103"', 'cauliflower', 0.00050635735),
('n07871810', 'meat loaf', 0.00050255464),
('n03047690', 'clog', 0.0004752425),
('n07693725', 'bagel', 0.0004202755),
('n07716906', 'spaghetti squash', 0.000415875),
('n01945685', 'slug', 0.00041408345),
('n01734418', 'king snake', 0.0004139101),
('n@4270147', 'spatula', 0.0004090329),
('n03950228', 'pitcher', 0.00040275132),
('n07717410', 'acorn_squash', 0.00039611929),
('n02110341', 'dalmatian', 0.00039234685),
('n04263257', 'soup bowl', 0.00039161675),
('n04259630', 'sombrero', 0.00038066693),
('n@3991062', 'pot', 0.00036915473),
('n04133789', 'sandal', 0.00030882948),
('n07880968', 'burrito', 0.00030034475),
('n04141975', 'scale', 0.00029977187),
('n07734744', 'mushroom', 0.0002680286),
('n063133878', 'Crock Pot', 0.00026488805),
('n04026417', 'purse', 0.0002394798),
('n03041632', 'cleaver',6 0.00022614613),
('nG3063599', 'coffee mug', 0.00022026774),
('n02526121', 'eel', 0.00021577944),
('n@4317175', 'stethoscope', 0.00021190982),

11 of 14 1/23/20, 11:38 AM

16-Image classification

12 of 14

We end up with probabilitis split among multiple categories of a certain "style" like multiple dog breeds. One way to try
improving on this, is to use this classifier to do an approximative segmentation by splitting the image into subregions.

We create overlapping patches and do the prediction on those:

In [15]:

In [16]:

Out[16]:

patch = 400
step = 100
all features =[]
for i in np.arange(0,image.shape[0]-patch-1,step):
print(i)
for j in np.arange(0,image.shape[l]-patch-1,step):
subimage = image[i:i+patch,j:j+patch,:]
image resize = skimage.transform.resize(subimage, (224,224),prese
rve_range=True)
X np.expand dims(image resize, axis=0)
X preprocess_input(x)

features = model.predict(x)
all features.append(features)

0

/usr/local/lib/python3.5/dist-packages/skimage/transform/ warps.py:105: U
serWarning: The default mode, 'constant', will be changed to 'reflect' in
skimage 0.15.

warn("The default mode, 'constant', will be changed to 'reflect' in "
/usr/local/lib/python3.5/dist-packages/skimage/transform/ warps.py:110: U
serWarning: Anti-aliasing will be enabled by default in skimage 0.15 to a
void aliasing artifacts when down-sampling images.

warn("Anti-aliasing will be enabled by default in skimage 0.15 to "

100
200

[decode predictions(x, top=1000)[0]1[0] for x in all features if decode p
redictions(x, top=1000)[0][0][2]>0.3]

[('n®7753592"', 'banana', 0.78769964),
('n07753592"', 'banana', 0.47260636),
('n07753592"', 'banana', 0.5114516),
('n@7745940', 'strawberry', 0.68358153),
('n07745940', 'strawberry', 0.81029093),
('n07745940', 'strawberry', 0.92421764),
('n07753592"', 'banana', 0.8903582),
('n07753592"', 'banana', 0.7702213),
('n07753592"', 'banana', 0.8909377),

file:///home/marie/Documents/CAS data scienc...

('n07745940', 'strawberry', 0.9785351),
('n07745940', ‘'strawberry', 0.9900946),
('n@7745940', 'strawberry', 0.98152024),
('n0@7745940', 'strawberry', 0.7820029),
('n0@7753592', 'banana', 0.98062783),
('n07753592', 'banana', 0.80547625),

('n07745940",
('nG7745940",
('n07745940",
('n07745940",
('n07745940",

'strawberry'
'strawberry’
'strawberry’
'strawberry
'strawberry'

’
’
’
’
’

0.69026893),
0.99909794),
0.99729496),
0.9918213),
0.4741534)]

We can now superpose those segmented features over the original image:

1/23/20, 11:38 AM

16-Image_classification file:///home/marie/Documents/CAS data scienc...

In [17]:

import matplotlib.colors
cmap = matplotlib.colors.ListedColormap (np.random.rand (256,3))

reshaped = np.reshape([np.argmax(x) for x in all features],
(len(np.arange(0,image.shape[0] -patch-1,step)),len
(np.arange(0,image.shape[l]-patch-1,step))))

plt.figure(figsize=(10,10))

plt.imshow(image)
plt.imshow(skimage.transform.resize(reshaped, (image.shape[0], image.shape
[1]), order=0,preserve _range=True),cmap = cmap,alpha = 0.8)

plt.show()

/usr/local/lib/python3.5/dist-packages/skimage/transform/ warps.py:105: U
serWarning: The default mode, 'constant', will be changed to 'reflect' in
skimage 0.15.

warn("The default mode, 'constant', will be changed to 'reflect' in
/usr/local/lib/python3.5/dist-packages/skimage/transform/ warps.py:110: U
serWarning: Anti-aliasing will be enabled by default in skimage 0.15 to a
void aliasing artifacts when down-sampling images.

warn("Anti-aliasing will be enabled by default in skimage 0.15 to "

0

100

200

300

400

500

600

Let's create an array with the index names and plot them on top of the image:

In [18]:

13 of 14

names = np.reshape([decode predictions(x, top=1000)[0][0][1] for x in al
1 features],

(len(np.arange(0,image.shape[0] -patch-1,step)),len(np.arange
(0,image.shape[l]-patch-1,step))))

1/23/20, 11:38 AM

16-Image_classification file:///home/marie/Documents/CAS data scienc...

In [19]: plt.figure(figsize=(10,10))

plt.imshow(image)

plt.imshow(skimage.transform.resize(reshaped, (image.shape[0],image.shape

[1]), order=0,preserve range=True),cmap = cmap,alpha = 0.8)

fact = image.shape[0]/reshaped.shape[0]

for x in range(names.shape[0]):

for y in range(names.shape[1l]):

plt.text(x=(y)*image.shape[l]/reshaped.shape[l],y=(x+0.5)*image.

shape[0]/reshaped.shape[0],s = names[x,y])

plt.show()

/usr/local/lib/python3.5/dist-packages/skimage/transform/ warps.py:105: U
serWarning: The default mode, 'constant', will be changed to 'reflect' in
skimage 0.15.

warn("The default mode, 'constant', will be changed to 'reflect' in "
/usr/local/lib/python3.5/dist-packages/skimage/transform/ warps.py:110: U
serWarning: Anti-aliasing will be enabled by default in skimage 0.15 to a
void aliasing artifacts when down-sampling images.

warn("Anti-aliasing will be enabled by default in skimage 0.15 to "

0
100
200
300
400
500

600

14 of 14 1/23/20, 11:38 AM

17-Semantic_segmentation file:///home/marie/Documents/CAS data_scienc...

17. Semantic segmentation: Github resources

Whenever one desires to try out some advanced technique not yet available as a nicely packaged tool like scikit-image,
the best solution is to first search for open-source code that approximates what one wants to do. One of the main
repositories of such code is Github (https:/github.com/). As an examples, we will here do semantic segmentation, i.e.
segmenting objects in an image.

In [1]: dimport sys
import numpy as np
import skimage
import skimage.io
import skimage.transform
from matplotlib import pyplot as plt

17.1 Finding and exploring a repository

17.2 Installing

We follow the instructions as given. We first check what version of tensorflow we have:
In [2]: dimport tensorflow

In [3]: tensorflow. version

Out[3]: 'l1.14.0'

So we have to follow the second set of instructions. These are unix type commands that we would normally type in a
terminal. As Jupyter support bash commands we can also do it right here:

In [4]: %%bash
git clone https://github.com/bonlime/keras-deeplab-v3-plus/
cd keras-deeplab-v3-plus/
git checkout 714a6b7d1a069a07547c5c08282f1a706db92e20

fatal: destination path 'keras-deeplab-v3-plus' already exists and is not
an empty directory.

HEAD is now at 714a6b7... Merge branch 'master' of https://github.com/bon
lime/keras-deeplab-v3-plus

17.3 Making the package accessible

1of5 1/23/20, 11:38 AM

17-Semantic_segmentation file:///home/marie/Documents/CAS data_scienc...

Since we only want to try out the package, we will simply add it's path to our current path. If we try multiple packages, this
avoid over-crowding the conda environement with useless code. If we want to use it "in production” we can always install it
later.

In [5]: sys.path.append('keras-deeplab-v3-plus"')

Now we can finally import the package:

In [6]: from model import Deeplabv3

Using TensorFlow backend.

17.4 Using the network

We simply follow the instructions given in the repository to run the code. We only modify the image importation as we use
a different package (skimage). As always there are some parameters set for pre-processing:

In [7]: trained image width=512
mean_subtraction value=127.5

Then we can pick the image of our choice:

In [8]: image = skimage.io.imread('https://upload.wikimedia.org/wikipedia/common
s/thumb/0/0c/Cow_female_black white.jpg/1920px-Cow_female_black white.jp
g')
#image = skimage.io.imread('https://upload.wikimedia.org/wikipedia/commo
ns/3/33/Chat-affut.JPG')
#image = skimage.io.imread('https://upload.wikimedia.org/wikipedia/commo
ns/1/18/TrailKitty.jpg')
image = image.astype('float')

And run the remaining of the proposed code:

20f5 1/23/20, 11:38 AM

17-Semantic_segmentation file:///home/marie/Documents/CAS data_scienc...

In [9]: # resize to max dimension of images from training dataset
w, h, = image.shape
ratio = float(trained _image width) / np.max([w, h])
resized image = skimage.transform.resize(image, (int(ratio * w),int(ratio
*h)))
#resized image = np.array(Image.fromarray(image.astype('uint8')).resize
((int(ratio * h), int(ratio * w))))

apply normalization for trained dataset images
resized image = (resized image / mean_subtraction value) - 1.

pad array to square image to match training images

pad x = int(trained image width - resized image.shape[0])

pad y = int(trained image width - resized image.shape[1l])

resized image = np.pad(resized image, ((0, pad x), (0, pad_y), (0, 0)),
mode="'constant"')

make prediction

deeplab _model = Deeplabv3()

res = deeplab _model.predict(np.expand dims(resized image,0))
labels = np.argmax(res.squeeze(), -1)

30of5 1/23/20, 11:38 AM

17-Semantic_segmentation file:///home/marie/Documents/CAS data_scienc...

/usr/local/lib/python3.5/dist-packages/skimage/transform/ warps.py:105: U
serWarning: The default mode, 'constant', will be changed to 'reflect' in
skimage 0.15.

warn("The default mode, 'constant', will be changed to 'reflect' in "
/usr/local/lib/python3.5/dist-packages/skimage/transform/ warps.py:110: U
serWarning: Anti-aliasing will be enabled by default in skimage 0.15 to a
void aliasing artifacts when down-sampling images.

warn("Anti-aliasing will be enabled by default in skimage 0.15 to "
WARNING: Logging before flag parsing goes to stderr.
W0123 11:16:21.968451 139872335447808 deprecation wrapper.py:119] From /u
sr/local/lib/python3.5/dist-packages/keras/backend/tensorflow backend.py:
4074: The name tf.nn.avg pool is deprecated. Please use tf.nn.avg pool2d

instead.
AttributeError Traceback (most recent call las
t)
<ipython-input-9-al3clle8142d> in <module>()
14

15 # make prediction

---> 16 deeplab_model = Deeplabv3()
17 res = deeplab model.predict(np.expand dims(resized image,0))
18 labels = np.argmax(res.squeeze(), -1)

~/Documents/CAS data science/CAS 21.01.2020 Python Image Processing/PyIma
geCourse-master/keras-deeplab-v3-plus/model.py in Deeplabv3(weights, inpu
t tensor, input shape, classes, backbone, 0S, alpha)

441 b4 = BatchNormalization(name='image pooling BN', epsilon=le-
5) (b4)

442 b4 = Activation('relu') (b4)
--> 443 b4 = BilinearUpsampling((int(np.ceil(input shape[0] / 0S)), i
nt(np.ceil(input_shape[1l] / 0S)))) (b4)

444

445 # simple 1x1

/usr/local/lib/python3.5/dist-packages/keras/engine/base layer.py in _ ca
1l (self, inputs, **kwargs)

487 # Actually call the layer,

488 # collecting output(s), mask(s), and shape(s).
--> 489 output = self.call(inputs, **kwargs)

490 output _mask = self.compute mask(inputs, previous mas
k)

491

~/Documents/CAS data science/CAS 21.01.2020 Python Image Processing/PyIma
geCourse-master/keras-deeplab-v3-plus/model.py in call(self, inputs)

91 def call(self, inputs):

92 if self.upsampling:
---> 03 return K.tf.image.resize bilinear(inputs, (inputs.sha
pe[l] * self.upsampling[0],

94 inputs.sha
pel[2] * self.upsampling[1]),

95 align_corners=True)

AttributeError: module 'keras.backend' has no attribute 'tf'

Since we padded and reshaped the image in the pre-processing step, we have now to correct the size of the output labels:

40f5 1/23/20, 11:38 AM

17-Semantic_segmentation file:///home/marie/Documents/CAS data_scienc...

In []: if pad x > 0:
labels = labels[:-pad x,:]
if pad y > 0:
labels = labels[:, :-pad y]
labels = skimage.transform.resize(labels, (w, h),preserve range=True, ord
er=0)

17.5 Checking the output

In []: plt.imshow(labels)

plt.show()
plt.imshow(image[:,:,0])
plt.show()
In []1: class _names = np.array(['background', 'aeroplane', 'bicycle', 'bird', 'bo
at',
'bottle', 'bus', 'car', 'cat', 'chair',
'cow', 'diningtable', 'dog', 'horse',
'motorbike', 'person', 'pottedplant',
'sheep', 'sofa', 'train', 'tvmonitor'])

In []1: class names[np.unique(labels).astype(int)]

50f5 1/23/20, 11:38 AM

18-Application DICOM file:///home/marie/Documents/CAS data_scienc...

18. Application: DICOM

DICOM (Digital Imaging and Communications in Medicine) is the international standard to transmit, store, retrieve, print,
process, and display medical imaging information. It is in particular widely used to store volumetric data from methods
such as CT, MR, Ultrasound, etc.

This kind of specific image format is typically not supported by general packages such as scikit-image. However in most
cases, independent dedicated packages exist. A simple Google search leads us to the pydicom (https:/pydicom.github.io
/pydicom/stable/getting_started.html) package.

In [1]: dimport os
import matplotlib.pyplot as plt
plt.gray()
import pydicom
import numpy as np
import skimage
import ipyvolume as ipv

We will use an MRI dataset of a head available on the data sharing platform Zenodo. In this course, most data have been
made directly available. To show the full procedure, we will here include the download step.

Install the missing package:
In [2]: !pip install --user pydicom
Requirement already satisfied: pydicom in /usr/local/lib/python3.5/dist-p
ackages (1.4.1)
You are using pip version 19.0.3, however version 20.0.1 is available.

You should consider upgrading via the 'pip install --upgrade pip' comman
d.

In [3]: dimport pydicom
18.1. Download
The donwload address on Zenodo is:
In [4]: data address= 'https://zenodo.org/record/16956/files/DICOM.zip?download=

1 [

Create a folder where to put the data:

In [5]: #o0s.makedirs('MyData"')

We can use the urllib native package to proceed with download which provides us with a zip file:

1of5 1/23/20, 11:38 AM

18-Application DICOM file:///home/marie/Documents/CAS data_scienc...

In [6]: import urllib

urllib.request.urlretrieve(data_address, 'MyData/mri.zip')
Out[6]: ('MyData/mri.zip', <http.client.HTTPMessage at 0x7fb257782400>)
To automate the process we now also automatically unzip the file using the zipfile module:
In [7]: dimport zipfile

In [8]: with zipfile.ZipFile('MyData/mri.zip', 'r') as zip_ref:
zip_ref.extractall('MyData/mri/"')

18.2. Importing one slice

We define the general path to the folder containing slices:

In [9]: path = 'MyData/mri/DICOM/STO00000/SE000002/"

Now we use the pydicom package to import a single slice using the dcmread () function:

In [10]: single slice = pydicom.dcmread(path+'MROOOOGO")

A DICOM file does not just contain image data but a very extensive set of metadata. You can see these metadata by just
printing the variable:

In [11]: single slice;

All that information is also available as attributes of the variable. For example you can get the patient's name:
In [12]: single slice.PatientName
Out[12]: 'LIONHEART"WILLIAM'

But also numerical values such as pixel spacing or position of slice in the stack:

In [13]: single slice.PixelSpacing

Out[13]: [0.8984375, 0.8984375]

In [14]: single_slice.Slicelocation

Out[14]: "0.0"

18.3. Loading the complete stack

As we have already done previously, we have first to parse the folder content to gather the files belonging to the stack.
Here we simply list the folder content:

20f5 1/23/20, 11:38 AM

18-Application DICOM

3ofb

In [15]: file list = os.listdir(path)

In [16]: #file list

We can now load each slice using a comprehension list. From the file sorting, we already see that we'll later have to
reorder the slices.

In [17]: slices = [pydicom.dcmread(path+x) for x in os.listdir(path)]

In principle we could reorder the file by names but this is going to depend on file name formatting. A more general solution
is to reorganize based on the location of the file in the stack. Let's recover that position:

In [18]: positions = [int(x.SlicelLocation) for x in slices]

In [19]: #positions

We then use np.argsort () function to get the indices of the ordered list:

In [20]: dimport numpy as np
index ordered = np.argsort(positions)

In [21]: index_ordered
Out[21]: array([21, 2, 1, 20, 3, 11, 13, 9, 29, 28, 22, 26, 18, 5, 23, 16, 3

1:
15, 12, 10, 0, 19, 6, 4, 24, 14, 17, 8, 30, 7, 27, 25])

And finally use that ordered list to reorder the slices themselves:

In [22]: reordered = []
slices ordered = [slices[x] for x in index ordered]

18.4. Visualization

Finally we can visualize our volume. First let's create an actual volume by stacking the planes:
In [23]: volume = np.stack([x.pixel array for x in slices ordered])
In [24]: volume.shape

Out[24]: (32, 256, 256)

For the rendering, we'll see here two different solutions. The first one is ipyvolume, a leight-weight volume viewer purely
based on browser technology. The syntax is very similar to matplotlib.

In [25]: #import ipyvolume as ipv

1/23/20, 11:38 AM

file:///home/marie/Documents/CAS data scienc...

18-Application DICOM file:///home/marie/Documents/CAS data_scienc...

In [26]: ipv.figure()
ipv.volshow(volume)
ipv.show()

/usr/local/lib/python3.5/dist-packages/ipyvolume/serialize.py:81: Runtime
Warning: invalid value encountered in true divide

gradient = gradient / np.sqrt(gradient[0]**2 + gradient[1]**2 + gradien
t[2]*%*2)

As ipyvolume is fully browser-based, it's very easy to save an image as a web page. For example we can just type:

In [27]: dipv.save('interactive view.html')

/usr/local/lib/python3.5/dist-packages/ipyvolume/serialize.py:81: Runtime
Warning: invalid value encountered in true divide

gradient = gradient / np.sqrt(gradient[0]**2 + gradient[1]**2 + gradien
t[2]**2)

And this saves for us a full interactive version of the figure above. This can therefore be very useful for demonstration
purposed e.g. to insert an image on a web-page.

Note that customizing the aspect of the view requires some work and that this package is not as mature as others.

An alternative solution is to use the ITK (Insight Toolkit), a very popular image processing tool suite in medical imaging (an
interesting but more challenging alternative to scikit-image). ITK in particular offers a volume viewer compatible with
Python and Jupyter:

In [29]: dimport itkwidgets as itkw
import itk

We can just call the view () function:
In [30]: itkw.view(volume)
We see that the head looks compressed because the acquisition is anisotropic (large depth dimension that width/height).

Above we simply passed a Numpy array to the viewer. However we can also create a native ITK format to adjust
parameters more easily:

In [31]: image from array = itk.image from_array(volume)

This object has now several new attributes and methods such as:

In [32]: image_ from array.GetSpacing()

Out[32]: itkVectorD3 ([1, 1, 11)

We can try to guess and adjust the spacing:

In [33]: image_from array.SetSpacing((1,1,10))

Or we can use the itk package to read the native spacing:

40f5 1/23/20, 11:38 AM

18-Application DICOM file:///home/marie/Documents/CAS data_scienc...

In [34]: itk slice = itk.imread(path+'MROOOGO1")
spacing = itk slice.GetSpacing()
spacing

Out[34]: itkVectorD3 ([0.898438, 0.898438, 61])

In [35]: image from array.SetSpacing(spacing)

In [36]: itkw.view(image from array)

18.5. Image processing

Finally, we can do the same image processing operations as we did before, just in 3D. For example a thresholding:
In [37]: import skimage.filters
In [38]: vol thresh = volume>200

In [39]: itkw.view(vol thresh.astype(np.uint8))

50f5 1/23/20, 11:38 AM

