07-Functions file:///home/marie/Documents/CAS data scienc...

7. Functions

In the previous chapter we developped a small procedure to segment our image of nuclei. If you develop such a routine
you are going to re-use it multiple times, so it makes sense to package it into a re-usable unit.

We will summarize here how to achieve that in this brief chapter.

In [1]: #importing packages
import numpy as np
import matplotlib.pyplot as plt
plt.gray();
from skimage.external.tifffile import TiffFile

import skimage.morphology as skm
import skimage.filters as skf

In [2]: #load the image to process
data = TiffFile('Data/30567/30567.tif")
image = data.pages[3].asarray()

In [3]: plt.imshow(image);

0
100
200
300
400

500

Let us summarize all the necessary steps within one code block

1of4 1/23/20, 11:33 AM

07-Functions file:///home/marie/Documents/CAS data_scienc...

20f4

In [4]: from skimage.measure import label, regionprops

#median filter
image med = skf.rank.median(image,selem=np.ones((2,2)))
#otsu thresholding
image local threshold = skf.threshold local(image med,block size=51)
image_ local = image > image_local threshold
#remove tiny features
image local eroded = skm.binary erosion(image local, selem= skm.disk(1))
#label image
image labeled = label(image_local eroded)
#analyze regions
our_regions = regionprops(image labeled)
#create a new mask with constraints on the regions to keep
newimage = np.zeros(image.shape)
#fill in using region coordinates
for x in our_regions:
if (x.area>200):# and (x.eccentricity<0.8):
newimage[x.coords[:,0],x.coords[:,1]] =1

/usr/local/lib/python3.5/dist-packages/skimage/filters/rank/generic.py:10
2: UserWarning: Bitdepth of 14 may result in bad rank filter performance
due to large number of bins.

"performance due to large number of bins." % bitdepth)

In [5]: plt.figure(figsize=(10,10))
plt.imshow(newimage)

Out[5]: <matplotlib.image.AxesImage at 0x7fcb880eeb38>

0

100

200

300

400

500

We can now make a function out of it. You can choose the "level" of your function depending on your needs. For example
you could pass a filename and a plane index to the function and make it import your data, or you can pass directly an
image.

In addition to the image, you coud pass other arguments if you want to make your function more general. For example,
you might not always want to filter objects of the same size or shape, and so you can set those as parameters:

1/23/20, 11:33 AM

07-Functions file:///home/marie/Documents/CAS data_scienc...

In [6]: from skimage.measure import label, regionprops

def detect nuclei(image, size = 200, shape = 0.8):

#median filter

image med = skf.rank.median(image,selem=np.ones((2,2)))

#otsu thresholding

image local threshold = skf.threshold local(image med,block size=51)

image local = image > image local threshold

#remove tiny features

image local eroded = skm.binary erosion(image local, selem= skm.disk
(1))

#label image

image labeled = label(image local eroded)

#analyze regions

our_regions = regionprops(image_ labeled)

#create a new mask with constraints on the regions to keep

newimage = np.zeros(image.shape)

#fill in using region coordinates

for x in our regions:

if (x.area>size) and (x.eccentricity<shape):
newimage[x.coords[:,0],x.coords[:,1]] =1

return newimage

And now we can test the function (which appears also now in autocompletion):

In [7]: nuclei = detect nuclei(image, size = 400)
plt.imshow(nuclei);

/usr/local/lib/python3.5/dist-packages/skimage/filters/rank/generic.py:10
2: UserWarning: Bitdepth of 14 may result in bad rank filter performance
due to large number of bins.

"performance due to large number of bins." % bitdepth)
/usr/local/lib/python3.5/dist-packages/skimage/measure/ regionprops.py:25
0: UserWarning: regionprops and image moments (including moments, normali
zed moments, central moments, and inertia tensor) of 2D images will chang
e from xy coordinates to rc coordinates in version 0.16.

See http://scikit-image.org/docs/0.14.x/release notes_and_installation.ht
ml#deprecations for details on how to avoid this message.
warn(XY_TO RC DEPRECATION MESSAGE)
/usr/local/lib/python3.5/dist-packages/skimage/measure/ regionprops.py:26
0: UserWarning: regionprops and image moments (including moments, normali
zed moments, central moments, and inertia tensor) of 2D images will chang
e from xy coordinates to rc coordinates in version 0.16.
See http://scikit-image.org/docs/0.14.x/release notes and installation.ht
ml#deprecations for details on how to avoid this message.
warn(XY_TO RC DEPRECATION_ MESSAGE)

0
100
200
300

400

3of4 1/23/20, 11:33 AM

07-Functions file:///home/marie/Documents/CAS data_scienc...

4 of 4

In order to avoid cluttering your notebooks with function definitions and to be able to reuse your functions across multiple
notebooks, | also strongly advise you to create your own module files. Those are .py files that group multipe functions and
that can be called from any notebook.

Let's create one, call it my_module.py and copy our function in it. Now we can use the function like this:

In [8]: import my_module
#or alternatively: from my module import detect nuclei

ImportError Traceback (most recent call las
1)
<ipython-input-8-a9447689b240> in <module>()
----> 1 import my module
2 #or alternatively: from my module import detect nuclei

ImportError: No module named 'my module'

In []: nuclei2 = my module.detect nuclei(image)

We get an error because in that module, we use skimage functions that were not imported in the module itself. We have
them in the notebook, but they are not accessible from there. We thus restart the kernel as re-loading a module doesn't
work:

In []: import numpy as np
import matplotlib.pyplot as plt

plt.gray();
from skimage.external.tifffile import TiffFile

data = TiffFile('Data/30567/30567.tif")
image = data.pages[3].asarray()

import my_module
nuclei2 = my module.detect nuclei(image)

In []: plt.imshow(nuclei2);

Your own modules are accessible if they are in the same folder as your notebook or on some path recognized by Python

1/23/20, 11:33 AM

