08-Pattern matching file:///home/marie/Documents/CAS data scienc...

1of8

8. Pattern matching, local maxima

Sometimes threholding and binary operations are not appropriate tools to segment image features. This is particularly true
when the object to be detected has as specific shape but a very variable intensity or if the image has low contrast. In that
case it is useful to attempt to build a "model" of the object and look for similar shapes in the image. It is very similar in
essence to convolution, however the operation is normalized so that after filtering every pixel is assigned a value between
-1 (anti-correlation) to +1 perfect correlation. One can then look for local matching maxima to identify objects.

In [1]: from skimage.feature import match template, peak local max
import skimage.io as io

In [2]: import numpy as np
import matplotlib.pyplot as plt
plt.gray()
from skimage.external.tifffile import TiffFile

8.1 Virus on electron microscopy

Electron microscopy is a typical case where pixel intensity cannot be directly used for segmentation. For example in the
following picture of a virus, even though we see the virus as white disks, many other regions are as bright.

In [3]: #load the image to process
image = io.imread('http://res.publicdomainfiles.com/pdf view/29/13512183
019720.jpg")
#image = io.imread('http://res.publicdomainfiles.com.s3.amazonaws.com/pd
f alternate/29/13512183019720. tif?AWSAccessKeyId=AKIAJBE24BKMOLMIBBXA&Ex
pires=1579466193&Signature=uMi8UqvIbUX2mGkgZuEGAXx6J6r4%3D")

In [4]: plt.imshow(image);

What is unique to the virus is the shape of the objects. So let's try to make a model of them to do template matching.
Essentially a virus appears as a white disk surrounded by a thin dark line:

1/23/20, 11:34 AM

08-Pattern matching file:///home/marie/Documents/CAS data scienc...

In [5]: radius = 90

template = np.zeros((220,220))

center = [(template.shape[0]-1)/2, (template.shape[l]-1)/2]

Y, X = np.mgrid[0:template.shape[0],0:template.shape[1l]]

dist from center = np.sqrt((X - center[0])**2 + (Y-center[1])**2)
template[dist from center<=radius] =1
template[dist from center>radius+3] =1

MZ: identify all areas in the image that match the pattern of your int
erest

In [6]: plt.imshow(template)
Out[6]: <matplotlib.image.AxesImage at 0x7fc3bea62d68>

0
25 A
50 -
75 -

100 A
125
150 -
175 A
200 +

0 50 100 150 200

Now we do the template matching. Note that we specify the option pad_input to make sure the coordinates of the local
maxima is not affected by boreder effects (try to turn it to False to see the effecf):

In [7]: matched = match template(image=image, template=template, pad input=True)

And this is how the matched image looks like. Wherever there's a particle a local maximum appears.

In [8]: plt.imshow(matched)
Out[8]: <matplotlib.image.AxesImage at 0x7fc3bdlae048>

0
100
200
300
400
500

600

20f 8 1/23/20, 11:34 AM

08-Pattern matching file:///home/marie/Documents/CAS data scienc...

We can try to detect the local maxima to have the position of each particle. For that we use the scipy peak local max
function. We specify that two maximia cannot be closer than 20 pixels (min_distance) and we also set a threshold on
the quality of matching (threshold abs). We also want to recover a list of indices rather than a binary mask of local
maxima.

In [9]: local max_indices = peak local max(matched, min_distance=60,indices=Tru
e, threshold abs=0.1)

Finally we can plot the result:

In [10]: plt.figure(figsize=(10,10))
plt.imshow(image)
plt.plot(local max_indices[:,1],local max_indices[:,0],'ro")
plt.show()

8.2 Fluorescence microscopy

In the following example we are looking at a nuclei imaged by fluorescence microscopy. Here, intensity can clearly be
used for segmentation but is going to lead to merged objects when they are too close. To identify each nucleus in a first
step before actual segmentation, we can again use template matching.

In [11]: import skimage.io as io

In [12]: image = io.imread('Data/BBBC007 v1 images/A9/A9 p9d.tif')

30f8 1/23/20, 11:34 AM

08-Pattern matching file:///home/marie/Documents/CAS data_scienc...

In [13]: plt.figure(figsize=(10,10))
plt.imshow(image);

0

50

100

150

200

250

300

350

400

In this image, nuclei have radius of around 10 pixels. We can generate again a template:

In [14]: radius = 10

template = np.zeros((25,25))

center = [(template.shape[0]-1)/2, (template.shape[1l]-1)/2]

Y, X = np.mgrid[0:template.shape[0],0:template.shape[1l]]

dist from center = np.sqrt((X - center[0])**2 + (Y-center[1])**2)
template[dist from center<=radius] =1

4 of 8 1/23/20, 11:34 AM

08-Pattern matching file:///home/marie/Documents/CAS data scienc...

In [15]: plt.imshow(template, cmap = 'gray')
plt.show()

0

10

20

In [16]: matched = match template(image=image, template=template, pad_input=True)

In [17]: plt.figure(figsize=(10,10))
plt.imshow(matched, cmap = 'gray', vmin = -1, vmax = 1)

Out[17]: <matplotlib.image.AxesImage at 0x7fc3bd16c9b0>

100

150

200

250

300

350

400

In [18]: local _max = peak_local_max(matched, min_distance=10,indices=False)
local max_indices = peak local max(matched, min distance=10,indices=Tru
e)

50f8 1/23/20, 11:34 AM

08-Pattern matching file:///home/marie/Documents/CAS data_scienc...

In [19]: plt.figure(figsize=(10,10))
plt.imshow(image)
plt.plot(local max_indices[:,1],local _max_indices[:,0],'ro");

0

50

100

150

200

250

300

350

400

We didn't set any threshold on what intensity local maxima should have, therefore we have a few detected cells that are
clearly in the background. We could masks those using a rough threshold.

In [20]: import skimage.filters
import skimage.morphology

6 of 8 1/23/20, 11:34 AM

08-Pattern matching file:///home/marie/Documents/CAS data_scienc...

In [21]: otsu = skimage.filters.threshold otsu(image)
otsu mask = image>otsu

plt.imshow(otsu_mask);

50
100
150
200
250
300
350
400

450
200 300

We can dilate a bit all the regions to make sure we fill the holes and do not cut off dim cells

In [22]: otsu mask = skimage.morphology.binary dilation(otsu_mask, np.ones((5,
5)))

plt.imshow(otsu_mask);

50
100
150
200
250
300 §
350

100 200

Now we can mask the image returned by the peak finder:

In [23]: masked peaks = local max & otsu mask

And recover the coordinates of the detected peaks:

In [24]: peak coords = np.argwhere(masked peaks)

7 of 8 1/23/20, 11:34 AM

08-Pattern matching file:///home/marie/Documents/CAS data_scienc...

In [25]: plt.figure(figsize=(10,10))
plt.imshow(image, cmap = 'gray',vmax = 100)
plt.plot(peak coords[:,1],peak coords[:,0],'ro");

150

250

300

400

In [26]: # intensity is high, they touch each other -> would be complicated to do
without pattern matching

8 of 8 1/23/20, 11:34 AM

