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11. Create a short complete analysis

Until now we have only seen pieces of code to do some specific segmentation of images. Typically however, one is going
to have a complete analysis, including image processing and some further data analysis.

Here we are going to come back to an earlier dataset where nuclei appeared as circles. That dataset was a time-lapse,
and we might be interested in knowing how those nuclei move over time. So we will have to analyze images at every time-
point, find the position of the nuclei, track them and measure the distance traveled.

In [1]: import numpy as np
import matplotlib.pyplot as plt
plt.gray()
from skimage.external.tifffile import TiffFile
from skimage.measure import label, regionprops

#import your function
from course_functions import detect nuclei

11.1 Remembering previous work

Let's remember what we did in previous chapters. We opened the tif dataset, selected a specific plane to look at and
segmented the nuclei:
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In [2]: #load the image to process
data = TiffFile('Data/30567/30567.tif")
image = data.pages[3].asarray()
#create your mask
nuclei = detect nuclei(image)
#create a nan-mask for overlay
nuclei nan = nuclei.copy().astype(float)

nuclei nan[nuclei == 0] = np.nan

#plot

plt.figure(figsize=(10,10))

plt.imshow(image, cmap = 'gray')

plt.imshow(nuclei nan, cmap = 'Reds',vmin = 0,vmax = 1,alpha = 0.6)
plt.show()

/usr/local/lib/python3.5/dist-packages/skimage/filters/rank/generic.py:10
2: UserWarning: Bitdepth of 14 may result in bad rank filter performance
due to large number of bins.

"performance due to large number of bins." % bitdepth)
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Let's also remember what was the format of that file (usually one would already know that or verify e.g. in Fiji)

In [3]: data.info()

Qut[3]: 'TIFF file: 30567.tif, 473 MiB, big endian, ome, 720 pages\n\nSeries 0: 7
2x2x5x512x672, uintl6, TCZYX, 720 pages, not mem-mappable\n\nPage 0: 512x
672, uintl6, 16 bit, minisblack, raw, ome|contiguous\n* 256 image width
(1H) 672\n* 257 image length (1H) 512\n* 258 bits per_sample (1H) 16\n* 2
59 compression (1H) 1\n* 262 photometric (1H) 1\n* 270 image description
(3320s) b\'<?xml version="1.0" encoding="UTF-8"7?><!-- Wa\n* 273 strip off
sets (86I) (182, 8246, 16310, 24374, 32438, 40502, 48566, 56630,\n* 277 s
amples _per pixel (1H) 1\n* 278 rows per_strip (1H) 6\n* 279 strip byte co
unts (86I) (8064, 8064, 8064, 8064, 8064, 8064, 8064, 8064, \n* 282 x res
olution (2I) (1, 1)\n* 283 y resolution (2I) (1, 1)\n* 296 resolution uni
t (1H) 1\n* 305 software (17s) b\'LOCI Bio-Formats\''
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On the first line we see that we have 72 time points, 2 colors, 5 planes per color.

The nuclei are going to move a bit in Z (perpendicular to the image) over time, so it will be more accurate to segment a
projection of the entire stack. So how do we get a complete stack at a given time point. Let's plot the first few images, to
understand how they are stored.
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In [4]: for i in range(15):
plt.imshow(data.pages[i].asarray())
plt.show()
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11.2 Processing a time-lapse

So it looks like we have all planes of colour 1 at time =0, then all planes of color 2 at time =0, then all planes of colour 1 at
time = 1 etc... Therefore to get a full stack at a given time we have to use:
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In [5]: images per_time = 10
time = 10
color =1
image stack = np.stack([x.asarray()
for x in data.pages[time*images per_ time+0+color
*5:time*images _per_time+5+color*5]1])
plt.imshow(np.max(image stack, axis = 0));
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Let's make a little function out of that:

In [6]: def get stack(data, time, color, images per_time):
image stack = np.stack([x.asarray()
for x in data.pages[time*images per_ time+0+color
*5:time*images per time+5+color*5]1])
return image_stack

In [7]: plt.imshow(np.max(get stack(data, 0, 1, 10), axis = 0));
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Now we can chose any time point and segment if using our two functions. In addition we can use the region properties to
define the average position of each detected nucleus:
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In [8]: #choose a time
time = 10

#load the stack and segment it

image stack = get stack(data, time,0,10)
image = np.max(image_ stack, axis = 0)
nuclei = nuclei = detect nuclei(image)

#find position of nuclei

nuclei label = label(nuclei)

regions = regionprops(nuclei_label)

centroids = np.array([x.centroid for x in regions])

#create a nan-mask for overlay
nuclei nan = nuclei.copy().astype(float)
nuclei nan[nuclei == 0] = np.nan

#plto the result

plt.figure(figsize=(10,10))

plt.imshow(image, cmap = 'gray')

plt.imshow(nuclei nan, cmap = 'Reds',vmin = 0,vmax = 1,alpha = 0.6)
plt.plot(centroids[:,1], centroids[:,0],'0");

/usr/local/lib/python3.5/dist-packages/skimage/filters/rank/generic.py:10
2: UserWarning: Bitdepth of 14 may result in bad rank filter performance
due to large number of bins.

"performance due to large number of bins." % bitdepth)
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So now we can repeat the same operation for multiple time points and add the array with the coordinates to a list to keep
them safe
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In [9]:

centroids time []
for time in range(10):

#load the stack and segment it

file:///home/marie/Documents/CAS data scienc...

image stack = get stack(data, time,0,10)

image
nuclei

nuclei detect nuclei(
#find position of nuclei

nuclei label label(nuclei)
regions
centroids

centroids time.append(centroids)

/usr/local/lib/python3.5/dist-packag

np.max(image stack, axis

0)
image)

regionprops(nuclei_ label)
np.array([x.centroid for x in regions])

es/skimage/filters/rank/generic.py:10

2: UserWarning: Bitdepth of 14 may result in bad rank filter performance

due to large number of bins.

"performance due to large number of bins." % bitdepth)

Let's plot all those centroids for all time points

In [10]:

for x in centroids_time:
plt.plot(x[:,1],x[:,0]1,'0")

400 e - o o
350 T W s 7
Coo
300 1 e e Wy B @ » 2
@
Qe o »
x0{ Gegeo WP e o F -
»
200 ., «re w @
@ ® e - ®
o
150 { e S LY e
° (<4 @P@
c—"'( o= [ O - © o
100 o o o
< =)
50 1 @»
0 100 200 300 400 500 600

We definitely see tracks corresponding to single nuclei here. How are we going to track them?

11.3 Tracking trajectories

The wonderful thing with Python, is that there are a lot of resources that one can just use. For example, if we Google
"python tracking", one of the first hits if for the package trackpy which is originally designed to track diffusion particles but
can be repurposed for anything.

Browsing through the documentation, we see that we need the function link_df. df stands for dataframe, which is a special
data format offered by the package Pandas, and is very close to the R dataframe. Let's load those two modules:

In [11]:

import trackpy
import pandas as pd

And look for some help:
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In [12]: help(trackpy.link df)
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Help on function link in module trackpy.linking.linking:

link(f, search _range, pos columns=None, t column='frame', **kwargs)
link(f, search_range, pos columns=None, t column='frame', memory=0,
predictor=None, adaptive stop=None, adaptive step=0.95,
neighbor strategy=None, link strategy=None, dist func=None,
to _eucl=None)

Link a DataFrame of coordinates into trajectories.

Parameters
f : DataFrame
The DataFrame must include any number of column(s) for position a

column of frame numbers. By default, 'x' and 'y' are expected for
position, and 'frame' is expected for frame number. See below for
options to use custom column names.

search_range : float or tuple
the maximum distance features can move between frames,
optionally per dimension

pos_columns : list of str, optional

Default is ['y', 'x'], or ['z', 'y', 'x'] when 'z' is present in
f
t column : str, optional
Default is 'frame'
memory : integer, optional
the maximum number of frames during which a feature can vanish,
then reappear nearby, and be considered the same particle. 0 by d
efault.

predictor : function, optional
Improve performance by guessing where a particle will be in
the next frame.
For examples of how this works, see the "predict" module.
adaptive stop : float, optional
If not None, when encountering an oversize subnet, retry by progr
essively
reducing search range until the subnet is solvable. If search ran
ge
becomes <= adaptive stop, give up and raise a SubnetOversizeExcep
tion.
adaptive step : float, optional
Reduce search _range by multiplying it by this factor.
neighbor strategy : {'KDTree', 'BTree'}
algorithm used to identify nearby features. Default 'KDTree'.
link strategy : {'recursive', 'nonrecursive', 'numba', ‘'hybrid', 'dro
p', 'auto'}
algorithm used to resolve subnetworks of nearby particles
'auto' uses hybrid (numba+recursive) if available
'drop' causes particles in subnetworks to go unlinked
dist func : function, optional
a custom distance function that takes two 1D arrays of coordinate
s and
returns a float. Must be used with the 'BTree' neighbor strategy.
to_eucl : function, optional
function that transforms a N x ndim array of positions into coord
inates
in Euclidean space. Useful for instance to link by Euclidean dist
ance
starting from radial coordinates. If search range is anisotropic,
this
parameter cannot be used.

Returns

DataFrame with added column 'particle' containing trajectory labels.
The t column (by default: 'frame') will be coerced to integer.
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So we have a lot of options, but the most important thing is to get our data into a dataframe that has three columns, x,y
and frame. How are we going to create such a dataframe ?

11.3.1 Pandas dataframe
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In [13]: help(pd.DataFrame)
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Help on class DataFrame in module pandas.core.frame:

class DataFrame(pandas.core.generic.NDFrame)
| Two-dimensional size-mutable, potentially heterogeneous tabular data
| structure with labeled axes (rows and columns). Arithmetic operations
| align on both row and column labels. Can be thought of as a dict-like
| container for Series objects. The primary pandas data structure.
I
I

Parameters

data : ndarray (structured or homogeneous), Iterable, dict, or DataFr

I

I
ame

| Dict can contain Series, arrays, constants, or list-like objects

I

| versionchanged :: 0.23.0

| If data is a dict, argument order is maintained for Python 3.6

| and later.

I

| index : Index or array-like

| Index to use for resulting frame. Will default to RangeIndex if

| no indexing information part of input data and no index provided

| columns : Index or array-like

| Column labels to use for resulting frame. Will default to

| RangeIndex (0, 1, 2, ..., n) if no column labels are provided

| dtype : dtype, default None

| Data type to force. Only a single dtype is allowed. If None, infe
r

copy : boolean, default False
Copy data from inputs. Only affects DataFrame / 2d ndarray input

See Also

DataFrame.from records : Constructor from tuples, also record arrays.

DataFrame.from dict : From dicts of Series, arrays, or dicts.

DataFrame.from items : From sequence of (key, value) pairs
pandas.read csv, pandas.read table, pandas.read clipboard.

Examples

Constructing DataFrame from a dictionary.

>>> d = {'coll': [1, 2], 'col2': [3, 41}
>>> df = pd.DataFrame(data=d)

>>> df

coll «col2
0 1 3
1 2 4

Notice that the inferred dtype is int64.

>>> df.dtypes
coll int64
col2 int64
dtype: object

To enforce a single dtype:

>>> df = pd.DataFrame(data=d, dtype=np.int8)
>>> df.dtypes
coll int8
col2 int8
dtype: object

Constructing DataFrame from numpy ndarray:

31, [4, 5, 6], [7, 8, 9]]),

>>> df2 = pd.DataFrame(np.array([[1, 2,
Ibl, ICI])

columns=['a’',

oo> df2
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Tons of information, but basically we can use as input a Numpy array. So let's just try to do that and see what comes out.
Our list of coordinates arrays only contains x and y positions but no time. So first we will add a column to each array. Let's
test on the first array:

In [34]: first array = centroids time[0].copy()
#first _array

We now append a column to this array that contains the time of this frame:

In [35]: time = 0
first array = np.c [first array, time *np.ones(first array.shape[0])]
#first_array

Let's do the same thing for all time points simply using a comprehension list:

In [33]: centroids_time2 = [np.c_[x, ind *np.ones(x.shape[0])] for ind, x in enum
erate(centroids time)]
#centroids time2[6]

Now we can concatenate this list of arrays into one large array that we are then going to transform into a dataframe

In [17]: centroids time2 = np.concatenate(centroids time2)
centroids_time2

Out[17]: array([[ 44.60991736, 617.96859504, 0. 1,
[ 66.87583893, 525.50503356, 0. 1,
[ 69.8377193 , 214.86403509, 0. 1,
[392.24482109, 507.03578154, 9. 1,
[397.68828452, 456.37656904, 9. 1,
[401.73901099, 294.92582418, 9. 11)

Let's simply pass that array to Pandas:
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In [18]: pd.DataFrame(centroids time2)
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Not too bad. The x, y and time columns of our arrays are now integrated into a dataframe.

We'd like now to change the headers of our dataframe. In the help we saw that there was on optional field called columns.
We can give the appropriate name there:
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In [19]: coords dataframe = pd.DataFrame(centroids time2, columns=('x','y','frame
)

coords_dataframe
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That's it! We now have an appropriately formated dataframe to pass to our linking function, which required x,y and frame
columns. Information can be retried from dataframes in similar ways as from Numpy arrays or Python dictionaries. For
example, one can select a column (the head function limits the output):

In [20]: coords dataframe['x'].head()

Out[20]: © 44.609917
1 66.875839
2 69.837719
3 84.217116
4 87.518409
N

ame: x, dtype: float64

One can access a specific row using its index:

In [21]: coords dataframe.loc[0]

Out[21]: x 44 .609917
y 617.968595
frame 0.000000

Name: 0, dtype: float64

And one can use logical indexing. For example one can find all the lines corresponding to a given time frame, and extract
them:

In [22]: coords dataframe[coords dataframe['frame']==0].head()

Out[22]:

X y | frame

0]44.609917|617.968595| 0.0

1]66.875839|525.505034 | 0.0

69.837719214.864035|0.0

2
3184.217116|344.353407 0.0
4187.518409|610.238586 | 0.0

A dataframe and its contents have also a series of methods attached to them. For example we can get the maximum value
from a given columns like this:

In [23]: coords dataframe['x'].max()

Out[23]: 409.8050595238095

Pandas and Numpy are very close, so of course we could also have used the Numpy function:

In [24]: np.max(coords dataframe['x'])

Out[24]: 409.8050595238095

Using the Pandas package would be a course on itself as it is a very powerful tool to handle tabular data. We just showed
some very basic features here so that what follows makes sense. Note that this is a situation that occurs often: you just
need a few features of a package within a larger project, and have to figure out the basics of it. However, if you work with
large tabular data, learning Pandas is highly recommended.
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11.3.2 Tracking

file:///home/marie/Documents/CAS data scienc...

There are multiple options in the tracking function. E.g. in how many frames a signal is allowed to disappear, how we
calculate distances between objects etc. We are only going to give a value for the fields search_range which specifies in
what neighborhood one is doing the tracking.

In [25]: tracks = trackpy.link df(coords dataframe, search range=20)

Frame 9: 63 trajectories present.

The output is a new dataframe. It contains the position (x,y,frame) of each particle, and to what track (particle) it belongs:

In [26]: tracks.head()

Out[26]:
X y | frame | particle
0 (44.609917 [617.968595]0 0
33(248.584356 | 137.056748 | 0 1
34 (255.506154 | 227.063077 | 0 2
35(260.481848|524.721122 (0 3
36 (268.189189 | 384.758347 | 0 4

We have seen before that we can use indexing. So let's do that to recover all the points forming for example the trajectory

=10

In [27]: tracks[tracks['particle']==10]

Out[27]:
X y | frame | particle
42 |292.320814 (437.802817 |0 10
103 290.185759 [ 437.803406 | 1 10
163 |288.868012|438.596273 | 2 10
225)288.651537(439.784773 |3 10
288 |288.668721|439.288136 | 4 10
350|289.728213 [ 440.728213 | 5 10
413|288.701534 | 443.525802 | 6 10
476 | 288.875000 | 445.761765 | 7 10
538 (289.774924 [ 448.592145 | 8 10
600|289.171131 [451.400298 | 9 10

We see that in that particular case, we have one point per frame and the successive points seem close together, so the

tracking seems to have worked properly. We can recover all such trajectories and plot them on a single xy plot:
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In [28]: plt.figure(figsize=(10,10))
for particle_id in range(tracks['particle'].max()):
plt.plot(tracks[tracks.particle==particle _id].y,tracks[tracks.partic
le==particle id].x, 'o-")
plt.show()
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11.4 Analysing the data

Now that we have those tracks, we can finally do some quantification of the process. For example we can measure what is
the largest distance traveled by each nucleus.

In [29]: msd = trackpy.imsd(tracks,1,1)
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In [30]: msd.loc[9].hist()
Out[30]: <matplotlib.axes. subplots.AxesSubplot at Ox7f011leObf7f0>
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In [31]: distances = []
for particle id in range(tracks['particle']l.max()):
#recover current track
current_track = tracks[tracks.particle==particle_id]

#find beginning and end of track
min_time = np.min(current track['frame'])
max_time = np.max(current track['frame'])

#get positions at begin and end and measure distance

x1 = current _track[current track['frame']l==min time].iloc[0].x
yl = current _track[current track['frame']==min time].iloc[0].y
x2 = current_track[current track['frame']==max_time].iloc[0].Xx
y2 = current_track[current_track['frame']==max_time].iloc[0].y

distances.append(np.sqrt((x2-x1)**2+(y2-yl)**2))

In [32]: plt.hist(distances)
plt.show()
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As we could have guesses from looking at the displacement plot, we have two categories of nucle: those that move on the
left of the image, and those that don't on the right.
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