
15. Deep learning

Deep learning methods are used more and more fequently for complex segmentation tasks. The basic idea of that
approach is to let a system learn by itself what are the important features of the objects to segment by feeding it training
examples.

Of course you will not learn all the details about deep learning in this single notebook. The goal here is simply to give a
very brief overview of the steps involved. In particular the goal is to show that if you are provided with a trained network
e.g. by a collaborator, using it to segment your data is very straightforward.

The example here uses Tensorflow and Keras. Tensorflow is Google's deep learning library that is widely used. Keras is a
layer that sits on top of tools like Tensorflow and allows one to simplify the prototyping of a deep learning pipeline. It can
also transparently be used with other "backends" like PyTorch, Facebook's deep learning library.

In [2]: import numpy as np
import matplotlib.pyplot as plt
from skimage.external.tifffile import TiffFile
from skimage.measure import label, regionprops
from skimage.segmentation import watershed

#import your function
import sys, os
from course_functions import detect_nuclei

if not os.path.isdir('MyData/DL'):
os.makedirs('MyData/DL')

15.1 Creating the training set

As a simple example, we are going to use the Zebra fish embryo nuclei that we have tried to segment before. Usually, one
would create a training set by manually segmenting data or at least manually correcting them. Here we cheat and use our
previous segmentation pipeline to create a learning dataset.

First we have to decide how large our training images are going to be. This is set by the type of computing resource used
and the memory size.

In [3]: imsize = 64
image_rows = 64
image_cols = 64
channels = 1

In [4]: #load the image to process
data = TiffFile('Data/30567/30567.tif')
image = data.pages[0].asarray()
per_image = np.floor(np.array(image.shape)/imsize)

To create our training set, we are going to segment 5 images using our previous pipeline. Then we are going to cut the
original image and its mask into 64x64 pieces. We exclude images which have no nuclei as they don't contain interesting
information.

15-DeepLearning file:///home/marie/Documents/CAS_data_scienc...

1 of 5 1/23/20, 11:36 AM

In [5]: all_images = []
all_masks = []
for t in (3,13,23,33,43):

image = data.pages[t].asarray()
im_float = image.astype(np.float32)
#create your mask
nuclei = detect_nuclei(image)
nuclei = nuclei.astype(np.uint8)

for i in range(int(per_image[0])):

for j in range(int(per_image[1])):
if np.sum(nuclei[i*imsize:(i+1)*imsize,j*imsize:(j+1)*imsiz

e])>1:
all_images.append(im_float[i*imsize:(i+1)*imsize,j*imsiz

e:(j+1)*imsize])
all_masks.append(nuclei[i*imsize:(i+1)*imsize,j*imsiz

e:(j+1)*imsize])

plt.imshow(nuclei, cmap = 'gray')

Here we could split our dataset into a training and testing set. We have enough other data so we use all examples for
training.

In [6]: num_images = 5
total = len(all_masks)

num_train = int(0.99*total)
num_test = total-num_train
print(total)
print(num_train)
print(num_test)

Now we create empty arrays that are going to contain all our data. Note that this works only if the data are not too large or
you have a computer with a lot of RAM. The alternative is to use a more complex approach using Python generators,
which are going to serve images sequentially.

/usr/local/lib/python3.5/dist-packages/skimage/filters/rank/generic.py:10
2: UserWarning: Bitdepth of 14 may result in bad rank filter performance
due to large number of bins.
 "performance due to large number of bins." % bitdepth)

Out[5]: <matplotlib.image.AxesImage at 0x7fbdbc1573c8>

283
280
3

15-DeepLearning file:///home/marie/Documents/CAS_data_scienc...

2 of 5 1/23/20, 11:36 AM

In [7]: imgs = np.ndarray((num_train, image_rows, image_cols,channels), dtype=n
p.float64)
imgs_mask = np.ndarray((num_train, image_rows, image_cols), dtype=np.uin
t8)
imgs_test = np.ndarray((num_test, image_rows, image_cols,channels), dtyp
e=np.float64)
imgs_id = np.ndarray((num_test,), dtype=np.int32)
imgs_weight = np.ndarray((num_train, image_rows, image_cols), dtype=np.u
int8)
imgs_weight[:]=1

Now we fill up our containers. Note that they have to be in special shapes to be fed correctly to the network. Also, in
addition to our images and masks, we have so-called weights. This is an image that is going to assign more importance to
certain regions. This is important for example if one category of pixels appears much less than another, like in our case
nuclei vs. background.

Note also that we correct all images by normalizing them to avoid extreme values.

In [8]: for counter in range(total):
if counter<num_train:

imgs[counter] = all_images[counter][..., np.newaxis]
imgs_mask[counter] = all_masks[counter]
imgs_weight[counter] = 10*all_masks[counter]+1

else:
imgs_test[counter-num_train] = all_images[counter][..., np.newax

is]
imgs_id[counter-num_train] = counter-num_train

mean_val = np.mean(imgs)
imgs = imgs - mean_val
std_val = np.std(imgs)
imgs = imgs/std_val

np.save('MyData/DL/'+'imgs_train.npy', imgs)
np.save('MyData/DL/'+'imgs_mask_train.npy', imgs_mask.reshape((num_trai
n,image_rows*image_cols)))
np.save('MyData/DL/'+'imgs_test.npy', imgs_test)
np.save('MyData/DL/'+'imgs_id_test.npy', imgs_id)
np.save('MyData/DL/'+'imgs_weight_train.npy', imgs_weight.reshape((num_t
rain,image_rows*image_cols)))

15.2 Training the network

Now we can import our small deep learning module.

In [9]: import deeplearning

And we can run the training of our network.

Using TensorFlow backend.

15-DeepLearning file:///home/marie/Documents/CAS_data_scienc...

3 of 5 1/23/20, 11:36 AM

In []: image_rows = 64
image_cols = 64

deeplearning.nuclei_train('MyData/DL/', image_rows,image_cols, dims=1, b
atch_size = 10, epochs = 100, weights = None)

15.3 Using the trained network

Let's load an image that we did not use for training and select a 512x512 region.

In []: image = data.pages[143].asarray()[0:512,0:512]
im_float = image.astype(float)

Now we load again the network and say what the input size will be. Then most importantly, we use the weights that we
just trained.

In []: model = deeplearning.get_unet(1,512,512)
model.load_weights('MyData/DL/weights.h5')

We correct now this single picture with the same factors used for the training set, so that it is in the same state.

WARNING: Logging before flag parsing goes to stderr.
W0123 11:17:27.983967 140454236452608 deprecation_wrapper.py:119] From /u
sr/local/lib/python3.5/dist-packages/keras/backend/tensorflow_backend.py:
4070: The name tf.nn.max_pool is deprecated. Please use tf.nn.max_pool2d
instead.

W0123 11:17:29.209715 140454236452608 deprecation.py:323] From /usr/local
/lib/python3.5/dist-packages/tensorflow/python/ops/math_grad.py:1250: add
_dispatch_support.<locals>.wrapper (from tensorflow.python.ops.array_ops)
is deprecated and will be removed in a future version.
Instructions for updating:
Use tf.where in 2.0, which has the same broadcast rule as np.where
W0123 11:17:33.899000 140454236452608 deprecation_wrapper.py:119] From /u
sr/local/lib/python3.5/dist-packages/keras/backend/tensorflow_backend.py:
422: The name tf.global_variables is deprecated. Please use tf.compat.v1.
global_variables instead.

Train on 224 samples, validate on 56 samples
Epoch 1/100
224/224 [==============================] - 37s 164ms/step - loss: 0.8377
- dice_coef: 0.2907 - val_loss: 0.4347 - val_dice_coef: 0.4183
Epoch 2/100
224/224 [==============================] - 27s 118ms/step - loss: 0.2871
- dice_coef: 0.6174 - val_loss: 0.1904 - val_dice_coef: 0.7066
Epoch 3/100
224/224 [==============================] - 30s 134ms/step - loss: 0.1857
- dice_coef: 0.7411 - val_loss: 0.1603 - val_dice_coef: 0.7344
Epoch 4/100
224/224 [==============================] - 28s 127ms/step - loss: 0.1449
- dice_coef: 0.7921 - val_loss: 0.1272 - val_dice_coef: 0.8245
Epoch 5/100
 40/224 [====>.........................] - ETA: 27s - loss: 0.1383 - dice
_coef: 0.8084

15-DeepLearning file:///home/marie/Documents/CAS_data_scienc...

4 of 5 1/23/20, 11:36 AM

In []: imgs_test = im_float.astype('float32')
imgs_test = imgs_test
imgs_test = imgs_test - mean_val
imgs_test = imgs_test/std_val
plt.imshow(imgs_test)
plt.show()

Finally we reshape it to fit into the network and use the predict() function to generate a prediction for each pixel to be
foreground or background.

In []: imgs_test = imgs_test[np.newaxis,...,np.newaxis]
imgs_mask_test = model.predict(imgs_test, verbose=1)
imgs_mask_test = np.reshape(imgs_mask_test,imgs_test.shape)

Finally we can plot the resulting image, which has values from 0 to 1.

In []: plt.imshow(imgs_mask_test[0,:,:,0], vmin = 0, vmax = 1, cmap= 'gray')
plt.show()

We can now set a threshold for what should be considerd foreground to generate a mask, and compare to the previous
segmentation.

In []: nuclei = detect_nuclei(image)

plt.figure(figsize=(10,10))
plt.subplot(1,2,1)
plt.imshow(imgs_mask_test[0,:,:,0]>0.9, cmap = 'gray')
plt.subplot(1,2,2)
plt.imshow(nuclei[0:512,0:512], cmap = 'gray')
plt.show()

15-DeepLearning file:///home/marie/Documents/CAS_data_scienc...

5 of 5 1/23/20, 11:36 AM

