
Michael Rolli, Nico Färber, IT-Services Office
Contact: grid-support@id.unibe.ch

Science IT Support (ScITS)
Advanced Usage of UBELIX

2

• Checkpointing/Restart
• GNU Parallel
• Job Steps (srun)
• Interactive Jobs (salloc/srun)
• Run GUI Applications on UBELIX
• Parallel Computing
• GPUs @ UBELIX

A Short Introduction into UBELIX

Agenda

3

The sysadmins

Michael Rolli, MD
• Master Humanmedizin 2001 at UniBE
• 2001 – 2013: Institute of Medical

Education (IML)
• Since 2013: Full-time sysadmin UBELIX

Nico Färber
• Degree in Computer Science
• 2008 – 2016: Part-time sysadmin ID
• Since 2016: Full-time sysadmin UBELIX

Who we are

4

Have you activated your CA for UBELIX?

• Campus Account must be activated for UBELIX

• Subscribe to our mailing list:

• https://listserv.unibe.ch/mailman/listinfo/grid-users/
• 2-10 mails per month
• Important announcements (maintenance downtime,…)

Before we Dive in…

https://listserv.unibe.ch/mailman/listinfo/grid-users/

5

Some guidelines

• Know your software/job

• Know how to tweak it
• Know how it uses resources, e.g. is it greedy?
• Know its resource demands, e.g. memory consumption
• Know its dependencies, e.g. additional libraries
• Know its limitations, e.g. does it run in parallel?

• Be a good citizen

• https://docs.id.unibe.ch/ubelix/code-of-conduct

Keep in mind…

https://docs.id.unibe.ch/ubelix/code-of-conduct

6

Copy the examples

• Copy the example folder to your home directory

• cp -r /storage/software/workshop-adv/ $HOME

Hands-on

7

Save program state

• Save state information/intermediate results of a job/computation

• Restart job/computation from a previously saved state

Checkpointing/Restart

8

Why checkpointing

• Do not loose all work upon node failure or unexpected job termination

• Run a time consuming job in a partition that only allows short runtimes

• Run a job in a hostile environment (e.g. GPU partition)

• Checkpointing is mandatory when using the GPU partition

Checkpointing/Restart

9

Levels of checkpointing

• External program to checkpoint your job (not supported yet)

• BLCR, …
• Suitable for proprietary (closed source) software

• Embed checkpointing logic within your code

• Must have access to source code
• Not transparent to developer, portable

• Some applications come with built-in checkpointing capability:

• Gaussian, Quantum Espresso, CP2K, …

Checkpointing/Restart

10

General recipe

• Check if there is a previously saved state

• If yes, restart from saved state

• If no, bootstrap

• Periodically save the state of a running job (e.g. triggered by external signal)

Checkpointing/Restart

11

How can Slurm help?

• Slurm sends signal to job 60s before termination

• SIGTERM followed by SIGKILL after grace period

• User can explicitly send signal to job using scancel

• scancel --signal=USR1 <jobid>

• Catch (trap) signals in code and act accordingly (Bash, Python, C/C++, …)

Checkpointing/Restart

12

C/C++
Checkpointing/Restart

13

Python
Checkpointing/Restart

14

A simple example

• Run job checkpointing/job.sh

• Catch signal SIGUSR1 and SIGTERM

• Use srun to run the binary for proper signal handling

• Verify that the current state was written to state.log

• Kill job: scancel <jobid>

• Start job again. Verify that job continues from last known state

Checkpointing/Restart

15

https://www.gnu.org/software/parallel

• Execute shell scripts in parallel (parallelization based on input data)

• Allows to restart/continue from last task executed

• SLURM: Can be used to distribute a set of tasks among a number of workers

• Particularly useful when number of tasks >> number of workers

GNU Parallel

16

Example (1/2)

• Install GNU Parallel: Run gnu_parallel/install.sh

• Run example gnu_parallel/exercise01/compress.sh

GNU Parallel

• Nice, but what about checkpointing/restart?

17

Example (2/2)

• Run example gnu_parallel/exercise02/job.sh

• Important options: --joblog and --resume/--resume-failed

• Cancel the job after about 30s

• Restart job while inspecting logs/runtasks.log

GNU Parallel

18

Create job steps

• If srun called outside an existing allocation (salloc or sbatch)

• Implicit allocation of resources

• If srun called within an existing allocation (salloc or sbatch)

• Use all/subset of the resources of the allocation

• With array jobs, each array task has its own allocation

• With srun we can start multiple tasks within the same allocation

srun

19

Run job steps concurrently

• Run srun in the background to run job steps concurrently

• srun -N1 -n1 --exclusively … &

• Wait for background tasks to finish before exiting job script

• srun -N1 -n1 --exclusively … &
• srun -N1 -n1 --exclusively … &
• (…)
• wait

srun

20

Example – Run serial tasks concurrently

• Submit job res_management/job.sh

• Show information about job steps

• sacct -j <jobid>
--format=jobid,start,elapsed,ncpus,node,state,exitcode

• Hint: sacct --helpformat for a list of all format options

srun

21

Example – Run parallel tasks

• Open MPI has Slurm support build in and vice versa

• srun --mpi=pmi2 my_mpi_app
• „Open MPI automatically obtains the list of hosts and how many processes to start on each host

from Slurm directly“

• No need to specify --nodelist, --host or --np options to mpirun
• $SLURM_NTASKS corresponds to number of MPI ranks

• Submit job parallel_tasks/job.sh

• Submit job parallel_tasks/job_v2.sh and show job steps

srun

22

Work interactively

• Create an allocation using salloc

• salloc --nodes=1 --ntasks-per-node=4 --time=00:30:00
• Blocks until resources are available

• Use srun to create job steps

• Good for iterative testing/debugging!

• srun [options] --pty bash

• interactive shell on first compute node of the allocation

Interactive Jobs

23

X11 forwarding

• X-Server on your local machine!

• Mac (X11 no longer included): Xquartz
• Windows: Xming

• Enable X11 forwarding from the login node to your local machine:

• ssh -Y -l <username> submit.unibe.ch
• Public keypair to communicate password-less between the nodes
• (srun|salloc) [options] --x11 --pty bash

• --x11: Sets up X11 forwarding on all allocated nodes
• --pty: Pseudo terminal that runs the command (srun only)

Run GUI Apps on UBELIX

24

Example - Running Matlab

salloc -N1 -n1 --mem-per-cpu=4G --time=00:30:00 --x11
module load MATLAB
srun --pty matlab

• Alternatively:

srun -N1 -n1 --mem-per-cpu=4G --time=00:30:00 --x11 --pty bash
module load MATLAB
matlab

• error: No DISPLAY variable set, cannot setup x11 forwarding. Did you login with ssh -Y …?

Run GUI Apps on UBELIX

25

Why parallel programming?

• No more free speedup!

• Many CPU cores available on modern computing hardware

• Your code may run faster if using multiple CPU cores

• Whether this is true depends on the problem you try to solve

• Your application needs more memory than a single node provides

Parallel Computing

26

Three takeaways from the first course

• Be a good citizen, resources are scarce

• This is even more important for parallel jobs!

• Know your software

• E.g. is your software capable of leveraging parallelism

• No generic way to covert a sequential program to a parallel program

Parallel Computing

27

Does your job run in parallel? (1/2)

• If you don’t know for sure, verify it!

• Use scontrol to show CPU IDs allocated to your job

• scontrol –d show job <jobid>

• Now you know the IDs of the allocated CPU cores. What next?

Parallel Computing

28

Does your job run in parallel? (2/2)

• Verify that the processes use the allocated CPU cores

• On the allocated compute node(s):

• top -H -u $USER and activate field „Last Used CPU“
• ps -T c -u $USER -o

pid:10,ppid:10,spid:10,rss:10,psr:6,state:6,time:10,cmd
• or use convenience script (see next example)

Parallel Computing

29

Example - Gathering diagnostics

• Submit job diag/job.sh

• Run fdiag.sh as a job step under an already allocated job

• srun --jobid=<jobid> fdiag.sh

Parallel Computing

30

What about CPU efficancy?

• Does your job use the allocated CPUs efficiently?

• ./cpu_efficancy/seff <jobid>
• Contribution to Slurm by Princeton University
• Also reports memory efficancy

• Does not work with current version of Slurm!
• Outlook: Embed information in end mail

Parallel Computing

31

What about scalability?

• Inherently serial part of a program

• Parallel overhead, i.e. communication overhead

• At what point does adding more cores no longer increase execution speed?

• Check the manual of your software
• Empirical tests: Allocate 2, 4, 8, ... CPU cores

Parallel Computing

• Does the speedup justify the additional CPU resources?

32

Shared memory computing

• Communication between processes is implicit and transparent

• Processes share the same memory

• Job limited to resources provided by a single compute node

• Implementations: OpenMP, ...

Parallel Computing

33

Dsitributed memory computing

• Communication between processes is explicit

• Processes communicate by passing messages (MPI)

• Job can use resources from different compute nodes

• Communication overhead, minimize number of nodes!

• Use --constraint=<feature> to request a homogeneous set of nodes

• Implementations: Open MPI, ...

Parallel Computing

34

Request resources

• For shared memory jobs use

• --mem-per-cpu=2G
• --cpus-per-task=16
• SLURM will allocate 16 CPUs and 32G RAM on same node

• For distributed jobs use

• --mem-per-cpu=2G
• --nodes=4 --tasks-per-node=20
• SLURM will allocate 80 CPUs and 160G of RAM (4 nodes)

Parallel Computing

35

OpenMP

• OpenMP: API for writing multithreaded applications

• De-facto standard API for writing shared memory parallel applications

• Switches for compiling/linking:

• gcc: -fopenmp
• pgi: -mp
• intel: /Qopenmpi

• Master thread spawns additional threads as needed

Parallel Computing

36

OpenMP (1/3)

• OpenMP: API for writing multithreaded applications

• De-facto standard API for writing shared memory parallel applications

• Switches for compiling/linking:

• gcc: -fopenmp
• pgi: -mp
• intel: /Qopenmpi

• Master thread spawns additional threads as needed

Parallel Computing

37

OpenMP (2/3)

• Request a certain number of threads:

• Set an initial value: export OMP_NUM_THREADS=x
• omp_set_num_threads(x)
• num_threads(x) clause
• In either case use $SLURM_CPUS_PER_TASK

• Create threads with the parallel construct:

• #pragma omp parallel
• Each thread executes a copy of the code within the block

Parallel Computing

38

OpenMP (3/3)
Parallel Computing

39

Open MPI

• Resource allocation dictates where the job will run

• --nodes=4 --tasks-per-node=20

• 4 nodes, 20 MPI processes per node
• Open MPI build with Slurm support

• mpirun ./mympi VS. mpirun -np $SLURM_NTASKS ./mympi
• Explicit inter-process communication

• MPI_SEND, MPI_RECEIVE

Parallel Computing

40

Example - OMPI communication

• Compile source file ompi/mpi_send_recv.c using mpicc

• module load OpenMPI/3.1.1-GCC-7.3.0-2.30
• mpicc -o mpi_send_recv mpi_send_recv.c

• Submit job script ompi/job.sh

• Load correct version of Open MPI

Parallel Computing

• Are the requested resource request appropriate for this job?

41

Matlab

• Built-in multithreading

• Functions automatically execute on multiple computational
threads (operations on arrays/matrices, ...)

• maxNumCompThreads(getenv($SLURM_CPUS_PER_TASK))
• Explicit multiprocessing

• Parallel Computing Toolbox (PCT)
• Distributed Computing Server (DCS). Not available on UBELIX!

Parallel Computing

42

Python

• Shared memory

• multiprocessing library

• Distributed memory

• Python supports MPI through the mpi4py module

• GPU

• Python supports Nvidia CUDA. See pycuda module

Parallel Computing

43

• UBELIX provides (09/2019):

• 80 GeForce, fast single precision
• 16 Tesla P100, fast double precision, no video output

• CPU code does not magically run on the GPU

• You have to explicitly adapt your code to run on the GPU

• Code that runs on a GPU will not necessarily run faster than it runs on the CPU

• GPUs are suitable for tasks that are highly parallelizable

GPUs @ UBELIX

44

Request GPU resources

• Must request a GPU partition

• --partition=gpu

• Must request GPU cards

• --gres=gpu:teslaP100:<number_of_gpus>
• --gres=gpu:gtx1080ti:<number_of_gpus>
• --constraint=gtx1080 or --constraint=rtx2080

GPUs @ UBELIX

45

Example – Hello, World! (1/2)

• CUDA kernel

• Function executed on the GPU
• Use N threads

• hello_kernel <<< 1, N >>>();

• printf() is buffered on the GPU memory

• A kernel gives back the control to the CPU immediatly after launch

• CudaDeviceSynchronize() waits until everything on the GPU is completed

GPUs @ UBELIX

46

Example – Hello, World! (2/2)

• CUDA C

• Use standard C syntax
• Name file *.cu

• E.g: hello_world.cu
• Compile with nvcc.

• Must load CUDA first!
• Select compute capability
• nvcc -arch sm_35 -o hello hello_world.cu

• Submit job using sbatch

GPUs @ UBELIX

47

Get help

• GPU expert @ UniBE

• simon.grimm@csh.unibe.ch

GPUs @ UBELIX

mailto:simon.grimm@csh.unibe.ch

48

Courses
• ScITS hosts courses 3 time a year:

http://www.scits.unibe.ch/training/training_and_workshops/

• September 2019:
- Intoduction to Linux for users/owners
- HPC & UBELIX
- Working with Containers
- Deep Learning with MATLAB
- Python for Programmers

Self-Education
• Lots of resources like tutorials/video

courses on the internet

• UBELIX documentation:
• https://docs.id.unibe.ch/ubelix

• UBELIX job monitoring:
• https://ubelix.unibe.ch

Training Courses

http://www.scits.unibe.ch/training/training_and_workshops/
https://docs.id.unibe.ch/ubelix
https://ubelix.unibe.ch/

Thank You!

Michael Rolli, Nico Färber, IT-Services Office
Contact: grid-support@id.unibe.ch

For your attention

