UNIVERSITAT

Advanced Usage of UBELIX
Science IT Support (ScITS)

Michael Rolli, Nico Farber, IT-Services Office
Contact: grid-support@id.unibe.ch

A Short Introduction into UBELIX

Agenda

« Checkpointing/Restart

« GNU Parallel

« Job Steps (srun)

 Interactive Jobs (salloc/srun)

* Run GUI Applications on UBELIX
« Parallel Computing

« GPUs @ UBELIX

UNIVERSITAT

Who we are
The sysadmins

Michael Rolli, MD

Master Humanmedizin 2001 at UniBE
2001 — 2013: Institute of Medical
Education (IML)

Since 2013: Full-time sysadmin UBELIX

b

u

b
UNIVERSITAT
BERN

Nico Farber

Degree in Computer Science
2008 — 2016: Part-time sysadmin ID
Since 2016: Full-time sysadmin UBELIX

Before we Dive in...
Have you activated your CA for UBELIX?

« Campus Account must be activated for UBELIX

« Subscribe to our mailing list:
e https://listserv.unibe.ch/mailman/listinfo/grid-users/
e 2-10 mails per month
e |Important announcements (maintenance downtime,...)

https://listserv.unibe.ch/mailman/listinfo/grid-users/

Keep in mind...
Some guidelines

Know your software/job
* Know how to tweak it
 Know how it uses resources, e.g. is it greedy?
* Know its resource demands, e.g. memory consumption
* Know its dependencies, e.g. additional libraries

* Know its limitations, e.g. does it run in parallel?
Be a good citizen

* https://docs.id.unibe.ch/ubelix/code-of-conduct

https://docs.id.unibe.ch/ubelix/code-of-conduct

Hands-on
Copy the examples

» Copy the example folder to your home directory

e cp -r /storage/software/workshop-adv/ SHOME

Checkpointing/Restart
Save program state

« Save state information/intermediate results of a job/computation

» Restart job/computation from a previously saved state

b

u

Checkpointing/Restart
Why checkpointing

» Do not loose all work upon node failure or unexpected job termination
* Run a time consuming job in a partition that only allows short runtimes
* Run ajob in a hostile environment (e.g. GPU partition)

» Checkpointing is mandatory when using the GPU partition

Checkpointing/Restart
Levels of checkpointing

External program to checkpoint your job (not supported yet)

* BLCR, ...

e Suitable for proprietary (closed source) software
Embed checkpointing logic within your code

e Must have access to source code

* Not transparent to developer, portable
Some applications come with built-in checkpointing capability:

* Gaussian, Quantum Espresso, CP2K, ...

UNIVERSITAT

b

u

Checkpointing/Restart
General recipe

» Check if there is a previously saved state
» |If yes, restart from saved state
* If no, bootstrap

» Periodically save the state of a running job (e.g. triggered by external signal)

10

Checkpointing/Restart
How can Slurm help?

« Slurm sends signal to job 60s before termination

* SIGTERM followed by SIGKILL after grace period

User can explicitly send signal to job using scancel

* scancel --signal=USR1 <jobid>

« Catch (trap) signals in code and act accordingly (Bash, Python, C/C++, ..

11

)

UNIVERSITAT

b
u

Checkpointing/Restart
C/C++

C+4

signal handler (signal) {
'/ Save program state and exit

(cn2)

exit(0);
}

'/ Register signal handler for SIGTERM
signal (SIGTERM, signal handler); // signal handler: function to handle signal
(R

12

b
u

Checkpointing/Restart
Python

|

#! /usr/bin/env python
signal
Sys

signal handler(sig, frame):
Save program state and exit
(«..)
sys.exit(0)

signal.signal(signal.SIGTERM, signal handler)
(«..)

13

Checkpointing/Restart
A simple example

14

Run job checkpointing/job.sh
e Catch signal SIGUSR1 and SIGTERM

Use srun to run the binary for proper signal handling
Verify that the current state was written to state.log
Kill job: scancel <jobid>

Start job again. Verify that job continues from last known state

b

u

GNU Parallel
https://www.gnu.org/software/parallel

» Execute shell scripts in parallel (parallelization based on input data)
» Allows to restart/continue from last task executed
« SLURM: Can be used to distribute a set of tasks among a number of workers

« Particularly useful when number of tasks >> number of workers

15

GNU Parallel
Example (1/2)

16

Install GNU Parallel: Run gnu_parallel/install.sh

Run example gnu_parallel/exercise01/compress.sh

Start compressing files sequentially.

22.51user 1.45system 0:24.28elapsed 98%CPU (@avgtext+@avgdata 912maxresident)k
@inputs+@outputs (@major+713minor)pagefaults @swaps

Done.

Start compressing files in parallel on 2 CPUs.

24 .28user 1.63system 0:16.52elapsed 156%CPU (@avgtext+@avgdata 14684maxresident)k

Qinputs+2808outputs (@major+18689minor)pagefaults @swaps

Done.

Start compressing files in parallel on 4 CPUs.

24 .52user 1.69system 0:06.98elapsed 375%CPU (Qavgtext+@avgdata 14692maxresident)k
@inputs+240Qoutputs (@major+18873minor)pagefaults @swaps

Done.

Nice, but what about checkpointing/restart?

b

u

b
UNIVERSITAT
BERN

b
u

GNU Parallel
Example (2/2)

Run example gnu_parallel/exercise02/job.sh

Important options: --joblog and --resume/--resume-failed

Cancel the job after about 30s

Restart job while inspecting logs/runtasks.log

17

b

u

b

srun
Create job steps

If srun called outside an existing allocation (salloc or sbatch)

* Implicit allocation of resources

If srun called within an existing allocation (salloc or sbatch)

e Use all/subset of the resources of the allocation

With array jobs, each array task has its own allocation

With srun we can start multiple tasks within the same allocation

18

srun
Run job steps concurrently

Run srun in the background to run job steps concurrently

e srun-N1-n1 --exclusively ... &

« Wait for background tasks to finish before exiting job script
e srun-N1 -n1 --exclusively ... &
e srun-N1-n1 --exclusively ... &
. (.)
* wait

19

UNIVERSITAT

Srun
Example — Run serial tasks concurrently

Submit job res _management/job.sh

Show information about job steps
e sacct -j <jobid>
--format=jobid,start,elapsed,ncpus,node,state,exitcode

Hint: sacct --helpformat for a list of all format options

20

b

u

Srun
Example — Run parallel tasks

Open MPI has Slurm support build in and vice versa

* srun --mpi=pmi2 my_mpi_app
,Open MPI automatically obtains the list of hosts and how many processes to start on each host
from Slurm directly”

* No need to specify --nodelist, --host or --np options to mpirun
$SLURM_NTASKS corresponds to number of MPI ranks

Submit job parallel_tasks/job.sh

Submit job parallel_tasks/job _v2.sh and show job steps

21

Interactive Jobs
Work interactively

Create an allocation using salloc
e salloc --nodes=1 --ntasks-per-node=4 --time=00:30:00

* Blocks until resources are available

Use srun to create job steps

Good for iterative testing/debugging!

srun [options] --pty bash
* interactive shell on first compute node of the allocation

22

Run GUI Apps on UBELIX
X11 forwarding

« X-Server on your local machine!
 Mac (X11 no longer included): Xquartz

* Windows: Xming
Enable X11 forwarding from the login node to your local machine:

 ssh-Y-l<username> submit.unibe.ch

Public keypair to communicate password-less between the nodes
(srun|salloc) [options] --x11 --pty bash

e --x11: Sets up X11 forwarding on all allocated nodes
e --pty: Pseudo terminal that runs the command (srun only)

23

b
u

Run GUI Apps on UBELIX
Example - Running Matlab

salloc -N1 -n1 --mem-per-cpu=4G --time=00:30:00 --x11

module load MATLAB

srun --pty matlab

« Alternatively:

srun -N1 -n1 --mem-per-cpu=4G --time=00:30:00 --x11 --pty bash
module load MATLAB
matlab

» error: No DISPLAY variable set, cannot setup x11 forwarding. Did you login with ssh -Y ...?

24

Parallel Computing
Why parallel programming?

No more free speedup!
Many CPU cores available on modern computing hardware

Your code may run faster if using multiple CPU cores
 Whether this is true depends on the problem you try to solve

Your application needs more memory than a single node provides

25

Parallel Computing
Three takeaways from the first course

Be a good citizen, resources are scarce

* This is even more important for parallel jobs!

Know your software

e E.g.is your software capable of leveraging parallelism

No generic way to covert a sequential program to a parallel program

26

UNIVERSITAT

b
u

Parallel Computing
Does your job run in parallel? (1/2)

» |If you don’t know for sure, verify it!

» Use scontrol to show CPU IDs allocated to your job

e scontrol —d show job <jobid>

TRES=cpu=16,mem=32G,node=1,b1lling=16
Socks/Node=* NtasksPerN:B:5:(=16:0:*:* CoreSpec=*

Nodes=anode@®41 CPU_IDs=0-15 Mem=32768 GRES_IDX=
MinCPUsNode=16 MinMemory(CPU=2G MinTmpDiskNode=0
Features=(null) DelayBoot=00:00:00

* Now you know the IDs of the allocated CPU cores. What next?

27

UNIVERSITAT

Parallel Computing
Does your job run in parallel? (2/2)

« Verify that the processes use the allocated CPU cores

* On the allocated compute node(s):

* top -H -u SUSER and activate field ,Last Used CPU"

* ps-Tc-uSUSER-o
pid:10,ppid:10,spid:10,rss:10,psr:6,state:6,time:10,cmd

* Or use convenience script (see next example)

28

Parallel Computing
Example - Gathering diagnostics

« Submit job diag/job.sh

* Run fdiag.sh as a job step under an already allocated job

e srun --jobid=<jobid> fdiag.sh

29

Parallel Computing
What about CPU efficancy?

» Does your job use the allocated CPUs efficiently?

o ./cpu_efficancy/seff <jobid>
e Contribution to Slurm by Princeton University

* Also reports memory efficancy
* Does not work with current version of Slurm!

e Qutlook: Embed information in end mail

30

UNIVERSITAT

Parallel Computing
What about scalability?

Inherently serial part of a program
Parallel overhead, i.e. communication overhead

At what point does adding more cores no longer increase execution speed?
* Check the manual of your software
 Empirical tests: Allocate 2, 4, 8, ... CPU cores

Does the speedup justify the additional CPU resources?

31

b

u

Parallel Computing
Shared memory computing

Communication between processes is implicit and transparent
Processes share the same memory
Job limited to resources provided by a single compute node

Implementations: OpenMP, ...

32

b

u

Parallel Computing
Dsitributed memory computing

Communication between processes is explicit

* Processes communicate by passing messages (MPI)
Job can use resources from different compute nodes
Communication overhead, minimize number of nodes!
Use --constraint=<feature> to request a homogeneous set of nodes

Implementations: Open MPI, ...

33

Parallel Computing
Request resources

* For shared memory jobs use

* --mem-per-copu=2G
* --cpus-per-task=16
 SLURM will allocate 16 CPUs and 32G RAM on same node

* For distributed jobs use

* --mem-per-copu=2G
* --nodes=4 --tasks-per-node=20
 SLURM will allocate 80 CPUs and 160G of RAM (4 nodes)

34

b
u

Parallel Computing
OpenMP

OpenMP: API for writing multithreaded applications
De-facto standard API for writing shared memory parallel applications

Switches for compiling/linking:
e gcc: -fopenmp
* pgi:-mp
* intel: /Qopenmpi

Master thread spawns additional threads as needed

35

b
u

Parallel Computing
OpenMP (1/3)

OpenMP: API for writing multithreaded applications
De-facto standard API for writing shared memory parallel applications

Switches for compiling/linking:
e gcc: -fopenmp
* pgi:-mp
* intel: /Qopenmpi

Master thread spawns additional threads as needed

36

Parallel Computing
OpenMP (2/3)

* Request a certain number of threads:

e Set an initial value: export OMP_NUM_THREADS=x
e omp_set num _threads(x)

* num_threads(x) clause

* |n either case use SSLURM_CPUS_PER TASK

» Create threads with the parallel construct:

* H#pragma omp parallel
* Each thread executes a copy of the code within the block

37

b

u

b

Parallel Computing
OpenMP (3/3)

Binclude <stdlib.h> #1/bin/bash
#include <stdio.h>
#include "omp.h" #SBATCH --mail-type=none
#SBATCH --cpus-per-task=8
void main() {
int a = 10; # You code below this line
// Get number of cores allocated by SLURM ./omp_example
const char* nc = getenv("SLURM_CPUS_PER_TASK");
printf("Number of CPU cores allocated by SLURM: %s\n", nc);
// Create thread pool

omp_set_num_threads(6);
#pragma omp parallel Number of CPU cores allocated by SLURM: 8

// A copy of the following block is executed by each thread

c equals 10 and I am thread @

// Integer 'a' is shared between all threads equals 10 and I am thread 2
// thread_ID is different for each thread equals 10 and I am thread 5

inF thread_ID = omp_get_thread_num(Q); equals 10 and am thread 1
printf("a equals %d and I am thread %d\n", a, thread_ID);
equals 10 and I am thread 4

equals 10 and I am thread 3

38

Parallel Computing
Open MPI

* Resource allocation dictates where the job will run

* --nodes=4 --tasks-per-node=20

* 4 nodes, 20 MPI processes per node

* Open MPI build with Slurm support

* mpirun ./mympi VS. mpirun -np SSLURM__NTASKS ./mympi

» Explicit inter-process communication

» MPI_SEND, MPI_RECEIVE

39

Parallel Computing
Example - OMPI communication

» Compile source file ompi/mpi_send_recv.c using mpicc

* module load OpenMPI/3.1.1-GCC-7.3.0-2.30
* mpicc -o mpi_send_recv mpi_send_recv.c

« Submit job script ompi/job.sh

* Load correct version of Open MPI

* Are the requested resource request appropriate for this job?

40

UNIVERSITAT

Parallel Computing
Matlab

* Built-in multithreading

* Functions automatically execute on multiple computational
threads (operations on arrays/matrices, ...)

* maxNumCompThreads(getenv(SSLURM _CPUS PER TASK))

« Explicit multiprocessing

* Parallel Computing Toolbox (PCT)
e Distributed Computing Server (DCS). Not available on UBELIX!

41

Parallel Computing
Python

« Shared memory

* multiprocessing library

* Distributed memory

* Python supports MPI through the mpi4py module

- GPU

* Python supports Nvidia CUDA. See pycuda module

42

GPUs @ UBELIX

UBELIX provides (09/2019):
* 80 GeForce, fast single precision
e 16 Tesla P100, fast double precision, no video output

CPU code does not magically run on the GPU
* You have to explicitly adapt your code to run on the GPU

Code that runs on a GPU will not necessarily run faster than it runs on the CPU

* GPUs are suitable for tasks that are highly parallelizable

43

GPUs @ UBELIX
Request GPU resources

Must request a GPU partition
* --partition=gpu

Must request GPU cards
e -—-gres=gpu:teslaP100:<number_of gpus>

e -—-gres=gpu:gtx1080ti:<number_of gpus>
* --constraint=gtx1080 or --constraint=rtx2080

44

UNIVERSITAT

GPUs @ UBELIX
Example — Hello, World! (1/2)

CUDA kernel
 Function executed on the GPU

e Use N threads
* hello_kernel <<< 1, N >>>();

printf() is buffered on the GPU memory
A kernel gives back the control to the CPU immediatly after launch

CudaDeviceSynchronize() waits until everything on the GPU is completed

45

GPUs @ UBELIX
Example — Hello, World! (2/2)

- CUDAC

* Use standard C syntax

« Name file *.cu

* E.g:hello_world.cu

 Compile with nvcc.

* Must load CUDA first!
e Select compute capability
* nvcc -arch sm_35 -0 hello hello_world.cu

« Submit job using sbatch

46

GPUs @ UBELIX
Get help

 GPU expert @ UniBE

* simon.grimm@csh.unibe.ch

47

mailto:simon.grimm@csh.unibe.ch

Training Courses

Courses

48

ScITS hosts courses 3 time a year:

http://www.scits.unibe.ch/training/training _and workshops/

September 2019:

- Intoduction to Linux for users/owners
- HPC & UBELIX

- Working with Containers

- Deep Learning with MATLAB

- Python for Programmers

b

u

b
UNIVERSITAT
BERN

Self-Education

* Lots of resources like tutorials/video
courses on the internet

« UBELIX documentation:
* https://docs.id.unibe.ch/ubelix

« UBELIX job monitoring:
« https://ubelix.unibe.ch

http://www.scits.unibe.ch/training/training_and_workshops/
https://docs.id.unibe.ch/ubelix
https://ubelix.unibe.ch/

Thank You! u
For your attention T

Michael Rolli, Nico Farber, IT-Services Office
Contact: grid-support@id.unibe.ch

\

