

Welcome to Introduction to MATLAB Hands-On Workshop!

- Access MATLAB via your MathWorks account
- Associate your account to the campus license or the trial
- Start MATLAB on your machine

If you have trouble, ask for help from a MathWorker.

Introduction to MATLAB: Hands-On Workshop

Universität Bern, 11.02.2020, 9:00-12:30 Dr. Res Jöhr, MathWorks CH

© 2019 The MathWorks, Inc.

-Handson Workshop

Agenda

- Introduction
- Setup / Prework
- MATLAB environment
- Plotting Data
- Scripts and LiveScripts
- Data Analysis with MATLAB
- MATLAB as programming language
- Discussion
- Resources and Outlook

Introduction Round

- Your name and backgound?
- Current interests / job?
- What are you interested to learn / expectations?

MathWorks

- Headquarter near Boston (US)
- >5000 people employees worldwide
- More than 2 million users in 180+ countries
- Used by over 5000 universities worldwide

Where is MATLAB used today?

90,000+ business, government, and university sites

All of the top 10 auto manufacturers¹

All of the top 10 aerospace companies²

Three of the top five internet companies

Campus-Wide License at University of Bern

University & lab computers

Personal Computers & Mobile Devices

Self-paced online learning

Online access

- License covers all faculty, staff, students and their devices
- Access on campus, in lab and field, and at home

Auto-graded homework

Cloud Storage & Sharing

Clusters & HPC

Low-cost hardware support

Available Self-Paced Training Courses

Get started

FREE	FREE	FREE		HEN O
MATLAB Onramp	Simulink Onramp	Deep Learning Onramp	Stateflow Onramp	Machine Learning Onramp

11 hours of FREE content – available for everyone

Computational Mathematics

*Available only to users at universities that offer campus-wide training access.

9 hours of short courses on computational mathematics topics

Core MATLAB

Data Science

Over 80 hours of comprehensive MATLAB learning content

Agenda

- Introduction
- Setup / Prework
- MATLAB environment
- Plotting Data
- Scripts and LiveScripts
- Data Analysis with MATLAB
- MATLAB as programming language
- Selection of Applied Examples
- Resources and Outlook

Setup / Prework

- Create a MathWorks account on https://ch.mathworks.com/login
- Accept the invitation for the course contents send out by mail.
- Access MATLAB Online: <u>https://www.mathworks.com/licensecenter/classroom/MO_3007706/</u>

Agenda

- Introduction
- Setup / Prework
- MATLAB environment
- Plotting Data
- Scripts and LiveScripts
- Data Analysis with MATLAB
- MATLAB as programming language
- Selection of Applied Examples
- Resources and Outlook

What can you do with MATLAB

https://ch.mathworks.com/videos/technical-computing-with-matlab-69042.html

Data Analysis Workflow

Automate

MATLAB User Interface

- The **Toolstrip** fast access to functionality and docu
- The Command window is where you type MATLAB commands following the prompt: >>
- The Workspace window shows all the variables you have defined in your current session. Variables can actually be manipulated within the workspace window.
- The Command History window displays all the MATLAB commands you have used recently – even includes some past sessions.
- The Current Folder window displays all the files in whatever folder you select to be current.

Naming Rules for Variables

- 1. Variable names must begin with a letter
- 2. Names can include any combinations of letters, numbers, and underscores
- 3. Maximum length for a variable name is 63 characters
- 4. The variable name A is different than the variable name a.
- 5. Avoid the following names: i, j, pi, and all built-in MATLAB® function names such as length, char, size, plot, break, cos, log, ...
- 6. It is good programming practice to name your variables to reflect their function in a program rather than using generic x, y, z variables.

Exercises

- 1. Calculate the area and circumference of a circle with a radius of 4 cm. (Area = $50.27 \text{ cm}^2 \text{ Circumference} = 25.13 \text{ cm}$)
- 2. Create two variables a = 4 and b = 17.2 and perform the following calculations

$$\sqrt[3]{b + 9.8}$$

 $10\sqrt{5a + 16}$

Creation of Arrays

Row vector >> a = [1 2 3 4]	Column vector >> a = [1; 2; 3; 4]	Matrix >> a = [1 2 3; 4 5 6; 7 8 10]
$a = 1 \times 4$ 1 2 3 4	$a = 4 \times 1$ 1 2 3 4	$a = 3 \times 3$ 1 2 3 4 5 6 7 8 10

Indexing and modification:

Functions for Array Creation

- start:step:end
- linspace(start, end, samples)
- logspace(start, end, samples)

Most of these functions support the calling syntaxes shown below.

Calling syntax	Output					
fun(m,n)	m-by-n					
fun(n)	n-by-n					

Vectorization

One command processes all elements of an array.

- avoid loops -> code more readable
- often more efficient.

 \rightarrow Differentiation between standard operators from linear algebra and classical algebra needed.

 \rightarrow Dot notation for elementwise operators such as multiplication, division and power.

Example: elementwise multiplication of two vectors x and y with same size:

M=x.*y;

Linear Algebra function

Implicit Expansion

Operators										
+	Addition									
-	Subtraction									
.*	Element-wise Multiplication									
./	Element-wise Division									
.^	Element-wise Exponentiation									

Array operations can be performed on operands of different compatible sizes. Two arrays have compatible sizes if the size of each dimension is either the same or one.

Agenda

- Introduction
- Setup / Prework
- MATLAB environment
- Plotting Data
- Scripts and LiveScripts
- Data Analysis with MATLAB
- MATLAB as programming language
- Discussion
- Resources and Outlook

Plotting in MATLAB

- Publication ready graphics
- Wealth of 2-D and 3-D plotting functions.
- Support for images
- Customize interactively or programmatically

https://ch.mathworks.com/products/matlab/plot-gallery

Plotting Exercises

Exercise 1

- plot sin(5x) and exp(-x) from x=0:2pi
 - use 100 samples
 - dotted line and x markers for sin(5x)
 - Black o markers with grey filling for exp(-x)
- Plot the product with solid thick green line
- Add title, axes annotations and a legend
- Limit the y-axis range to 0:2.5

Exercise 2

 MATLAB Online Training Project 10.1: <u>https://ch.mathworks.com/learn/tutorials/matlab-onramp.html</u>

Agenda

- Introduction
- Setup / Prework
- MATLAB environment
- Plotting Data
- Scripts and LiveScripts
- Data Analysis with MATLAB
- MATLAB as programming language
- Discussion
- Resources and Outlook

MATLAB the technical computing language

- Write programs or scripts using notebooks:
 - Standard Scripts (.m files)
 - LiveScripts (.mlx files)
- Benefits:
 - Faster prototyping
 - Programming
 - Sharing of your work
 - Better readability and documentation
 - Run from command line
 - Code analyzer

Use the **Live Editor** to create scripts that combine code, output, and formatted text in an executable notebook.

Liv	e Editor	- C:\M	ATLAB\Sunrise	Sunset.mlx													Х
LI	/E EDITOI	R	INSERT	VIEW	1						433) H	83		60	99	• 0
lew	Open	Save	Find Files	Go To Go To Go Find ▼	Text	Aa Normal V B I U M E E E E E E	Code	Section Break	Run Sec Run and Run to E	ction d Advance End	Run	Step St	op				14
T	Esti	matir	ng Sunrise	and Suns	et				•		10	708					
				250	K 1												
							20					Sunrise	and Sunse	et			
				m len											S	inrise	
	We c	an ca	lculate sunri	ise and sunse	et times	from the following	equations.			20 -		_	-			-	
	SU	Inrise	$= 12 - \frac{\cos^{-1}}{12}$	$(-\tan\phi\tan\phi)$	δ _ <u>SC</u>	sunset = $12 +$	$\cos^{-1}(-\tan\phi\tan$	$(\delta) - SC$									
				15°	60		15°	60	ay	15							
	lor	ng =	-71 —	0		;			O O								
	lat	t =	42	0	_	;			Ĕ	10							
	tir	meZon	e = 'Easterr	n (UTC-5)'	•;					-					_	_	
	SC	= 50	larT 'Centra	I (UTC-5)	₿ :ime	Zone);				5		_	_	/	-		
	del	lta =	asi - 1 'Mounta	ain (UTC-7)'	(360	*(days - 81)/30	5)); 										
I	sur	nset	= 12 + ac	osd(-tand(lat)*ta	nd(delta))/15	sc/60;			0 50	100	150	200	250	300	350	
I	plo	ot(da	vs. sunris	e. davs. s	unset.	'LineWidth'. 4'				50	100	Day	of Year	200	300	300	
	tit	tle('	Sunrise an	d Sunset')													
	xla	abel('Day of Ye	iar')					*								

Live Editor Notebook Features

- Divide code into sections
- View output next to the code
- Add rich text formatting, equations, images, and hyperlinks
- Add interactive controls
- Enable animations in plots
- Save directly to PDF, HTML, Word, and LaTeX

Live Editor Coding Features

- Use contextual hints when calling functions
- Automatically generate code when interacting with plots and tables in the output
- Add Live Tasks to interactively explore parameters and options

📕 Untitle	d.mlx *				-	o x
LIVE EE	DITOR INSERT	VIEW To • To • Text B I U M SATE TEXT Code Con Generation Case Study	trol • % % Section ctor • Section ODE	Run Section Run and Advance Run to End SECTION ans = 8×11 ti	Run Step Stop RUN	
	Load messy data load LETdata.mat head(nyiso)			1 05/0 2 05/0 3 05/0 4 05/0	1/2007 981.9000 1/2007 991.8000 1/2007 950.1000 1/2007 950.9000	1.571 1.568 1.560 1.560
•	Missing Data	Constant value Previous value Next value Nearest value Nearest value	ation method	5 05/0 6 05/0 7 05/0 8 05/0	1/2007 968.5000 1/2007 949.2000 1/2007 941.6000 1/2007 939.4000	1.555 1.564 1.538 1.557
	Select data Input data nyiso Specify method Cleaning method Fill missing Visualize results Cleaned data Filled miss	Spline interpolation Spline interpolation Shape-preserving cubic interpolation (PCHIF C.DUN Modified Akima cubic interpolation Moving median Moving median Linear interpolation C.DUN Linear interpolation C.DUN Modified Akima cubic interpolati	issing entries	1600 1400 1000 000 000 0.01 2007	Doi:2007 Jan 2008 Apr	

Live Editor Keyboard Shortcuts* let you format as you type

Formatting Style	Autoformatting Sequence	Keyboard Shortcut			
Title	# text + Enter	Ctrl + Alt + L			
Heading 1	## text + Enter	Ctrl + Shift + 1			
Heading 2	### text + Enter	Ctrl + Shift + 2			
Heading 3	#### text + Enter	Ctrl + Shift + 3			
Section break	%% + Enter				
	+ Enter	Ctrl + Alt + Enter			
	*** + Enter				
Bulleted list	* text				
	- text	Ctrl + Alt + U			
	+ text				
Numbered list	number. text	Ctrl + Alt + O			
Italic	*text *				
	text				
Bold	**text **				
	text				
Underline	None	Ctrl + U			
LaTeX equation	\$LaTeX\$	Ctrl + Shift + L			

* This is a subset of available keyboard shortcuts. The full list can be found here: https://www.mathworks.com/help/matlab/matlab_prog/format-live-scripts.html#bvackht-1

Exercises

- 1. Convert Trajectory_start.m into a live script
 - Change commented lines to text
 - Add sliders for the initial conditions
 - Plot the trajectory using xlim=ylim=[0:10]
 - Play around
- 2. Convert LiveEditor_start.m into a live script.
 - Change commented lines into formatted text
 - Format the fit equations and add live controls
 - Make a pdf report.

u	VE EDITO	R		INS	RT		VIEW												1 6	40	5	P	0
ew	Open	Save FILE	10 Ki 11	Find Com Print	Files pare		Go To Sind Signature	Text	:	Aa Title B I Ξ Ξ TE	e ▼ <u>U</u> a	M ≣ :		ODE	SECT	ION	Run	R	Step	Stop			
	Tr	raje	ct	ory	of	a t	hrov	vn o	bje	ect													
							Gesc	hwind	ligi	keit d	des	Steir	nes										
	y d C	-Kor ler Sesc	hw G	indig	ite ikeit	x.	Kom	\vec{v}_x	(<i>t</i>) der (Ges	chwi	indig	jke i d bv	t	ollowi	ng eq	quat	ions:				
	x(t) y(t)	v(t) = v(t) v(t) = v(t)	ocos	$(\alpha)t;$ $(\alpha)t -$	- <u>1</u> gt	2											5						

the time.

Agenda

- Introduction
- Setup / Prework
- MATLAB environment
- Plotting Data
- Scripts and LiveScripts
- Data Analysis with MATLAB
- MATLAB as programming language
- Discussion
- Resources and Outlook

Data Analysis Workflow

Automate

Accessing Data from MATLAB

Access

Explore & Discover

Share

- Files
 - Excel, text, or binary
 - Audio and video, image
 - Scientific formats and XML
- Web Services
 - JSON, CSV, and image data
- Applications and languages
 - C/C++, Java, FORTRAN, Python
 - COM, .NET, shared libraries
 - Databases (Database Toolbox)
- Measurement hardware
 - Data acquisition hardware (Data Acquisition Toolbox)
 - Stand-alone instruments and devices (Instrument Control Toolbox)

Access data interactively using the Import Tool

- Select data types
- Choose what to do with missing data
- Generate MATLAB code

1	MPORT	VIEV	V											t 9 ¢	E ? (
De Fi	elimited xed Width	Column delim Comma () Delimiter	iters:	Ra Variable Names F	nge: A2:AY568 low: 1	51 V 51 V Cutput Ta © Tex	Type: able kt Options 🔻	▼ Repla	ice	▼ unimpo	table cells wit	h ▼ NaN	<u>+</u>	Import Selection 👻	
	٥	ELIMITERS		SEL	ECTION	IM	PORTED DATA			UNIMPORT/	BLE CELLS			Import Data	
S	tormEver	ts_details-ftp	_v1.0_d2017_	c20180316.csv	×									Generate Script	t
	AK	AL	AM	AN	AO	AP	AQ	AR	AS	AT	AU	AV	AW	Generate Fund	AY
								StormEvent	Data				L	ocherate Fante	2
1	_OTHE	TOR_OTHE	. BEGIN_RA	BEGIN_AZI	BEGIN_LOC	END_RANGE	END_AZIM	END_LOCA	BEGIN_LAT	BEGIN_LON	END_LAT	END_LON	EPISODE_N	EVENT_NA	DATA_SO
_	•	Text •	Number	Categorical	Text •	Number •	Categorical -	Categorical -	Number •	Number 🔻	Number •	Number •	Text	Text •	Categorical
	OTHE	TOR_OTHE	BEGIN_RA	BEGIN_AZI	BEGIN_LOC	END_RANGE	END_AZIM	END_LOCA	BEGIN_LAT	BEGIN_LON	END_LAT	END_LON	EPISODE_N	EVENT_NA	DATA_SOU
_			1	NW	FRIES MILLS	1	NW	FRIES MILLS	39.66	-75.08	39.66	-75.08	Low pressu	A couple of	CSV
_			1	S	PUNTA RA	1	SW	FORT MYE	26.501	-81.998	26.5339	-81.8836	A line of th	Emergency	CSV
_			3	NE	FAIRBORN	3	NE	FAIRBORN	39.85	-83.99	39.85	-83.99	Showers an	An entire tr	CSV
_			1	NW	SUMMERSI	1	NW	SUMMERSI	39.1065	-84.2875	39.1061	-84.2874	Thundersto	Garage of a	CSV
			2	ENE	COLE ARPT	2	ENE	COLE ARPT	40.98	-95.89	40.98	-95.89	An upper le	·	CSV
<u> </u>			0	N	COLQUITT	0	N	COLQUITT	31.17	-84.73	31.17	-84.73	Severe wea	Several tree	CSV
			0	N	VEVAY	0	SW	VEVAY	38.75	-85.07	38.7465	-85.0766	Thundersto	A road was	CSV
			2	E	WESTMOR	2	E	WESTMOR	38.07	-76.54	38.07	-76.54	Scattered s	Numerous	CSV
)			21	S	MARSH ISL	21	S	MARSH ISL	29.12	-91.87	29.12	-91.87	A pre-front	A wind gus	CSV
I.			2	NNE	WILLIAMS	2	NNE	WILLIAMS	39.1945	-84.1362	39.1973	-84.139	Thundersto	High water	CSV
2			1	SSW	SYLVESTER	1	SSW	SYLVESTER	31.5327	-83.8992	31.5327	-83.8992	Severe wea	Trees were	CSV
3			3	WNW	OAKLAND	3	WNW	OAKLAND	41.84	-96.52	41.84	-96.52	An upper le	Two center	CSV
4			0	N	RADIUM SP	0	N	RADIUM SP	31.52	-84.13	31.52	-84.13	Severe wea	A boat was	CSV
5			1	WSW	CHARLEST	1	WSW	CHARLEST	35.2971	-94.0383	35.2971	-94.0383	Severe thu		CSV
6			0	N	ROOSEVELT	0	N	ROOSEVELT	34.85	-99.02	34.85	-99.02	Storms for		CSV
7			12	SW	EAST POIN	12	SW	EAST POIN	39.0557	-75.1575	39.0557	-75.1575	A strong lo	Measured	CSV
в			12	NE	BOWERS B	12	NE	BOWERS B	39.1475	-75.2454	39.1475	-75.2454	A strong lo	Gust meas	CSV
9													A cold fron	Snowfall ra	CSV
-	-													-	-

Data Analysis and Visualization in MATLAB

Access

Explore & Discover

Share

- Data analysis
 - Manipulate, preprocess, and manage data
 - Fast, accurate analysis with pre-built math and engineering functions
- Visualization
 - Built in graphics functions for engineering and science (2D, 3D, volume visualization)
 - Interactive tools to annotate and customize graphics

Sharing Results from MATLAB

Access

Explore & Discover

Share

- Automatically generate reports
 - Publish MATLAB files
 - Customize reports using MATLAB Report Generator
- Package as an app
- Deploy applications to other environments

Exercises

- MATLAB Online Training Project 10.2: <u>https://ch.mathworks.com/learn/tutorials/matlab-onramp.html</u>
- Exercise_DataAnalysis_start.mlx
- EcgDetrend_start.mlx

Agenda

- Introduction
- Setup / Prework
- MATLAB environment
- Plotting Data
- Scripts and LiveScripts
- Data Analysis with MATLAB
- MATLAB as programming language
- Discussion
- Resources and Outlook

Programing methods with MATLAB

Ingredients needed to implement a computational task

- Data types in MATLAB
- Control structures and logicals
- Processes , scripts and functions
- Classes

Data types in MATLAB

Logicals

- Represents true or false states using the numbers 1 and 0
- Comparison of variables (Relational operators)
- Check conditions
- Can be used for indexing or decision branching

Relatio	onal operators	Logical	Logical operators					
==	Determine equality	&&	Find logical AND					
>=	Determine greater than or equal to	~	Find logical NOT					
>	Determine greater than	1	Find logical OR					
<=	Determine less than or equal to	xor	Find logical exclusive-OR					
<	Determine less than	all	Determine if all array elements are nonzero or true					
~=	Determine inequality	any	Determine if any array elements are nonzero					
isequal	Determine array equality	find	Find indices and values of nonzero elements					
isequaln	", treating NaN values as equal	islogical	Determine if input is logical array					

41

Control structures I If-else, If-elseif-else

if condition code 1 else code 2 end

Control structures II Switch-case Construction

Loop Structures

While loop

Runs code as long as condition is true

For loop Runs a code for certain number of iterations

Functions

- Reusable code
- Run from command line
- Higher code readability
- Modularity
- Provide help

The syntax for defining a function is similar to the syntax for calling any MATLAB function with the keyword function at the beginning.

Anonymous functions

An anonymous function is a function that is:

- Not stored in a program file
- variable whose data type is function_handle.
- accept inputs and return outputs, (outputs are implicit)
- only a single executable statement.
- Handles can be used as inputs to other functions

```
>> sqr = @(x) x.^2;
>> a = sqr(5)
a = 25
>> q = integral(sqr,0,1);
>> q = integral(@(x) x.^2,0,1);
```


Agenda

- Introduction
- Setup / Prework
- MATLAB environment
- Plotting Data
- Scripts and LiveScripts
- Data Analysis with MATLAB
- MATLAB as programming language
- Discussion
- Resources and Outlook

Expanding the Capabilities of MATLAB

Access

Explore & Discover

Share

- MathWorks add-on tools for:
 - Math, statistics, and optimization
 - Control system design and analysis
 - Signal processing and communications
 - Image processing and computer vision
 - Parallel computing and more...
- Partner products provide:
 - Additional interfaces
 - Domain-specific analysis
 - Support for niche applications

Packaging and Sharing MATLAB Apps

- MATLAB apps
 - Interactive applications to perform technical computing tasks
 - Displayed in apps gallery
- Included in many MATLAB products
- Package your own app
 - Create single file for distribution and installation into gallery
 - Packaging tool:
 - Automatically includes all necessary files
 - Documents required products

Using MATLAB with Other Languages

Calling Libraries Written in Another Language From MATLAB

Calling MATLAB from Another Language

- RESTful, HTTP, and WSDL web services
- Java
- Python
- C/C++
- Fortran
- COM Automation server

Teaching with MATLAB Courseware

Teach and Learn MATLAB

MATLAB Grader

Create interactive course assignments

Automatically grade student work and provide feedback

Run your assignments in any learning environment

Assessment: 80%

Is cross-sectional area correct?

Is the Modulus of Elasticity correct?

Is yield strength calculated correctly?

Is ultimate strength correct?

S Is fracture strength correct? Variable fracture has an incorrect value.

Verify that:

- strain data starts at 0 mm/mm, and stress starts at 0 Pa. Correct the raw data if necessary.
 fracture is assigned a stress value with units of Pa

Total: 80% (100%)

Vector Creation (Leibniz series terms)

hide details..

>

Consider the Leibniz series:

 $1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \dots$

Write a script to generate a vector of the first twenty terms of this series. Assign the vector of series terms to a row vector variable named **LeibnizTerms**.

Solve this problem using vectorized code (i.e. do not use a loop in your solution.)

Files Referenced None Problem Type Script Code Reference Solution Learner Template

1 k = 0:19; 2 LeibnizTerms= (-1).^k ./ (2 * k + 1);

MATLAB Central Community

Every month, over **2 million** MATLAB & Simulink users visit MATLAB Central to get questions answered, download code and improve programming skills.

MATLAB Answers: Q&A forum; most questions get answered in only 60 minutes

File Exchange: Download code from a huge repository of free code including tens of thousands of open source community files

<u>Cody</u>: Sharpen programming skills while having fun

Blogs: Get the inside view from Engineers who build and support MATLAB & Simulink

ThingSpeak: Explore IoT Data

And more for you to explore...

